JPS6326346A - Tin coated work, and method and device for producing said work - Google Patents

Tin coated work, and method and device for producing said work

Info

Publication number
JPS6326346A
JPS6326346A JP16918386A JP16918386A JPS6326346A JP S6326346 A JPS6326346 A JP S6326346A JP 16918386 A JP16918386 A JP 16918386A JP 16918386 A JP16918386 A JP 16918386A JP S6326346 A JPS6326346 A JP S6326346A
Authority
JP
Japan
Prior art keywords
work
tin
workpiece
layer
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16918386A
Other languages
Japanese (ja)
Other versions
JPH0424424B2 (en
Inventor
Yasuyuki Yamada
保之 山田
Michitaka Katsuta
勝田 通隆
Masayasu Hino
日野 正保
Muneaki Tezaki
手崎 宗昭
Toshiaki Morimoto
森本 暁明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16918386A priority Critical patent/JPS6326346A/en
Publication of JPS6326346A publication Critical patent/JPS6326346A/en
Publication of JPH0424424B2 publication Critical patent/JPH0424424B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled work which has the good adhesive power and quality of a film and permits production of tools, etc., having excellent characteristics by providing a composite layer consisting of a coating layer by an arc vapor deposition method and a coating layer by a melt vapor deposition method on the surface of a base material. CONSTITUTION:The work 2 consisting of a cutting tool, etc., is mounted and after a Ti raw material 16 is loaded into a hearth 4, the inside of a vacuum vessel 1 is evacuated to a vacuum. The work 2 is then heated 3 and soaked and after holding for the prescribed time, only the surface of the work 2 is allowed to cool down to a prescribed temp. An arc discharge is then generated in a Ti cathode 10 by a trigger 13 and a prescribed voltage is impressed or the work 2 by a DC bias power source 8 so that the work surface is sputter-cleaned by the Ti ions. The bias voltage is lowered after the sputter cleaning and gaseous N2 is introduced 6 into the vessel to execute the arc discharge of the cathode 10. The TiN layer is formed on the work as a 1st layer by such arc evaporation method. The TiN film (2nd layer) is thereafter formed on the work 2 by the operation similar to the above-mentioned operation, by which the TiN coated work is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は表面に硬質物質を被覆するイオンブレーティン
グ技術に係り、より詳細には、工具、金型等の加工物表
面にアーク蒸発法と溶融蒸着法により複合構造のTiN
被覆を形成するイオンブレーティング技術に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to ion brating technology for coating surfaces with hard materials, and more specifically relates to ion brating technology for coating surfaces of workpieces such as tools and molds using arc evaporation. Composite structure of TiN by fused vapor deposition method
The present invention relates to ion blating technology for forming coatings.

(従来の技術) 高速度ユL合金工具鋼などの母材表面に化学蒸着法(C
VD法)或いは物理蒸着法(PVD法)によりチタンの
炭化物(TiC)や窒化物(TiN)或いは炭窒化物を
数ミクロンの厚さに被覆したものは耐摩耗性、耐溶着性
に優れ、工具或いは金型としてより優れた性能を得るこ
とができることが知られている。
(Prior technology) Chemical vapor deposition method (C
Products coated with titanium carbide (TiC), nitride (TiN), or carbonitride to a thickness of several microns using the physical vapor deposition method (PVD method) or physical vapor deposition method (PVD method) have excellent wear resistance and welding resistance, and are suitable for tools. Alternatively, it is known that superior performance can be obtained as a mold.

従来の化学蒸着法は、金属成分のチタンの供給源として
四塩化チタン(T j、 CQ 4)を用い、また反応
ガスとして主としてN2、CH,、C01CO2、No
などを用い、更にキャリアガスとしてIT2を用い、9
00〜1100℃の高温雰囲気中でこれらの原料ガスを
分散反応させて母材表面上にチタンの炭化物、窒化物、
炭窒化物などを形成する方法であるが、高速度鋼、合金
工具鋼などの金属材料を母材とするときは、このような
高温雰囲気では硬度が低下したり熱変形が大きいことな
どのため、精密工具には余り採用されていない。
The conventional chemical vapor deposition method uses titanium tetrachloride (T j, CQ 4) as the source of the metal component titanium, and mainly uses N2, CH, CO1CO2, No.
etc., and further using IT2 as a carrier gas, 9
These raw material gases are dispersed and reacted in a high-temperature atmosphere of 00 to 1100°C to form titanium carbides, nitrides, and titanium on the surface of the base material.
This is a method of forming carbonitrides, etc., but when using metal materials such as high-speed steel and alloy tool steel as the base material, it is difficult to do so because the hardness decreases and thermal deformation is large in such high-temperature atmospheres. , it is not widely used in precision tools.

そこで、これらの金属材料の焼戻温度(約550℃)以
下の低温で化学反応を生じさせる技術として物理蒸着法
(pvn法)やプラズマCVD法が開発された。
Therefore, the physical vapor deposition method (PVN method) and the plasma CVD method have been developed as techniques for causing a chemical reaction at a low temperature below the tempering temperature (approximately 550° C.) of these metal materials.

