JP2590349B2 - Wear-resistant coating method - Google Patents

Wear-resistant coating method

Info

Publication number
JP2590349B2
JP2590349B2 JP62292478A JP29247887A JP2590349B2 JP 2590349 B2 JP2590349 B2 JP 2590349B2 JP 62292478 A JP62292478 A JP 62292478A JP 29247887 A JP29247887 A JP 29247887A JP 2590349 B2 JP2590349 B2 JP 2590349B2
Authority
JP
Japan
Prior art keywords
substrate
film
wear
temperature
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62292478A
Other languages
Japanese (ja)
Other versions
JPH01132756A (en
Inventor
孜 池田
保之 山田
裕介 田中
一利 下郡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO KOPERUKO TSUURU KK
Kobe Steel Ltd
Original Assignee
SHINKO KOPERUKO TSUURU KK
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO KOPERUKO TSUURU KK, Kobe Steel Ltd filed Critical SHINKO KOPERUKO TSUURU KK
Priority to JP62292478A priority Critical patent/JP2590349B2/en
Publication of JPH01132756A publication Critical patent/JPH01132756A/en
Application granted granted Critical
Publication of JP2590349B2 publication Critical patent/JP2590349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フライス加工工具等の表面に耐摩耗性膜を
被覆する方法に関し、詳細には基材の劣化や脱炭層の生
成を防止しつつ基材との密着性に優れた耐摩耗性膜を効
率良く被覆する方法に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to a method for coating a surface of a milling tool or the like with a wear-resistant film, and more particularly to a method for preventing deterioration of a substrate and formation of a decarburized layer. The present invention relates to a method for efficiently coating a wear-resistant film having excellent adhesion to a base material.

[従来の技術] 高速度工具鋼や超硬工具鋼の表面に、Ti等の窒化物,
炭化物,炭窒化物よりなる耐摩耗性皮膜を形成し、耐摩
耗性等を更に高める技術が知られている。この様な耐摩
耗性膜の形成方法には化学的蒸着法(CVD法)及び物理
的蒸着法(PVD法)があるが、このうちCVD法では、耐摩
耗性膜のTi(この種の用途に適用される金属としてはこ
の他周期律表のIV a族,V a族,VI a族の金属、あるいは
B,Si,Al等があるが、以下Tiで代表する)源としてTiCl4
ガスの熱分解を利用する為に膜形成に当たっては900〜1
100℃の高温処理を必要とする。その為CVD法を採用した
場合には、基材との密着性に優れた耐摩耗性膜を形成す
ることができるが、母材も同時に高温に加熱され、母材
表面に極めて脆弱な脱炭層(例えばW3Co3C等)が生成す
るので特にフライス加工用工具には適用できない。また
高温処理によって母材が軟質化したりあるいは熱変形を
起こす為、特に精密工具への適用にも問題がある。
[Prior art] Nitride such as Ti, on the surface of high speed tool steel or carbide tool steel
There is known a technique for forming a wear-resistant film made of carbide and carbonitride to further enhance wear resistance and the like. There are chemical vapor deposition (CVD) and physical vapor deposition (PVD) methods for forming such abrasion-resistant films. Of these, the CVD method uses abrasion-resistant film Ti (for this type of application). Other metals applicable to the group IVa, Va, VIa of the periodic table, or
B TiCl 4, Si, there are Al, etc., as hereinafter represented simply Ti) source
900 to 1 for film formation to utilize gas thermal decomposition
Requires high temperature treatment of 100 ° C. Therefore, when the CVD method is adopted, an abrasion-resistant film with excellent adhesion to the substrate can be formed, but the base material is also heated to a high temperature at the same time, and the extremely fragile decarburized layer on the base material surface (For example, W 3 Co 3 C) is generated, so it is not particularly applicable to milling tools. Further, since the base material is softened or thermally deformed by the high-temperature treatment, there is a problem particularly in application to precision tools.

これに対し、比較的低温条件で耐摩耗性膜の形成を可
能としたのがPVD法であり、現在最も普及しているのがP
VD法の1つであるホロカソード(HCD)方式イオンプレ
ーティングである。
In contrast, the PVD method enabled the formation of a wear-resistant film under relatively low temperature conditions, and the P
This is a holo cathode (HCD) type ion plating which is one of the VD methods.

ところが上記HCD方式イオンプレーティングは、蒸着
金属をるつぼ内で溶融蒸発させる為、蒸発源の設置位置
に制約をうける。その結果複雑な形状をした基材に対す
る被覆方法としては生産性の低い被覆方式であった。
However, in the above-mentioned HCD type ion plating, since the deposited metal is melted and evaporated in the crucible, the installation position of the evaporation source is restricted. As a result, the method of coating a substrate having a complicated shape was a coating method with low productivity.

