JPH0458146B2 - - Google Patents

Info

Publication number
JPH0458146B2
JPH0458146B2 JP59079064A JP7906484A JPH0458146B2 JP H0458146 B2 JPH0458146 B2 JP H0458146B2 JP 59079064 A JP59079064 A JP 59079064A JP 7906484 A JP7906484 A JP 7906484A JP H0458146 B2 JPH0458146 B2 JP H0458146B2
Authority
JP
Japan
Prior art keywords
heat
film
resin
flat
aluminum foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59079064A
Other languages
Japanese (ja)
Other versions
JPS60221952A (en
Inventor
Takeo Oohira
Yutaka Iwasaki
Shigeo Kobayashi
Yutaka Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Panasonic Holdings Corp
Original Assignee
Toppan Printing Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP59079064A priority Critical patent/JPS60221952A/en
Publication of JPS60221952A publication Critical patent/JPS60221952A/en
Publication of JPH0458146B2 publication Critical patent/JPH0458146B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明は、扁平薄型電池及びその外被包材に関
する。 <従来技術及び開発経過の説明> 従来、正極活動質に二酸化マンガン、負極活物
質に亜鉛を用い、中性塩電解液を用いた扁平薄型
電池は、例えば「ペーパーバツテリー」の商品名
で市販されてきた。この扁平薄型電池の断面図
は、およそ第1図に示すようなものである。 すなわち、第1図において負極(亜鉛板)11
と正極集電体14の間に、電解液である過塩素酸
亜鉛水溶液を含浸したパレーター12、正極合剤
(二酸化マンガンとカーボンブラツクの混合物)
13を介在させ、全体を外装包材10で包装して
いる。なお、この外被包材10には一部窓があけ
られており、この窓から露出した正極集電体14
が正極端子15となり、負極11と外被包材10
の間にはさまれた金属板が負極端子16となつて
いる。 第1図では、外被包材10は単一の層から成る
シートのように描かれているが、その詳細は第2
図の拡大断面図に示すように、外側から耐熱性フ
イルム21/接着剤22/アルミニウ箔23/接
着剤24/耐熱性樹脂フイルム25/接着剤2
6/金属接着性樹脂27を積層した多層シートで
ある。 ところで、最近のIC、LSIをはじめとするエレ
クトロニクスの進展はめざましく、これらを応用
した電子精密機器においても、高精度・多機能化
がますます強く求められ、これらの電源としての
一次電池にも、高エネルギー密度、長期信頼性が
求められている。更に電卓やカメラなどの低消費
電力の携帯用小型機器では飛躍的な小型軽量化な
どのフアツシヨナブルで、より機能的な商品設計
が図られている。そこで、小型で軽量であるこ
と、薄いこと、フアツシヨナブルである点では、
上記の扁平薄型電池は極めて優れたものである
が、必しもエネルギー密度が最も優れているとい
う訳ではない。 このエネルギー密度の最も高い電池は、今日ま
で、リチウム電池であると言われている。このリ
チウム電池とは、金属リチウムまたはリチウム−
アルミニウ(Li−Al)合金等のリチウム系合金
を負極活物質とし、非水系の電解液を用いたもの
で、以下(イ)〜(ハ)の特徴がある。 (イ) 金属リチウムが、標準電極電位E=−
3.045Vとあらゆる物質中で最も卑な電位を持
ち、かつ電気化学当量は0.26g/Abと固体物
質中で最も小さい値を持つため、高電圧電池
(3V以上)でかつエネルギー密度の非常に大き
な電池となる可能性がある。 (ロ) 有機電解液を使用するため、広い作動温度範
囲を持つ。 (ハ) 5年以上という長期貯蔵性が期待である。 そこで、従来の二酸化マンガン/亜鉛系の扁平
薄型電池に代えて、リチウム電池の扁平薄型電池
を製造することができれば、高電圧でエネルギー
密度が高く、長期貯蔵性があり、しかも小型軽量
で、薄く、フアツシヨナブルな電池が得られるこ
とになる。そこで、予想される扁平薄型リチウム
電池の大略断面図は、例えば第3図に示すような
ものである。すなわち、二枚あるいは二つに折り
こんだ外被包材30には正極集電体31及び負極
集電体35がそれぞれ熱融着されている。この正
極集電体31と負極集電体35の間に、順に、正
極合剤32、有機電解液の含浸したセパレーター
33、リチウム又はリチウム系合金から成る負極
34がはさまれている。 しかるに、扁平薄型リチウム電池の外被包材3
0には、従来の二酸化マンガン/亜鉛系の扁平薄
型電池の外被包材10と異なり、極めて優れた防
湿性と、有機電解液に対する耐性とを要求され
る。また、従来の扁平薄型電池と同じく、集電体
31,35に対する熱接着性が要求されるのは勿
論である。 このような事情に鑑みて、本発明者等は、今日
まで、様々な外被包材を試作し、検討して来た。 例えば、接着剤を用いて内面接着性樹脂を積層
した従来の外被包材10をそのまま使用すると、
有機電解液が浸透して、耐熱性樹脂フイルム25
と金属接着性樹脂27の間、及び耐熱性樹脂フイ
ルム25とアルミニウム箔23の間で剥離してし
まつた。 有機電解液の浸透による同様の剥離もしくは接
着強度の劣化は、ウレタン系接着剤やエポキシ系
接着剤を用いた場合も発生した。これらの実験結
果から、溶剤型の接着剤やノンソルベント型の接
着剤などのいわゆる接着剤は、有機電解液の浸透
によつて膨潤してしまい、接着強度が劣化して剥
離し易くなると結論せざるを得なかつた。 そこで、本発明者等は、外被包材30のアルミ
ニウ箔より内側に接着剤を使用せず、熱融着性樹
脂のみを用いて外被包材を試作した。これは第4
図の断面図に示すもので、外側から順に耐熱性フ
イルム40/接着剤42/アルミニウム箔43/
熱融着性樹脂44の層構成を有する積層材料40
である。 なお、有機電解液がアルミニウム箔43より外
側に浸透することはないので、耐熱性フイルム4