前者のPVD法には種々の方式があるが、例えば、HC
D法(Hollow Cathode Dischar
geD eposjtion)と称される溶融蒸着法は
、第5図に示すように、真空槽1内にワーク2、ヒータ
3、ハース4を配置し、HCDガン5を用いて低電圧(
数10v)大電流(300−60OA)の電子ビームで
ハース内のTiを溶解させ、N2や02N2などの反応
ガスを導入管6より導入してワーク表面にTiNやTi
Cを生成させる方法である(11神戸製鋼技報”Vo1
132、Ha 3、p、80〜84参照)。
There are various methods for the former PVD method, for example, HC
D method (Hollow Cathode Dischar)
As shown in FIG. 5, in the fused vapor deposition method called geD deposition, a workpiece 2, a heater 3, and a hearth 4 are placed in a vacuum chamber 1, and a low voltage (
The Ti in the hearth is melted by an electron beam with a large current (300-60OA), and a reactive gas such as N2 or 02N2 is introduced from the introduction tube 6 to inject TiN or Ti onto the work surface.
This is a method to generate C (11 Kobe Steel Technical Report “Vol1
132, Ha 3, p. 80-84).

なお、図中、7はArガス導入管であり、ワーク2に直
流バイアス電源8にてバイアス電圧を印加することによ
り、ヒータ3で加熱されたワーク2にArイオンボンバ
ードを行うことができる。
In the figure, 7 is an Ar gas introduction tube, and by applying a bias voltage to the workpiece 2 from a DC bias power supply 8, the workpiece 2 heated by the heater 3 can be bombarded with Ar ions.

そして、このPVD法のうちで最近用いられ始めてきた
方法としてアーク蒸発型イオンブレーティング法がある
。この方法は、第6図に示すように、真空槽1内にワー
ク2を配置し、 N2やC,H,などの反応ガスを入口
9より導入しつつ蒸発させる金属(陰極)10とワーク
2の間にアーク直流電源11にてアーク放電を発生させ
、ワーク表面にTiNやTiCを生成させる方法である
。なお、図中、12はバイアス直流電源、13はトリガ
ー、14は赤外線表面温度計、15は排気口である。
Among these PVD methods, there is an arc evaporation type ion blating method that has recently started to be used. In this method, as shown in FIG. 6, a workpiece 2 is placed in a vacuum chamber 1, and a metal (cathode) 10 and the workpiece 2 are evaporated while introducing a reactive gas such as N2, C, H, etc. from an inlet 9. In this method, an arc discharge is generated by the arc DC power supply 11 during this period, and TiN or TiC is generated on the workpiece surface. In the figure, 12 is a bias DC power supply, 13 is a trigger, 14 is an infrared surface thermometer, and 15 is an exhaust port.

しかし、上記のこれらの方法をTiN被覆に適用した場
合、いずれにも一長一短があり、工具、金型等に要求さ
れるますますシビアな高特性化には対処できない欠点が
ある。
However, when these methods described above are applied to TiN coating, they all have advantages and disadvantages, and have the disadvantage that they cannot cope with the increasingly severe characteristics required for tools, molds, etc.

すなわち、HCD法では、溶融Tiを蒸発させるのでワ
ーク表面に形成されたTiN皮膜は非常に滑らかで緻密
な膜質であるが、Arボンバードのために付着力が不安
定である。一方、アーク蒸発法では、Tiボンバードの
ために付着力は良好であるが、アーク蒸発によるので1
〜5μm程のクラスター状の大きな粒子が混在するTi
N皮膜が得られ、ピンホールが発生し易いという欠点が
あり、また母材の軟化、変形が生じるという問題がある
。このため、これらの方法によって形成されたTiN被
覆工具等は特に耐用寿命の大幅な向上は期待できない。
That is, in the HCD method, molten Ti is evaporated, so the TiN film formed on the work surface is very smooth and dense, but the adhesion is unstable due to Ar bombardment. On the other hand, in the arc evaporation method, the adhesion is good due to Ti bombardment, but it is due to arc evaporation.
Ti containing large cluster-like particles of ~5 μm
This method has the disadvantage that an N film is obtained and pinholes are likely to occur, and that the base material is softened and deformed. For this reason, a significant improvement in the service life of TiN-coated tools and the like formed by these methods cannot be expected.

本発明は、上記従来技術の欠点を解消するためになされ
たものであって、TiN皮膜の付着力並びに膜質のいず
れも良好で、以って優れた特性の工具、金型等を製造し
得る新規なイオンブレーティング技術を提供することを
目的とするものである。
The present invention was made in order to eliminate the drawbacks of the above-mentioned prior art, and the TiN film has good adhesion and film quality, making it possible to manufacture tools, molds, etc. with excellent properties. The purpose is to provide a new ion blating technology.

(問題点を解決するための手段) 上記目的を達成するため、本発明者は、まず、従来のH
CD法及びアーク蒸発法の各利点を活かし得る新方式を
種々検討したところ、TiN皮膜の付着力の良さをアー
ク蒸発法により実現し、引続きHCD法を実施して膜質
の良いTiN皮膜を重ねるイオンブレーティング方式を
想到するに至り、ここに本発明をなしたものである。
(Means for Solving the Problems) In order to achieve the above object, the present inventor first developed the conventional H
After examining various new methods that could take advantage of the advantages of the CD method and the arc evaporation method, we found that the good adhesion of the TiN film was achieved by the arc evaporation method, and then the HCD method was implemented to layer the TiN film with good quality. We came up with the idea of a brating method, and hereby we have made the present invention.