[発明が解決しようとする問題点] HCD方式イオンプレーティングの欠点の解消を目的と
して研究が重ねられており、様々な改良イオンプレーテ
ィング法が提案されている。その1つにカソードアーク
方式イオンプレーティングがあり、複雑な形状の基材に
対して効率良く被覆できる方法として注目を集めてい
る。即ちカソードアーク方式イオンプレーティング法
は、蒸発させようとする金属(ターゲット)に負の電圧
を印加して、ターゲットと真空槽の間のアーク放電によ
り金属を蒸発させ、アーク放電による電子の衝突などで
イオン化してターゲット金属のプラズマ状態を形成した
後、負のバイアス電圧を印加した基材上に成膜するもの
であり、アークスポットはターゲット上に急速に移動す
るので溶融プールが形成されず、あたかもターゲットか
ら溶融状態を経ることなく金属蒸気さらにはイオンが生
成する状態を呈する。従ってターゲットの設置位置は制
限されず基材に対してあらゆる方向から蒸着することが
できるので複雑な形状の基材に対しても効率良く成膜す
ることができる。又ターゲットの設置数や金属種類も制
限されず、単一又は複数の同種又は異種ターゲットをカ
ソード電極として用いることができる。さらに数十A以
上の大電流領域での蒸発方式であるので蒸発粒子のイオ
ン化効率が高く、成膜速度が速いだけでなく膜厚を厚く
することも可能である。
[Problems to be Solved by the Invention] Studies have been conducted for the purpose of eliminating the disadvantages of the HCD type ion plating, and various improved ion plating methods have been proposed. One of them is a cathode arc type ion plating, which attracts attention as a method for efficiently coating a substrate having a complicated shape. That is, in the cathode arc ion plating method, a negative voltage is applied to a metal (target) to be evaporated, the metal is evaporated by an arc discharge between the target and the vacuum chamber, and collision of electrons due to the arc discharge is performed. After forming a plasma state of the target metal by ionizing in the above, a film is formed on the substrate to which a negative bias voltage is applied, and since the arc spot moves rapidly on the target, a molten pool is not formed, It is as if a metal vapor and even ions are generated from the target without going through a molten state. Accordingly, the position of the target is not limited, and the target can be vapor-deposited from all directions. The number of targets and the type of metal are not limited, and a single or plural same or different targets can be used as the cathode electrode. Further, since the evaporation method is used in a large current region of several tens of A or more, the ionization efficiency of the evaporated particles is high, so that not only the film formation rate is high but also the film thickness can be increased.

しかるにカソードアーク方式イオンプレーティングは
成膜条件等か未だ十分に確立された方法ではなく、密着
性等に問題がある。即ちカソードアーク方式イオンプレ
ーティング法においては、基材に対する膜の密着性を上
げるためには基材に印加するマイナスのバイアス電圧の
絶対値を上げることが必要であるが、そうするとイオン
の運動エネルギーが大きくなって基材への衝突速度も大
きくなり運動エネルギーの熱エネルギーの変換が大きく
なる。その結果基材温度が瞬時に800℃以上の高温とな
り、基材の劣化をきたすという問題が生じる。尚第1図
に示される様に反応性ガス雰囲気圧力を低くすれば同じ
バイアス電圧でも基材の温度が低下するが、この場合に
は金属イオンとガスイオンの存在バランス(stoichiome
try)がくずれ、化学量論的組成の皮膜を得ることがで
きないという欠点が生じる。
However, the cathode arc type ion plating is not a well-established method in terms of film forming conditions and the like, and has a problem in adhesion and the like. That is, in the cathodic arc ion plating method, it is necessary to increase the absolute value of the negative bias voltage applied to the base material in order to increase the adhesion of the film to the base material. As a result, the collision speed with the base material increases, and the conversion of kinetic energy to heat energy increases. As a result, the temperature of the base material instantly rises to 800 ° C. or more, which causes a problem that the base material is deteriorated. As shown in FIG. 1, if the pressure of the reactive gas atmosphere is reduced, the temperature of the substrate is reduced even with the same bias voltage. In this case, the balance between the metal ions and the gas ions (stoichiome) is reduced.
try), resulting in the inability to obtain films of stoichiometric composition.

本発明はこうした事情に着目して為されたものであっ
て、基材の劣化や脱炭層の生成の原因となる基材温度の
上昇を防止しつつ、密着性の優れた耐摩耗性膜を効率良
く形成することができる様な方法を提供しようとするも
のである。
The present invention has been made in view of such circumstances, and it has been proposed to provide a wear-resistant film having excellent adhesion while preventing a rise in the temperature of the substrate, which causes deterioration of the substrate and generation of a decarburized layer. It is an object of the present invention to provide a method capable of efficiently forming.

[問題点を解決する為の手段] しかして上記目的を達成した本発明方法は、蒸発させ
ようとするターゲット金属に負の電圧を印加してアーク
放電を起こしターゲット金属のプラズマを形成するカソ
ードアーク方式反応性イオンプレーティング法によって
基材上に耐摩耗性膜を被覆するに当たり、基材を400〜6
00℃に加熱すると共に、反応性ガス雰囲気圧力を10-2
10-3Torrに保持し、基材に300V以下の負電圧を印加する
点に要旨を有するものである。
Means for Solving the Problems According to the method of the present invention which has attained the above object, a cathode arc in which a negative voltage is applied to a target metal to be evaporated to cause an arc discharge to form a plasma of the target metal. When coating a wear-resistant film on a substrate by a reactive ion plating method,
While heating to 00 ° C, the pressure of the reactive gas atmosphere is 10 -2 to
The gist of the present invention is that the substrate is maintained at 10 -3 Torr and a negative voltage of 300 V or less is applied to the substrate.