1とアルミニウム箔43は適当な接着剤を用いて
接着することができる。ここで、熱融着性樹脂4
4としては、例えば、エチレン−(メタ)アクリ
ル酸誘導体共重合体、エチレン−グリシジル(メ
タ)アクリレート−ビニルアセテート三元共重合
体、不飽和カルボン酸でグラフト変性したポリオ
レフインなどであり、中でもその熱融着強度とそ
の経時的な安定性から、不飽和カルボン酸でグラ
フト変性したポリオレフインが優れており、特に
不飽和カルボン酸でグラフト変性したポリプロピ
レンが優れていた。 こうして、第4図に示す積層材料40を外被包
材30に用いることによつて、集電体31,35
と外被包材30との接着性及び有機電解液の浸透
による接着強度の劣化の問題は解決したが、その
一方、第4図に示す積層材料40を用いることに
よつて新たな問題が発生してしまつた。すなわ
ち、集電体31,35と積層材料40中のアルミ
ニウム箔43が短絡してしまつたのである。 短絡の原因には二つあつた。一つは、積層材料
40を外被包材30として、集電体31,35に
熱融着する際に、熱融着性樹脂44に小さなピン
ホールが生じ、ここから積層材料40中のアルミ
ニウム箔43に短絡してしまうのである。 短絡のもう一つの原因は、外被包材30同志を
熱融着した際に、そのシールエツジ部分で、集電
体31,35が熱融着性樹脂44を破つて、アル
ミニウム箔43と短絡してしまうのである。この
状態を第5図の部分断面図に示す。図中×がその
破れた部分である。 この短絡を防止するためには、アルミニウム箔
43と熱融着性樹脂44の間に、熱融着時の熱で
ピンホールを生じない別のシートを介在させれば
良いと思われた。これが第6図の断面図に示すも
ので、図中61はナイロン、エチレン−ビニルア
ルコール共重合体、ポリエステル(ポリエチレン
テレフタレート)あるいは熱融着時に熱融着性樹
脂44より大きい溶融粘度を有するポリオレフイ
ン等のフイルムである。 ところが、ナイロンやエチレン−ビニルアルコ
ール共重合体には吸湿性があり、その端面から吸
湿してしまうので、負極活物質として用いられる
リチウム又はリチウム系合金が侵入した水分と反
応する危険があつた。ポリエステルは吸湿性もな
く、耐有機溶剤性も優れているが、熱融着性樹脂
44とポリエステルは通常熱融着性がなく、(ポ
リエステル系熱融着性樹脂はポリエステルに熱融
着できるが、有機電解液に膨潤してしまう)、十
分な接着強度を得ることができなかつた。 フイルム61としてポリエステルを用い、熱融
着性樹脂44とフイルム61の間に接着剤を用い
れば良いが、上述したように、接着剤は有機電解
液の浸透により剥離してしまう。 この問題は解決し難いように思われた。しかる
に、本発明者等は、両面を無機ガスによる非平衡
プラズマ(低温プラズマ)で処理した耐熱性樹脂
フイルムを用いるという意外な方法でこれを解決
した。 <発明の概要> すなわち、本発明は、外側から、耐熱性フイル
ム、アルミニウム箔、及び多層構造の内面接着層
から成る外被包材で扁平な発電要素を外装した電
池であつて、上記内面接着層がアルミニウム側熱
融着性樹脂と、最内面熱融着性樹脂の間に、両面
を無機ガスによる非平衝プラズマ(低温プラズ
マ)で処理した耐熱性樹脂フイルムを配した少な
くとも三層構造から成り、しかもこの内面接着層
が熱融着によつて積層されていることを特徴とす
る扁平型非水電解液電池である。本発明によれ
ば、外被包材のアルミニウム箔よりも内側に耐熱
性樹脂フイルムを配して、内部の熱融着性樹脂に
ピンホールが生じた場合も、アルミニウム箔と集
電体との電気的接触を阻止すると共に、接着剤を
使用していないため有機電解液の浸透による接着
強度の劣化も防ぐことができる。 <発明の具体化> 以下、本発明の詳細は実施例により説明する。
図面の第7図は本発明の一実施例の外被包材の断
面図を示している。図中71はポリエステル、ナ
イロンなどの耐熱性フイルムを意味し、この耐熱
性フイルム71は熱融着性樹脂76の熱融着温度
より20〜30℃以上高い融点を持ち、アルミニウム
箔73と積層してアルミニウム箔73のピンホー
ル発生、腐蝕を防ぐと共に、外被包材70に熱融
着作業性を与えるものである。この耐熱性フイル
ム71とアルミニウム箔73は接着剤又は接着性
フイルム72を介して貼り合わせる。 また75は両面を無機ガスによる非平衡プラズ
マ(低温プラズマ)で処理した耐熱性樹脂フイル
ムで、例えばポリエステルフイルム(ポリエチレ
ンテレフタレートフイルム)が適している。 すなわち、0.01〜1.0Torrのガス圧力において、
高周波電力を印加することでプラズマを形成し、
これをポリエステルフイルムの表面に作用させる
ことで、ポリエステルフイルム本来の強度、耐熱
性等の特性を変化させずに、従来不可能とされて
いたポリエステルフイルムとカルボキシル基等を
有するポリオレフイン系金属接着性樹脂と熱着可
能に表面を改質したものである。使用する無機ガ
スとしては酸素ガスが最も良好な結果を示してい
るが、その接着効果はプラズマによるフイルム表
面のエツチング、カルボキシル基等の官能基の導
入あるいは表面架橋等が複合して生じていると予
想され、無機ガスとしては酸素ガスと共に、窒素
ガス、アルゴンガス等も併用可能である。 最内面熱融着性樹脂76としては、例えば、エ
チレン−(メタ)アクリル酸共重合体、エチレン
−グリシジル(メタ)アクリレート−ビニルアセ
テート、不飽和カルボン酸でグラフト変性したポ
リオレフインなどの、金属に接着性を有する熱融
着性樹脂が使用できるが、上述したように、その
耐有機電解液性から、不飽和カルボン酸でグラフ
ト変性したポリオレフインが好ましく、特に、エ
チレン又はプロピレン単量体100重量部に対し、
アクリル酸、メタクリル酸、イタコン酸、フマル
酸、マレイン酸、無水マレイン酸などのα、β−
不飽和カルボン酸を0.01〜10重量部グラフト重合
させたものが好ましい。 また、アルミニウム箔側熱融着性樹脂74とし
ては、最内面熱融着性樹脂76として使用できる
樹脂なら使用できるが、この外、ポリエチレンな
ども使用できる。 アルミニウム箔(例えば厚さ9μ以上)73、
アルミニウム側熱融着性樹脂74、両面を非平衡
プラズマ処理した耐熱性樹脂フイルム75、最内
面熱融着性樹脂76は、接着剤を用いることな
く、熱融着によつて積層することが必要である。 この外被包材70によつて得られる扁平薄型電
池の断面図は第3図に示すものと同様で、二枚あ
るいは二つに折り込んだ外被包材70には、正極
集電体31及び負極集電体35がそれぞれ熱融着
されている。この際の熱融着温度は150〜200℃が
好ましい。正極集電体31にはチタン、ステンレ
ス鋼、アルミニウムなどが用いられ、負極集電体
35にはニツケル、ステンレス鋼などが用いられ
る。またその厚さは30〜80μである。正極合剤層