すなわち、本発明に係るTiN被覆加工物は、母材表面
」二にアーク蒸発法によるコーティング層と溶融蒸着法
によるコーティング層とからなる複合層を有することを
特徴とするものである。
That is, the TiN-coated workpiece according to the present invention is characterized in that it has a composite layer on the surface of the base material consisting of a coating layer formed by arc evaporation and a coating layer formed by melt evaporation.

またその製造方法は、アーク蒸発によってTiNをコー
ティングし、次いで溶融蒸着によってTiNをコーティ
ングして、母材表面に複合層を形成することを特徴とす
るものである。
Further, the manufacturing method is characterized in that TiN is coated by arc evaporation and then TiN is coated by fused evaporation to form a composite layer on the surface of the base material.

更にそのための装置は、同一装置内にワークとワーク加
熱用ヒータとTi溶融用ハースと溶解用電子ビームガン
を配置すると共に、該ワークと電子ビームガンの間にシ
ャッターを設け、更にTi陰極及び1−リガー電極とN
2ガス供給管を備えたことを特徴とするものである。
Furthermore, a device for this purpose includes a work, a heater for heating the work, a hearth for melting Ti, and an electron beam gun for melting in the same device, a shutter between the work and the electron beam gun, and a Ti cathode and a 1-rigger. electrode and N
It is characterized by being equipped with two gas supply pipes.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.

(実施例) 第1図は本発明法の実施に用いる連続イオンブレーティ
ング装置の一例を示す図である。
(Example) FIG. 1 is a diagram showing an example of a continuous ion blating apparatus used for carrying out the method of the present invention.

同図において、真空槽1内には被覆処理対象であるワー
ク2が配され、この下方に蒸発させる入き金属であるT
i原料16を受けるハース4が配されている。ハース2
の直上にはTi原料を溶融、蒸発させるHCDガン5が
設けられており、これにArガス導入管7が接続されて
いる。6は反応ガス(又は冷却用ガス)N2を導入する
ための導入管であり、7はワーク2にバイアス電圧を印
加するための直流バイアス電源、10はTiカソード、
11はアーク直流電源、12は火花供給電源、13はト
リガー、15は排気口、14は赤外線表面温度計、18
は熱電対である。
In the same figure, a workpiece 2 to be coated is placed in a vacuum chamber 1, and a metal T to be evaporated is placed below the workpiece 2.
A hearth 4 for receiving raw material 16 is arranged. hearth 2
An HCD gun 5 for melting and vaporizing the Ti raw material is provided directly above the HCD gun 5, and an Ar gas introduction pipe 7 is connected to this. 6 is an introduction pipe for introducing reaction gas (or cooling gas) N2, 7 is a DC bias power supply for applying a bias voltage to the workpiece 2, 10 is a Ti cathode,
11 is an arc DC power supply, 12 is a spark supply power supply, 13 is a trigger, 15 is an exhaust port, 14 is an infrared surface thermometer, 18
is a thermocouple.

更に真空槽内には、ワーク2を加熱するために適所にヒ
ータ3が設けられていると共に、ワーク2とHCDガン
5との間に可動式のシャッター17が設けられている。
Further, within the vacuum chamber, a heater 3 is provided at a suitable location to heat the workpiece 2, and a movable shutter 17 is provided between the workpiece 2 and the HCD gun 5.

なお、図ではヒータ3が右上方1箇所に設けられている
が、適宜他の箇所に設けるようにしてもよく、またシャ
ッター17は閉の状態においても真空槽1内を上下に2
分することなく、蒸発Tiが実質的にワーク2に付着し
ないように配置されているものであり、ドーム型であっ
てもよい。
In addition, although the heater 3 is provided at one location in the upper right in the figure, it may be provided at other locations as appropriate, and the shutter 17 moves vertically in the vacuum chamber 1 two times even in the closed state.
It is arranged so that evaporated Ti does not substantially adhere to the workpiece 2, and may be dome-shaped.

上記構成の装置により実施される連続イオンプレーティ
ング工程の手順の一例を示す。
An example of the procedure of a continuous ion plating process performed by the apparatus configured as described above is shown.

(1)まず、ワーク2としてハイス製ドリルなどの切削
工具を取付け、ハース4にTi原料16を装入した後、
真空槽1内をI X 10 ’Torr以下に真空排気
する。
(1) First, a cutting tool such as a high-speed steel drill is attached as the work 2, and after charging the Ti raw material 16 into the hearth 4,
The inside of the vacuum chamber 1 is evacuated to below I x 10' Torr.

(2)ヒータ3をオンにしてワーク2を400〜500
℃に加熱し、30〜60分間保持してワークを均熱する
。なお、この加熱温度はワークの焼戻温度(材質にもよ
るが、520〜570℃であり、−に記ハイスの場合は
550℃)よりも実質的に低い温度にすることが肝要で
ある。
(2) Turn on heater 3 and heat work 2 to 400 to 500
℃ and hold for 30-60 minutes to soak the workpiece. It is important that this heating temperature is substantially lower than the tempering temperature of the workpiece (520 to 570°C, depending on the material, and 550°C in the case of high speed steel mentioned in -).

(3)所定時間保持後、ヒータ3をオフにして表面のみ
を約350℃まで自然冷却させる。温度管理は表面温度
計18により行う。
(3) After holding for a predetermined time, turn off the heater 3 and allow only the surface to cool naturally to about 350°C. Temperature control is performed using a surface thermometer 18.