32は、正極活物質と導電材としてのカーボンブ
ラツク及び結着剤からなる。正極活物質には二酸
化マンガンなどの金属酸化物や金属硫化物または
フツ化炭素が使用される。結着剤はポリテトラフ
ロロエチレンを用いる。一方負極34にはリチウ
ム、あるいはリチウム−アルミニウム合金などの
リチウム系合金を用いる。セパレーター33はポ
リプロピレンなどの不織布である。有機電解液は
γ−ブチロラクトンの如き非プロトン系高誘電
率、低粘度の有機溶媒に、ほうフツ化リチウム、
過塩素酸リチウムなどの無機塩を溶解したものを
用いる。 以上のように、本発明によれば、外被包材と集
電体との熱融着の際及び外被包材同志の熱融着の
際に、熱融着性樹脂層にピンホールが生じても、
耐熱性樹脂フイルムが存在するために、集電体と
アルミニウム箔の電気的接触が妨げられて、外被
包材と集電体との短絡を防ぐことができる。ま
た、外被包材と集電体、外被包材の層同志が強い
接着力を持ち、有機電解液の浸透による剥離が生
じない。 以下、実施例及び比較例により、本発明を説明
する。 <実施例> 厚さ25μの二軸延伸ポリエチレンテレフタレー
トフイルムの両面を酸素ガスを主体とする無機ガ
スを用いて非平衡プラズマ(低温プラズマ)処理
し、この片面にアクリル酸含量8%のエチレン−
アクリル酸共重合樹脂を40μ厚に溶融押出コーテ
イング(樹脂温度280℃)すると共に、ポリエス
テルフイルム/接着剤/アルミニウム箔の層構成
を持つ積層材料のアルミニウム箔面を重ね熱融着
した。 次いでこのもう一方のプラズマ処理面に無水マ
レイン酸でグラフト変性したポリエチレンを溶融
押出しコーテイングして〓ポリエステルフイルム
71/接着剤72/アルミニウム箔73/エチレ
ン−アクリル酸共重合樹脂74/両面プラズマ処
理ポリエステルフイルム75/無水マレイン酸変
性ポリエチレン76〓の層構成を持つ外被包材を
得た。 この外被包材を用いて第3図に示した扁平型非
水電解液電池を作成した所集電体31,35と外
被包材70中のアルミニウム箔73が短絡するト
ラブルは全く発生しなかつた。又両面をプラズマ
処理したポリエステルフイルム75とエチレン−
アクリル酸共重合樹脂74及び無水マレイン酸変
性ポリエチレン76との接着強度は表−1に示す
様に良好であつた。 <比較例> 両面をプラズマ処理したポリエステルフイルム
の代わりに未処理のポリエステルフイルム及び両
面をコロナ放電処理したポリエステルフイルムを
用いて、実施例と同様に外被包材を作成した。 この未処理ポリエステルフイルムとコロナ放電
処理したポリエステルフイルムとエチレン−アク
リル酸共重合樹脂74及び無水マレイン酸変性ポ
リエチレン76との接着強度は表−1に示す様に
全くないか不安定であり、更には保存による電解
液(γ−ブチロラクトン)の作用により剥離し、
外被包材として使用に耐えないものであつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to a flat, thin battery and its outer packaging material. <Description of prior art and development progress> Conventionally, flat and thin batteries using manganese dioxide as the positive electrode active material, zinc as the negative electrode active material, and a neutral salt electrolyte have been commercially available under the trade name of "Paper Battery," for example. It's here. A cross-sectional view of this flat, thin battery is approximately as shown in FIG. That is, in FIG. 1, the negative electrode (zinc plate) 11
and a positive electrode current collector 14, a parator 12 impregnated with an aqueous solution of zinc perchlorate, which is an electrolytic solution, and a positive electrode mixture (a mixture of manganese dioxide and carbon black).
13, and the whole is packaged with an outer packaging material 10. Note that a window is partially opened in this outer covering material 10, and the positive electrode current collector 14 exposed through this window.
becomes the positive electrode terminal 15, the negative electrode 11 and the outer covering material 10
The metal plate sandwiched between them serves as a negative electrode terminal 16. In FIG. 1, the outer wrapper 10 is depicted as a single layer sheet;
As shown in the enlarged cross-sectional view of the figure, from the outside: heat-resistant film 21 / adhesive 22 / aluminum foil 23 / adhesive 24 / heat-resistant resin film 25 / adhesive 2
6/ It is a multilayer sheet in which metal adhesive resin 27 is laminated. Incidentally, recent advances in electronics such as ICs and LSIs have been remarkable, and electronic precision equipment that uses these devices is increasingly required to be highly accurate and multi-functional. High energy density and long-term reliability are required. Furthermore, small portable devices with low power consumption, such as calculators and cameras, are being designed to be more fashionable and more functional, such as dramatically smaller size and weight. Therefore, in terms of being small, lightweight, thin, and fashionable,
Although the above-mentioned flat and thin batteries are extremely excellent, they do not necessarily have the best energy density. To date, the battery with the highest energy density is said to be a lithium battery. This lithium battery is metal lithium or lithium-
It uses a lithium-based alloy such as aluminum (Li-Al) alloy as a negative electrode active material and a non-aqueous electrolyte, and has the following characteristics (a) to (c). (a) Metallic lithium has a standard electrode potential E=-
It has the lowest potential of all substances at 3.045V, and the lowest electrochemical equivalent of 0.26g/Ab among solid substances, so it is a high voltage battery (3V or more) and has a very high energy density. It could be a battery. (b) Since it uses an organic electrolyte, it has a wide operating temperature range. (c) It is expected to have a long shelf life of 5 years or more. Therefore, if it were possible to manufacture a flat thin lithium battery instead of the conventional flat thin manganese dioxide/zinc battery, it would be possible to produce a flat thin lithium battery that has high voltage, high energy density, long-term storage, and is also small, lightweight, and thin. , a fashionable battery can be obtained. Therefore, a rough cross-sectional view of an expected flat thin lithium battery is as shown in FIG. 3, for example. That is, a positive electrode current collector 31 and a negative electrode current collector 35 are respectively heat-sealed to the outer packaging material 30 which is folded into two sheets or two. A positive electrode mixture 32, a separator 33 impregnated with an organic electrolyte, and a negative electrode 34 made of lithium or a lithium-based alloy are sandwiched between the positive electrode current collector 31 and the negative electrode current collector 35 in this order. However, the outer packaging material 3 of flat thin lithium batteries
Unlike the conventional manganese dioxide/zinc-based flat thin battery outer covering material 10, extremely excellent moisture resistance and resistance to organic electrolytes are required. Further, as with conventional flat thin batteries, it goes without saying that thermal adhesion to the current collectors 31 and 35 is required. In view of these circumstances, the inventors of the present invention have so far produced and studied various outer packaging materials. For example, if the conventional outer packaging material 10 in which an inner adhesive resin is laminated using an adhesive is used as is,
The organic electrolyte penetrates into the heat-resistant resin film 25.