(4)次いで、トリガー13にてTiカソード10にア
ーク放電を発生させる。このとき、直流バイアス電源8
によりワーク2を−600〜−1゜OOvに印加し、ワ
ーク表面をTiイオンにてスパッタクリーニングする。
(4) Next, the trigger 13 generates an arc discharge in the Ti cathode 10. At this time, the DC bias power supply 8
A voltage of -600 to -1° OOv is applied to the workpiece 2, and the surface of the workpiece is sputter-cleaned with Ti ions.

バイアス電圧が−5゜Ov程度では蒸着となるので、上
記下限以上の電圧にする。30秒〜2分後、アーク直流
電源11をオフにする。
If the bias voltage is about −5° Ov, vapor deposition will occur, so the voltage is set to be higher than the above lower limit. After 30 seconds to 2 minutes, the arc DC power supply 11 is turned off.

以上の工程におけるワーク表面温度及び真空度は、第2
図及び第3図に示すように変化し、特に、ワーク表面温
度は一旦冷却された後、Tiイオンによるスパッタb’
−より昇温されるものの450〜500℃を上限にコン
トロールされ、また、スパッタクリ−ニングによるTi
ボンバード時の真空度は10 ”−5Torr程度まで
上がる。この点、従来のHCD法では、Arイオンボン
バードであるため、真空度は0.05〜0.ITorr
まで低下し、バイアス電圧は−400〜−600Vで、
スパッタクリーニング効果は小さい。このような違いが
あるため、本発明によれば、母材の軟化を防止し得ると
共に、形成されるTiボンバード曹は、オージェ分析に
よれば母材表面下500人程度の深さでTiミキシング
部を有し、ミキシングされたTiが母材表面及び表面下
の酸素をトラップし、極めてクリーンなボンバード層を
形成するものと考えられる。したがって、ヒータによる
加熱コントロールが皮膜生成に重大な影響をもたらし、
従来のアーク蒸発法よりも一層強く安定した付着力が得
られる。
The workpiece surface temperature and degree of vacuum in the above process are
The temperature changes as shown in Fig. 3 and Fig. 3. In particular, after the workpiece surface temperature has been cooled once, sputtering b' by Ti ions
Although the temperature is increased from
The degree of vacuum during bombardment increases to about 10"-5 Torr. In contrast, in the conventional HCD method, since Ar ion bombardment is used, the degree of vacuum increases to 0.05 to 0.1 Torr.
The bias voltage is -400 to -600V,
Spatter cleaning effect is small. Because of these differences, according to the present invention, it is possible to prevent the softening of the base material, and the formed Ti bombarded carbon dioxide is mixed with Ti at a depth of about 500 mm below the surface of the base material, according to Auger analysis. It is thought that the mixed Ti traps oxygen on the surface and subsurface of the base material, forming an extremely clean bombarded layer. Therefore, heating control using a heater has a significant effect on film formation.
Stronger and more stable adhesion can be obtained than conventional arc evaporation methods.

なお、」−記のTiボンバードに代えて、Arボンバー
ドを実施することも可能である。
In addition, it is also possible to perform Ar bombardment in place of the Ti bombardment described in "-".

(5)スパッタクリーニング後、バイアス電圧を一50
〜300vに下げ、導入管6がらN2ガスを0.01−
0.04.Torrまで導入する(第3図参照)。そし
てTiカソード1oのアーク放電を行う。
(5) After sputter cleaning, reduce the bias voltage to -50
Lower the voltage to ~300v and supply 0.01- of N2 gas through the inlet pipe 6.
0.04. Torr (see Figure 3). Then, the Ti cathode 1o is arc discharged.

このアーク蒸発法によりTiN層が第1層目として付着
力よく形成される。TiN層が1〜2μ程度になったな
らばアーク直流電源11をオフにする。なお、バイアス
電圧を上記のように下げるのはワーク表面の温度が上昇
すると母材硬度が低下することになるためであり、また
N2ガス導入による到達真空度を上記範囲にするのはア
ーク放電をワーク2とTiカソード1oとの間(通常、
1゜0〜150mmの距離)に閉じ込めるためであり。
By this arc evaporation method, a TiN layer is formed as a first layer with good adhesion. When the TiN layer has a thickness of about 1 to 2 μm, the arc DC power supply 11 is turned off. The reason why the bias voltage is lowered as above is because the hardness of the base material decreases as the temperature of the workpiece surface increases, and the reason why the ultimate vacuum level by introducing N2 gas is set to the above range is to prevent arc discharge. Between work 2 and Ti cathode 1o (usually
This is to confine the distance between 1° and 150mm.

0 、 OI Torr以下ではTiイオンが直進性を
示して散らばり、逆に0 、04’ Torr以上では
ワーク表面に届かないためである。
This is because below 0.0.0 Torr, Ti ions show linear propagation and scatter, and on the other hand, below 0.04' Torr, they do not reach the work surface.

このTiN層は、SEMll察によればワーク表面上に
クラスター粒子が混在した層(第8図(a)参照)をな
している。
According to SEM observation, this TiN layer forms a layer in which cluster particles are mixed on the surface of the workpiece (see FIG. 8(a)).