and the metal adhesive resin 27, and between the heat-resistant resin film 25 and the aluminum foil 23. Similar peeling or deterioration of adhesive strength due to penetration of organic electrolyte also occurred when urethane-based adhesives or epoxy-based adhesives were used. From these experimental results, it can be concluded that so-called adhesives such as solvent-based adhesives and non-solvent adhesives swell due to the penetration of organic electrolytes, which deteriorates their adhesive strength and makes them easier to peel off. I had no choice. Therefore, the present inventors did not use an adhesive on the inner side of the aluminum foil of the outer wrapping material 30, and produced a prototype outer wrapping material using only a heat-fusible resin. This is the fourth
The cross-sectional view in the figure shows, in order from the outside: heat-resistant film 40 / adhesive 42 / aluminum foil 43 /
Laminated material 40 having a layered structure of heat-fusible resin 44
It is. Note that since the organic electrolyte does not penetrate beyond the aluminum foil 43, the heat-resistant film 4
1 and the aluminum foil 43 can be bonded together using a suitable adhesive. Here, heat-fusible resin 4
Examples of 4 include ethylene-(meth)acrylic acid derivative copolymer, ethylene-glycidyl(meth)acrylate-vinyl acetate terpolymer, and polyolefin graft-modified with unsaturated carboxylic acid. Polyolefin graft-modified with unsaturated carboxylic acid was superior in terms of fusion strength and stability over time, and polypropylene graft-modified with unsaturated carboxylic acid was particularly excellent. In this way, by using the laminated material 40 shown in FIG.
Although the problem of deterioration of the adhesion between the outer envelope material 30 and the adhesive strength due to penetration of the organic electrolyte was solved, on the other hand, a new problem occurred by using the laminated material 40 shown in FIG. I did it. That is, the current collectors 31 and 35 and the aluminum foil 43 in the laminated material 40 were short-circuited. There were two causes for the short circuit. One is that when the laminated material 40 is used as the outer covering material 30 and is heat-sealed to the current collectors 31 and 35, a small pinhole is created in the heat-sealable resin 44, and the aluminum in the laminated material 40 is formed through the heat-sealed resin 44. This causes a short circuit to the foil 43. Another cause of the short circuit is that when the outer covering material 30 is heat-sealed together, the current collectors 31 and 35 break the heat-sealing resin 44 at the seal edges, causing a short circuit with the aluminum foil 43. That's what happens. This state is shown in the partial sectional view of FIG. The x in the figure is the torn part. In order to prevent this short circuit, it was considered that another sheet should be interposed between the aluminum foil 43 and the heat-fusible resin 44, which would not cause pinholes due to the heat during heat-sealing. This is shown in the cross-sectional view of FIG. 6, where 61 is nylon, ethylene-vinyl alcohol copolymer, polyester (polyethylene terephthalate), or polyolefin having a higher melt viscosity than the heat-fusible resin 44 during heat-sealing. It is a film of However, nylon and ethylene-vinyl alcohol copolymers have hygroscopic properties and will absorb moisture from their end surfaces, so there is a risk that the lithium or lithium-based alloy used as the negative electrode active material will react with the invading moisture. Polyester is not hygroscopic and has excellent organic solvent resistance, but heat-fusible resin 44 and polyester usually do not have heat-fusibility (polyester-based heat-fusible resin can be heat-fused to polyester, but , it swelled in the organic electrolyte), and sufficient adhesive strength could not be obtained. Polyester may be used as the film 61, and an adhesive may be used between the heat-fusible resin 44 and the film 61, but as described above, the adhesive peels off due to penetration of the organic electrolyte. The problem seemed intractable. However, the present inventors solved this problem using an unexpected method of using a heat-resistant resin film whose both sides were treated with non-equilibrium plasma (low-temperature plasma) using an inorganic gas. <Summary of the Invention> That is, the present invention provides a battery in which a flat power generation element is packaged from the outside with an outer covering material consisting of a heat-resistant film, an aluminum foil, and a multilayer inner adhesive layer, and At least a three-layer structure with a heat-resistant resin film treated with non-equilibrium plasma (low-temperature plasma) using an inorganic gas on both sides between the heat-fusible resin on the aluminum side and the heat-fusible resin on the innermost surface. The flat non-aqueous electrolyte battery is characterized in that the inner adhesive layer is laminated by heat fusion. According to the present invention, the heat-resistant resin film is arranged inside the aluminum foil of the outer covering material, and even if a pinhole occurs in the internal heat-sealable resin, the aluminum foil and the current collector In addition to preventing electrical contact, since no adhesive is used, it is possible to prevent deterioration of adhesive strength due to penetration of organic electrolyte. <Embodiment of the invention> The details of the present invention will be explained below using examples.
FIG. 7 of the drawings shows a sectional view of an outer wrapping material according to an embodiment of the present invention. In the figure, 71 means a heat-resistant film such as polyester or nylon, and this heat-resistant film 71 has a melting point 20 to 30°C higher than the heat-fusion temperature of the heat-fusible resin 76, and is laminated with the aluminum foil 73. This prevents the occurrence of pinholes and corrosion in the aluminum foil 73, and also provides heat-sealing workability to the outer wrapping material 70. This heat-resistant film 71 and aluminum foil 73 are pasted together with an adhesive or an adhesive film 72 interposed therebetween. Further, 75 is a heat-resistant resin film whose both sides are treated with non-equilibrium plasma (low-temperature plasma) using an inorganic gas, and for example, a polyester film (polyethylene terephthalate film) is suitable. That is, at a gas pressure of 0.01 to 1.0 Torr,
Plasma is formed by applying high frequency power,
By applying this to the surface of the polyester film, it is possible to create a polyolefin-based metal adhesive resin with carboxyl groups and the like, which was previously considered impossible, without changing the original properties of the polyester film such as strength and heat resistance. The surface has been modified to allow thermal bonding. Oxygen gas has shown the best results as the inorganic gas used, but its adhesion effect is thought to be caused by a combination of etching of the film surface by plasma, introduction of functional groups such as carboxyl groups, or surface crosslinking. As expected, nitrogen gas, argon gas, etc. can be used in combination with oxygen gas as the inorganic gas. The innermost heat-fusible resin 76 may be made of, for example, ethylene-(meth)acrylic acid copolymer, ethylene-glycidyl(meth)acrylate-vinyl acetate, or polyolefin graft-modified with unsaturated carboxylic acid, which adheres to metal. As mentioned above, polyolefin graft-modified with an unsaturated carboxylic acid is preferable because of its resistance to organic electrolytes. On the other hand,
α, β- such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, maleic anhydride, etc.
It is preferable to graft polymerize 0.01 to 10 parts by weight of unsaturated carboxylic acid. Further, as the aluminum foil side heat-fusible resin 74, any resin that can be used as the innermost heat-fusible resin 76 can be used, but polyethylene or the like can also be used. Aluminum foil (for example, thickness 9μ or more) 73,
The aluminum side heat-fusible resin 74, the heat-resistant resin film 75 whose both sides have been treated with non-equilibrium plasma, and the innermost heat-fusible resin 76 must be laminated by heat-fusion without using adhesive. It is. A cross-sectional view of a flat thin battery obtained using this outer wrapping material 70 is similar to that shown in FIG. The negative electrode current collectors 35 are each heat-sealed. The thermal fusion temperature at this time is preferably 150 to 200°C. Titanium, stainless steel, aluminum, etc. are used for the positive electrode current collector 31, and nickel, stainless steel, etc. are used for the negative electrode current collector 35. Moreover, its thickness is 30 to 80μ. The positive electrode mixture layer 32 consists of a positive electrode active material, carbon black as a conductive material, and a binder. Metal oxides such as manganese dioxide, metal sulfides, or carbon fluoride are used as the positive electrode active material. Polytetrafluoroethylene is used as the binder. On the other hand, the negative electrode 34 is made of lithium or a lithium-based alloy such as a lithium-aluminum alloy. The separator 33 is a nonwoven fabric such as polypropylene. The organic electrolyte consists of an aprotic high dielectric constant, low viscosity organic solvent such as γ-butyrolactone, lithium fluoride,
A solution containing an inorganic salt such as lithium perchlorate is used. As described above, according to the present invention, pinholes are formed in the heat-fusible resin layer when the outer wrapping material and the current collector are heat-sealed and when the outer wrapping materials are heat-sealed together. Even if it occurs,
The presence of the heat-resistant resin film prevents electrical contact between the current collector and the aluminum foil, thereby preventing a short circuit between the outer wrapping material and the current collector. In addition, the layers of the outer covering material, current collector, and outer covering material have strong adhesive strength, and peeling does not occur due to penetration of the organic electrolyte. The present invention will be explained below with reference to Examples and Comparative Examples. <Example> Both sides of a biaxially stretched polyethylene terephthalate film with a thickness of 25 μm were treated with non-equilibrium plasma (low temperature plasma) using an inorganic gas mainly composed of oxygen gas, and one side was coated with ethylene containing 8% acrylic acid.