(6)続いて、ヒータ3をオンにしてワーク表面温度を
400〜450℃に加熱保持する(第2図参照)と共に
、Arガス導入のものでHCDガン5を起動し、ハース
4」二のTi原料を溶融し、N2ガスを1−3 X 1
.0−3Torrまで導入(第3図参照)し、更にバイ
アスをワーク2に−50〜−100■印加し、Ti溶融
スポットが安定した後、シャッター17を開放してTi
N皮膜(第2層目)をワーク」二に形成する。これによ
り、非常に緻密で滑らかな超微粒子のTiN層(第8図
(b)参照)が形成されていく。
(6) Next, turn on the heater 3 to maintain the surface temperature of the workpiece at 400 to 450°C (see Figure 2), and start the HCD gun 5 with the one that introduces Ar gas. Melt the Ti raw material and add N2 gas at 1-3 x 1
.. After applying a bias of -50 to -100 to the workpiece 2 and stabilizing the Ti melting spot, the shutter 17 is opened to release the Ti.
A N film (second layer) is formed on the workpiece. As a result, a very dense and smooth TiN layer of ultrafine particles (see FIG. 8(b)) is formed.

(7)所定の時間後、オフにし、ワーク2を冷却する。(7) After a predetermined time, turn off and cool the workpiece 2.

第2層目のTiN皮膜の厚さは、成膜速度0.3μ/n
+jnを目安に適宜決定すればよく、例えば、第1層目
と同じ厚さにする。また冷却に際しては、ワーク温度が
300℃になったときにN2ガスを導入し、必要ならば
ファンを用いて、150℃程度までガス冷却する。
The thickness of the second layer TiN film is 0.3μ/n at a film formation rate.
It may be determined appropriately using +jn as a guide; for example, the thickness may be the same as that of the first layer. For cooling, N2 gas is introduced when the workpiece temperature reaches 300°C, and if necessary, a fan is used to perform gas cooling to about 150°C.

以−にの(1)〜(7)工程は、上記アーク蒸発法及び
I(CD法をそれぞれバッチ式で行った場合におけるワ
ークの加熱、冷却工程を一部省略することができ、大幅
に処理時間も短縮されるので、省エネルギー化、低コス
ト化も実現される利点がある。
In the following steps (1) to (7), it is possible to omit some of the workpiece heating and cooling steps when the above arc evaporation method and I (CD method) are performed in batch mode, respectively, and the processing is greatly improved. Since the time is also shortened, there are advantages of energy saving and cost reduction.

次に、上記方式により得られたT i N被覆加工物の
特性について示す。
Next, the characteristics of the TiN-coated product obtained by the above method will be described.

第4図は各種イオンブレーティング法により得−1,1
− られたTiN被覆ドリル(外径6mmφ)の切削テスト
結果を示している。同図中、rHCDmJはHCD法の
みにより2μのTiN皮膜を形成した場合、「アーク蒸
発法(ヒータなし)」はヒータを使用せずにTiボンバ
ードを行いアーク蒸発により2μの皮膜形成した場合、
「アーク蒸発法(ヒータあり)」はヒータを使用しワー
ク温度をコントロールしてTiボンバードを行いアーク
蒸発により2μの皮膜形成した場合、「本発明法」はア
ーク蒸発法で1μのTiN層を形成した上に連続してH
CD法により1μのTiN層を形成した場合をそれぞれ
示している。なお、切削条件は、切削速度30m/mj
n、送り速度0 、1.8 mm/rev、20mm貫
通、切削油として水溶性切削油を用い、また、被削材と
り、て550C(He207〜240)を用いた。
Figure 4 shows −1,1 obtained by various ion blating methods.
- Shows the cutting test results of a TiN-coated drill (outer diameter 6 mmφ). In the same figure, rHCDmJ is a case where a 2μ TiN film is formed only by the HCD method, and “arc evaporation method (no heater)” is a case where Ti bombardment is performed without using a heater and a 2μ film is formed by arc evaporation.
"Arc evaporation method (with heater)" uses a heater to control the workpiece temperature and performs Ti bombardment to form a 2μ thick film by arc evaporation, while the "method of the present invention" forms a 1μ thick TiN layer using arc evaporation method. Then H
Each figure shows the case where a 1 μm TiN layer is formed by the CD method. The cutting conditions are a cutting speed of 30 m/mj
n, feed rate 0, 1.8 mm/rev, 20 mm penetration, water-soluble cutting oil was used as the cutting oil, and 550C (He207-240) was used as the work material.

同図より明らかなように、ヒータによる温度コントロー
ルなしでアーク蒸発せしめた場合に比べて、ヒータによ
りワーク温度をコントロールしたアーク蒸発法では大幅
に穴明は個数が増大してぃるが、更に本発明法によれば
、ヒータによるワーク温度コントロールを伴うアーク蒸
発法とHCD法を連続して実施したため、穴明は個数が
顕著に増大していることがわかる。
As is clear from the figure, the number of holes is significantly increased in the arc evaporation method in which the workpiece temperature is controlled by a heater, compared to the case in which arc evaporation is performed without temperature control by a heater. According to the invention method, it can be seen that the number of holes is significantly increased because the arc evaporation method and the HCD method, which involve controlling the workpiece temperature using a heater, are carried out consecutively.