A 40μ thick acrylic acid copolymer resin was applied by melt extrusion coating (resin temperature 280°C), and the aluminum foil surfaces of a laminated material with a layered structure of polyester film/adhesive/aluminum foil were overlapped and heat-sealed. Next, this other plasma-treated surface is melt-extruded and coated with polyethylene graft-modified with maleic anhydride to form a polyester film 71 / adhesive 72 / aluminum foil 73 / ethylene-acrylic acid copolymer resin 74 / double-sided plasma-treated polyester film. An outer packaging material having a layer structure of 75/maleic anhydride-modified polyethylene 76 was obtained. When the flat non-aqueous electrolyte battery shown in FIG. 3 was fabricated using this outer casing material, there was no problem of short circuit between the current collectors 31 and 35 and the aluminum foil 73 in the outer casing material 70. Nakatsuta. In addition, polyester film 75 with plasma treatment on both sides and ethylene-
The adhesive strength between acrylic acid copolymer resin 74 and maleic anhydride modified polyethylene 76 was good as shown in Table 1. <Comparative Example> An outer wrapping material was created in the same manner as in the example, using an untreated polyester film and a polyester film whose both sides were subjected to corona discharge treatment instead of the polyester film whose surfaces were plasma-treated. As shown in Table 1, the adhesive strength between this untreated polyester film, the corona discharge-treated polyester film, the ethylene-acrylic acid copolymer resin 74, and the maleic anhydride-modified polyethylene 76 was either nonexistent or unstable; It peels off due to the action of electrolyte (γ-butyrolactone) during storage,
It was unsuitable for use as an outer covering material. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の二酸化マンガン/亜
鉛系の扁平薄型電池及びその外被包材の断面図、
第3図はリチウムを負極とした扁平薄型電池の断
面図、第4図及び第6図は従来の外被包材の断面
図、第5図はピンホール部分を説明するための扁
平薄型電池の部分断面図、第7図は本発明の外被
包材の断面図である。 10,30,40,60,70……外被包材、
21,41,71……耐熱性フイルム、22,2
4,26,42,72……接着剤、23,43,
73……アルミニウム箔、44……熱融着性樹
脂、74……アルミニウム箔側熱融着性樹脂、7
3……両面を非平衡プラズマ(低温プラズマ)で
処理した耐熱性樹脂フイルム、76……最内面熱
融着性樹脂、31……正極集電体、32……正極
合剤、33……セパレータ、34……負極、35
……負極集電体。
Figures 1 and 2 are cross-sectional views of a conventional manganese dioxide/zinc-based flat thin battery and its outer packaging material;
Figure 3 is a cross-sectional view of a flat, thin battery with lithium as the negative electrode, Figures 4 and 6 are cross-sectional views of conventional outer packaging materials, and Figure 5 is a cross-sectional view of a flat, thin battery with lithium as a negative electrode. Partial sectional view, FIG. 7 is a sectional view of the outer wrapping material of the present invention. 10, 30, 40, 60, 70...outer packaging material,
21,41,71...Heat-resistant film, 22,2
4, 26, 42, 72...adhesive, 23, 43,
73... Aluminum foil, 44... Heat-fusible resin, 74... Aluminum foil side heat-fusible resin, 7
3... Heat-resistant resin film treated with non-equilibrium plasma (low-temperature plasma) on both sides, 76... Innermost heat-sealing resin, 31... Positive electrode current collector, 32... Positive electrode mixture, 33... Separator , 34... negative electrode, 35
...Negative electrode current collector.

Claims (1)

【特許請求の範囲】 1 外側から、耐熱性フイルム、アルミニウム
箔、及び多層構造の内面接着層から成る外被包材
で扁平な発電要素を外装した電池であつて、上記
内面接着層が、アルミニウム側熱融着性樹脂と最
内面熱融着性樹脂の間に、両面を無機ガスによる
非平衝プラズマ(低温プラズマ)で処理した熱融
着性の改善されたポリエステルフイルムを配した
少なくとも三層構造から成り、しかもこの内面接
着層が熱融着によつて積層されていることを特徴
とする扁平薄型非水電解液リチウム電池。 2 内面接着層の間に配する耐熱性樹脂フイルム
が二軸延伸ポリエチレンテレフタレートフイルム
であることを特徴とする特許請求の範囲第1項記
載の扁平薄型非水電解液リチウム電池。
[Scope of Claims] 1. A battery in which a flat power generating element is packaged from the outside with an outer covering material consisting of a heat-resistant film, an aluminum foil, and an inner adhesive layer with a multilayer structure, wherein the inner adhesive layer is made of aluminum. At least three layers of polyester film with improved thermal adhesive properties that have been treated with non-equilibrium plasma (low-temperature plasma) using an inorganic gas on both sides between the side thermal adhesive resin and the innermost thermal adhesive resin. 1. A flat, thin non-aqueous electrolyte lithium battery characterized in that the inner adhesive layer is laminated by heat fusion. 2. The flat and thin non-aqueous electrolyte lithium battery according to claim 1, wherein the heat-resistant resin film disposed between the inner adhesive layers is a biaxially stretched polyethylene terephthalate film.