なお、上記実施例では、第1図に示した如くアーク蒸発
手段とHCD手段を上下に配置した装置を用いた場合を
説明したが、第7図に示す水平連続式装置によっても実
施することができる。
In the above embodiment, a case was explained in which an apparatus in which the arc evaporation means and the HCD means were arranged vertically as shown in FIG. can.

第7図に示す装置は、真空槽1を複数の処理室で構成し
、真空排気するための第1室21、加熱又はArガスボ
ンバードを行うための第2室22、Tiボンバード及び
アーク蒸発を行うための第3室23、溶融蒸着を行うた
めの第4室24、冷却用の第5室25をバルブ26にて
分離可能に順次連接せしめた構成を有している。第1室
〜第5室にはそれぞれ排気口15を設ける。各室にはワ
ークが移動可能となるような手段、例えば、各室を貫通
するガイドレール又はレールを敷設し、その上にワーク
載置用移動台車を走行させる。
The apparatus shown in FIG. 7 consists of a vacuum chamber 1 consisting of a plurality of processing chambers, a first chamber 21 for evacuation, a second chamber 22 for heating or Ar gas bombardment, and a Ti bombardment and arc evaporation chamber. It has a configuration in which a third chamber 23 for performing molten vapor deposition, a fourth chamber 24 for performing molten vapor deposition, and a fifth chamber 25 for cooling are successively connected to each other so as to be separable by a valve 26. Exhaust ports 15 are provided in each of the first to fifth chambers. A means that allows the workpiece to be moved, such as a guide rail or rail passing through each chamber, is installed in each chamber, and a workpiece-mounting carriage is run on the guide rail or rail.

第2室にはArガス導入管7及び直流バイアス電源8を
設け、第3室にはN2などの反応ガス導入管6、アーク
直流電源11、直流バイアス電源8を設けると共に処理
室側部にTiカソード10を設ける。第4室にはN2な
どの反応ガス導入管6と内部にヒータ3を設け、下部の
凹所にはハース4と電子ビームガン5を設け、ワーク停
止位置と電子ビームガンの間にシャッター17を配置し
、更に直流バイアス電源8を設ける。第5室には冷却用
N2ガス導入管27、冷却ファン28、熱交換器29を
それぞれ設ける。なお、移動台車に通電するにはオート
コネクタ一方式などの通電法を採用すればよい。
The second chamber is provided with an Ar gas introduction pipe 7 and a DC bias power supply 8, and the third chamber is provided with a reaction gas introduction pipe 6 such as N2, an arc DC power supply 11, and a DC bias power supply 8. A cathode 10 is provided. The fourth chamber is provided with a reactant gas introduction pipe 6 such as N2 and a heater 3 inside, a hearth 4 and an electron beam gun 5 are provided in the lower recess, and a shutter 17 is arranged between the work stop position and the electron beam gun. , and further provided with a DC bias power supply 8. The fifth chamber is provided with a cooling N2 gas introduction pipe 27, a cooling fan 28, and a heat exchanger 29, respectively. Note that in order to energize the mobile cart, an energization method such as an auto connector one-way type may be adopted.

このような水平連続式装置によれば、本発明法を連続的
に実施でき、特に短時間に大量処理が可能となると共に
、従来の各処理法のみを単独で実施するなどの多目的処
理も可能である。
With such a horizontal continuous type device, the method of the present invention can be carried out continuously, making it possible to process a large amount in a particularly short period of time, and it is also possible to carry out multi-purpose processing such as carrying out each conventional processing method alone. It is.

なお、−上記各実施例では、ボンバード工程に連続して
アーク蒸発工程を実施したが、場合により、ボンバード
工程のみを他の装置でバッチ式に予め行うことも可能で
ある。更に、−1−記各実施例では、第2層目のTiN
層形成をHCD法により実施したが、その際、HCD法
に替えて、Tiを溶融する方法としてARE法、熱陰極
法などの他のコーティング法を適用することも可能であ
る。
Although - in each of the above embodiments, the arc evaporation process was carried out following the bombardment process, depending on the case, it is also possible to carry out only the bombardment process in advance in a batch manner using another device. Furthermore, in each example described in -1-, the second layer of TiN
Although layer formation was carried out by the HCD method, other coating methods such as the ARE method and the hot cathode method may be applied as a method for melting Ti instead of the HCD method.