JP59079064A 1984-04-19 1984-04-19 Flat type nonaqueous electrolyte battery Granted JPS60221952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59079064A JPS60221952A (en) 1984-04-19 1984-04-19 Flat type nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59079064A JPS60221952A (en) 1984-04-19 1984-04-19 Flat type nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPS60221952A JPS60221952A (en) 1985-11-06
JPH0458146B2 true JPH0458146B2 (en) 1992-09-16

Family

ID=13679453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59079064A Granted JPS60221952A (en) 1984-04-19 1984-04-19 Flat type nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS60221952A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766787B2 (en) * 1986-09-25 1995-07-19 凸版印刷株式会社 Flat type non-aqueous electrolyte battery
JPH0362447A (en) * 1989-05-08 1991-03-18 Eastman Kodak Co Electrochemical cell module
JPH09288998A (en) * 1996-04-23 1997-11-04 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
JPH09288996A (en) * 1996-04-23 1997-11-04 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
US6632538B1 (en) 1998-02-05 2003-10-14 Dai Nippon Printing Co., Ltd. Sheet for cell and cell device
JP4537504B2 (en) * 1998-03-20 2010-09-01 大日本印刷株式会社 Battery case sheet
JP4667546B2 (en) * 1998-04-20 2011-04-13 大日本印刷株式会社 Battery case sheet
JP4559547B2 (en) * 1998-02-05 2010-10-06 大日本印刷株式会社 Battery case sheet
JP4559548B2 (en) * 1998-02-05 2010-10-06 大日本印刷株式会社 Battery case sheet
JP4523080B2 (en) * 1998-03-20 2010-08-11 大日本印刷株式会社 battery
JP5089833B2 (en) * 1999-09-20 2012-12-05 大日本印刷株式会社 Polymer battery packaging materials
JP5103691B2 (en) * 1999-07-16 2012-12-19 大日本印刷株式会社 Polymer battery
JP4759785B2 (en) * 2000-04-24 2011-08-31 株式会社Gsユアサ Metal-resin composite film and battery using the same
DE60207819T2 (en) * 2001-02-06 2006-08-24 Dai Nippon Printing Co., Ltd. LAMINATE FOR USE IN THE ARMATION OF A CELL AND SECONDARY CELL
JP4853558B2 (en) * 2009-08-28 2012-01-11 大日本印刷株式会社 Battery case sheet
JP5321853B2 (en) * 2011-04-04 2013-10-23 大日本印刷株式会社 Polymer battery packaging materials
JP2014135282A (en) * 2014-02-17 2014-07-24 Dainippon Printing Co Ltd Polymer battery
JP6939545B2 (en) * 2015-03-31 2021-09-22 大日本印刷株式会社 Battery packaging materials, their manufacturing methods, and batteries

Also Published As

Publication number Publication date
JPS60221952A (en) 1985-11-06

Similar Documents

Publication Publication Date Title
JPH0458146B2 (en)
US4997732A (en) Battery in a vacuum sealed enveloping material and a process for making the same
JP3767151B2 (en) Thin battery
CA2011720C (en) Battery in a vacuum sealed enveloping material and a process for making the same
JP2000067823A (en) Manufacture of secondary battery case material
KR100378379B1 (en) Manufacture of lithium ion secondary battery
JP2000067907A (en) Electrode structure and battery using it
JP2001256933A (en) Battery and battery pack
JP2001250515A (en) Battery
JP3260323B2 (en) Sheet type electrochemical element and method of manufacturing the same
JP4559547B2 (en) Battery case sheet
JP2000235850A (en) Layered polymer electrolyte battery
JP3837004B2 (en) Sheet type battery
JP2002151024A (en) Flat type battery
JP2001126678A (en) Laminate polymer electrolyte battery
JP2001148234A (en) Electrochemical device
JP2001126709A (en) Polymer electrolytic cell
JPS63121244A (en) Flexible thin type battery
JP2000021387A (en) Sheet type battery
JPH046071B2 (en)
JP4294770B2 (en) Polymer battery case sheet
JP2001250586A (en) Battery
JPH046070B2 (en)
JP2002141030A (en) Cell
KR20010005879A (en) Method for manufacturing lithium ion battery