(発明の効果) 以」−詳述したように、本発明によれば、アーク蒸発法
と蒸発蒸着法とによりTiNの複合層を母材表面に形成
するものであるので、良好な膜質のTiN皮膜を工具、
金型などの加工物表面に形成することができ、しかも付
着力を増大し或いは母材の軟化を防止しつつ形成するこ
ともでき、耐摩耗性、耐溶着性等の優れた特性の硬質被
覆を有する加工物を製造することが可能となる。更に1
つ装置内で異なるイオンブレーティング法を連続的に実
施することもできるので、経済的である。
(Effects of the Invention) As described in detail, according to the present invention, a composite layer of TiN is formed on the surface of the base material by arc evaporation method and evaporation deposition method, so that a TiN film with good film quality can be obtained. The film is used as a tool,
A hard coating that can be formed on the surface of a workpiece such as a mold, increases adhesion or prevents softening of the base material, and has excellent properties such as wear resistance and welding resistance. It becomes possible to manufacture a workpiece having the following characteristics. 1 more
It is also economical because different ion blating methods can be performed continuously in one device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の実施に用いる連続イオンブレーティ
ング装置の一例を示す説明断面図、第2図は本発明の実
施例におけるワーク表面の温度推移を示す図、 第3図は同様に真空度の推移を示す図、第4図は本発明
の実施例により得られたTiN被覆ドリルの切削テスト
結果を示す図、第5図は従来のI−I CD法を実施す
る装置を示す説明断面図、 第6図は従来のアーク蒸発法を実施する装置を示す説明
断面図、 第7図は本発明法の実施に用いるイオンブレーティング
装置の他の例を示す説明断面図、第8図はTiN層の表
面状態の電子顕微鏡写真(X2000)で、(a)はア
ーク蒸発後のもの、(b)はHCD後のものをそれぞれ
示している。 1・・・真空槽、2・・・ワーク、3・・・ヒータ、4
・・・ハース、5・・・HCDガン、6・・・反応ガス
(冷却ガス)導入管、7・・・Arガス導入管、8・・
・直流バイアス電源、10・・Tiカソード、11・・
・アーク直流電源、12・・・火花供給電源、13・・
・トリガー、14・・・赤外線表面温度計、15・・・
排気口、16・・溶融金属(Ti)、17・・・シャッ
ター、18・・・熱電対、21・・・第1室、22・・
・第2室、23・・・第3室、=16− 24・・・第4室、25・・・第5室、26・・・バル
ブ、27・・・冷却用N2ガス導入管、28・・・冷却
ファン、29・・・熱交換器。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚 第1図 第2図 X几 刺 8−r  闇 第8図 (し) 手続補正書(方式) %式% 1 事件の表示 昭和61年特許願第1.69183号 囚 2発明の名称 TiN被覆加工物とその製造方法及び装置3補正をする
者 事件との関係  特許出願人 住所 兵庫県神戸市中央区脇浜町1丁目3番18号名称
 (119)株式会社神戸製鋼所 4代理人 住所 〒116東京都荒川区西日暮里5丁目35番5号
7補正の内容 明細書第17頁第10行目のrTiN層の表面状態の電
子顕微鏡写真」の記載を、rTiN層表面の粒子構造を
示す電子顕微鏡写真」に訂正する。
Fig. 1 is an explanatory cross-sectional view showing an example of a continuous ion brating device used to carry out the method of the present invention, Fig. 2 is a diagram showing the temperature transition of the workpiece surface in an example of the present invention, and Fig. 3 is a similar vacuum FIG. 4 is a diagram showing the cutting test results of the TiN-coated drill obtained by the embodiment of the present invention, and FIG. 5 is an explanatory cross-section showing the device for implementing the conventional I-I CD method. Figure 6 is an explanatory cross-sectional view showing an apparatus for implementing the conventional arc evaporation method, Figure 7 is an explanatory cross-sectional view showing another example of the ion brating apparatus used for implementing the method of the present invention, and Figure 8 is Electron micrographs (X2000) of the surface state of the TiN layer, (a) shows the surface state after arc evaporation, and (b) shows the state after HCD. 1...Vacuum chamber, 2...Work, 3...Heater, 4
... Hearth, 5... HCD gun, 6... Reaction gas (cooling gas) introduction pipe, 7... Ar gas introduction pipe, 8...
・DC bias power supply, 10...Ti cathode, 11...
・Arc DC power supply, 12...Spark supply power supply, 13...
・Trigger, 14... Infrared surface thermometer, 15...
Exhaust port, 16... Molten metal (Ti), 17... Shutter, 18... Thermocouple, 21... First chamber, 22...
・Second chamber, 23...Third chamber, =16- 24...Fourth chamber, 25...Fifth chamber, 26...Valve, 27...N2 gas introduction pipe for cooling, 28 ...Cooling fan, 29...Heat exchanger. Patent Applicant Kobe Steel Co., Ltd. Patent Attorney Takashi Nakamura Figure 1 Figure 2 Patent Application No. 1.69183 Prisoner 2 Name of the invention TiN-coated processed product and its manufacturing method and device 3 Relationship with the person making the amendment Patent applicant address 1-3-18 Wakihama-cho, Chuo-ku, Kobe, Hyogo Prefecture Name (119) Kobe Steel, Ltd. 4 Agent address: 5-35-5, Nishi-Nippori, Arakawa-ku, Tokyo 116-7 Electron micrograph of the surface state of the rTiN layer on page 17, line 10 of the amended statement of contents.” The description has been corrected to ``An electron micrograph showing the particle structure of the surface of the rTiN layer''.

Claims (4)

【特許請求の範囲】[Claims] (1)母材表面にTiNをコーティングした加工物にお
いて、母材表面上にアーク蒸発法によるコーティング層
と溶融蒸着法によるコーティング層とからなる複合層を
有することを特徴とするTiN被覆加工物。
(1) A TiN-coated workpiece whose surface is coated with TiN, which has a composite layer on the surface of the base material consisting of a coating layer formed by an arc evaporation method and a coating layer formed by a melt evaporation method.
(2)母材表面にTiNをコーティングする方法におい
て、アーク蒸発によってTiNをコーティングし、次い
で溶融蒸着によってTiNをコーティングして、母材表
面に複合層を形成することを特徴とするTiN被覆加工
物の製造方法。
(2) A method for coating the surface of a base material with TiN, which is characterized in that TiN is coated by arc evaporation and then TiN is coated by fused evaporation to form a composite layer on the surface of the base material. manufacturing method.
(3)前記アーク蒸発及び溶融蒸着を同一装置内で行う
特許請求の範囲第2項記載の方法。
(3) The method according to claim 2, wherein the arc evaporation and the molten evaporation are performed in the same apparatus.
(4)母材表面にTiNをコーティングする装置におい
て、同一装置内にワークとワーク加熱用ヒータとTi溶
融用ハースと溶解用電子ビームガンを配置すると共に、
該ワークと電子ビームガンの間にシャッターを設け、更
にTi陰極及びトリガー電極とN_2ガス供給管を備え
たことを特徴とするTiN被覆加工物の製造装置。
(4) In an apparatus for coating the surface of a base material with TiN, a workpiece, a heater for heating the workpiece, a hearth for melting Ti, and an electron beam gun for melting are arranged in the same apparatus, and
An apparatus for producing a TiN-coated workpiece, characterized in that a shutter is provided between the workpiece and the electron beam gun, and further includes a Ti cathode, a trigger electrode, and an N_2 gas supply pipe.
JP16918386A 1986-07-18 1986-07-18 Tin coated work, and method and device for producing said work Granted JPS6326346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16918386A JPS6326346A (en) 1986-07-18 1986-07-18 Tin coated work, and method and device for producing said work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16918386A JPS6326346A (en) 1986-07-18 1986-07-18 Tin coated work, and method and device for producing said work

Publications (2)

Publication Number Publication Date
JPS6326346A true JPS6326346A (en) 1988-02-03
JPH0424424B2 JPH0424424B2 (en) 1992-04-27

Family

ID=15881777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16918386A Granted JPS6326346A (en) 1986-07-18 1986-07-18 Tin coated work, and method and device for producing said work

Country Status (1)

Country Link
JP (1) JPS6326346A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919968A (en) * 1987-03-06 1990-04-24 Balzers Aktiengesellschaft Method and apparatus for vacuum vapor deposition
JPH02243757A (en) * 1989-03-16 1990-09-27 Sumitomo Metal Mining Co Ltd Formation of stainless alloy coating film
US5704994A (en) * 1994-10-27 1998-01-06 Honda Giken Kogyo Kabushiki Kaisha Method of case-hardening shaped object
US5730847A (en) * 1993-03-15 1998-03-24 Kabushiki Kaisha Kobeseikosho Arc ion plating device and arc ion plating system
JPH11217141A (en) * 1998-02-03 1999-08-10 Fuji Photo Film Co Ltd Guide rail for conveying photosensitive material and its manufacture
US5945167A (en) * 1994-10-27 1999-08-31 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919968A (en) * 1987-03-06 1990-04-24 Balzers Aktiengesellschaft Method and apparatus for vacuum vapor deposition
JPH02243757A (en) * 1989-03-16 1990-09-27 Sumitomo Metal Mining Co Ltd Formation of stainless alloy coating film
US5730847A (en) * 1993-03-15 1998-03-24 Kabushiki Kaisha Kobeseikosho Arc ion plating device and arc ion plating system
US5704994A (en) * 1994-10-27 1998-01-06 Honda Giken Kogyo Kabushiki Kaisha Method of case-hardening shaped object
US5945167A (en) * 1994-10-27 1999-08-31 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing composite material
JPH11217141A (en) * 1998-02-03 1999-08-10 Fuji Photo Film Co Ltd Guide rail for conveying photosensitive material and its manufacture

Also Published As

Publication number Publication date
JPH0424424B2 (en) 1992-04-27

Similar Documents

Publication Publication Date Title
US7066375B2 (en) Aluminum coating for the corrosion protection of welds
US9108276B2 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
US9982332B2 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
AU2114795A (en) Using lasers to fabricate diamond, diamond-like carbon, and other material coatings on substrates
CN104096958A (en) Ceramic reinforced metal matrix composite welding layer plasma overlaying preparation method
Sharipov et al. Increasing the resistance of the cutting tool during heat treatment and coating
JPS6326346A (en) Tin coated work, and method and device for producing said work
US5830540A (en) Method and apparatus for reactive plasma surfacing
EP0752018A1 (en) Surface treatment techniques
JPS61113755A (en) Manufacture of metallic material with thermal sprayed ceramic film having high corrosion and heat resistance
RU2413793C2 (en) Procedure for ion-plasma treatment of surface of metal cutting tool made out of high speed powder steel
WO2014105239A1 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
JPH03232957A (en) Production of wear resistant member
JPH07300665A (en) Method for forming boron cementation layer and boron film on metallic base material
RU2492276C1 (en) Method of applying sandwich coatings on substrate
JPS6224501B2 (en)
JPH01139751A (en) Formation of hard ceramic film
JP2590349B2 (en) Wear-resistant coating method
JPH0118150B2 (en)
CA2409880A1 (en) Erosion-resistant coatings for steel tubes
JPS6342362A (en) Production of surface coated steel material
JPH08296033A (en) Surface treatment of metal
JPH08193261A (en) Metallic working jig and formation of surface film thereof
UA151782U (en) A method of obtaining nitride and/or carbonitride wear and corrosion resistant coatings
JPH02298253A (en) Formation of laminated film

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term