[作用] 本発明においては、カソードアーク方式によりイオン
プレーティングを行なうに当たり、反応性ガス雰囲気圧
力を10-2〜10-3Torrと比較的高い圧力に設定する。高い
ガス圧力下でのアーク放電にもかかわらず高いイオン率
を有する為、金属イオンプラズマが広い領域で起こり複
雑な形状の基材に対する蒸着が容易になると共に大面積
基材に対しても十分に成膜することができる。そしてガ
スイオンと金属イオンの存在バランスが保持されるので
所望の膜組成の耐摩耗性膜を得ることができる。
[Operation] In the present invention, when performing ion plating by the cathode arc method, the reactive gas atmosphere pressure is set to a relatively high pressure of 10 -2 to 10 -3 Torr. Despite the high ion rate despite arc discharge under high gas pressure, metal ion plasma occurs over a wide area, making it easy to deposit on substrates with complicated shapes and sufficient for large area substrates. A film can be formed. Further, since the presence balance of gas ions and metal ions is maintained, a wear-resistant film having a desired film composition can be obtained.

一方基材に印加するバイアス電圧は300V以下の負電
圧、好ましくは−50〜−100Vのバイアス電圧とし、これ
によってイオンの運動エネルギーによる基材の昇温を防
止する。この結果、基材温度上昇による基材強度の劣化
や脱炭層の生成を防止することができる。
On the other hand, the bias voltage applied to the substrate is a negative voltage of 300 V or less, preferably a bias voltage of -50 to -100 V, thereby preventing the temperature of the substrate from rising due to kinetic energy of ions. As a result, it is possible to prevent the deterioration of the substrate strength and the formation of the decarburized layer due to the increase in the substrate temperature.

上記条件を採用することによりPVD法の1つであるカ
ソードアーク方式イオンプレーティングの特長(複雑形
状基材への成膜、基材温度の上昇防止等)を発揮させる
ことができるが、一方CVD法と対比した場合のPVD法の欠
点である基材に対する膜密着性に関してはこれを解決で
きていない。そこで本発明ではもう1つの主たる要件と
して、基材を400〜600℃に加熱し、これによって密着性
を高めている。即ち高速度工具鋼や超硬工具鋼からなる
基材への成膜において基材強度の劣化や脱炭層の生成と
いった問題が発生するのはおよそ800℃以上に基材温度
が上昇した場合であり、それ以下では上記問題は生じて
こない。一方前記ガス圧条件及び基材バイアス電圧条件
を採用することによりイオンの衝突によって基材温度が
上昇することはない。従って基材を400〜600℃に加熱し
ても基材温度が高くなり過ることはなく、上記温度では
基材強度の劣化や脱炭層の生成も起こらない。そして基
材が適度な高温条件下に置かれることから被覆材の拡散
等が促進され、密着性の高い耐摩耗性被覆膜を得ること
ができる。又基材上における金属イオンとガスイオンの
反応性も高まり高密度の耐摩耗性被覆膜を得ることがで
きる。
By adopting the above conditions, the features of cathodic arc ion plating, which is one of the PVD methods (film formation on a substrate with a complicated shape, prevention of temperature rise of the substrate, etc.) can be exhibited. However, it has not been able to solve the problem of the film adhesion to the substrate, which is a disadvantage of the PVD method when compared with the PVD method. Therefore, in the present invention, as another main requirement, the substrate is heated to 400 to 600 ° C., thereby increasing the adhesion. In other words, problems such as deterioration of substrate strength and generation of a decarburized layer when forming a film on a substrate made of high-speed tool steel or carbide tool steel occur when the substrate temperature is increased to about 800 ° C. or more. Below this, the above problem does not occur. On the other hand, by employing the gas pressure condition and the substrate bias voltage condition, the substrate temperature does not increase due to ion collision. Therefore, even if the base material is heated to 400 to 600 ° C., the base material temperature does not become too high, and at the above temperature, the deterioration of the base material strength and the formation of a decarburized layer do not occur. Then, since the substrate is placed under moderately high temperature conditions, diffusion of the coating material is promoted, and a wear-resistant coating film having high adhesion can be obtained. In addition, the reactivity between metal ions and gas ions on the substrate is increased, and a high-density wear-resistant coating film can be obtained.

本発明の基材構成は上記の通りであるが、本発明方法
によって形成される耐摩耗性膜の種類については特に制
限がなく、TiをはじめとするIV a族,V a族,VI a族の金
属やB,Si,Al等の窒化物,炭化物,炭窒化物等を例示す
ることができる。この場合ターゲット(カソード電極)
として上記金属あるいはその合金を配置すると共に反応
性ガスとしてN2や炭化水素ガス等を装置内へ導入する反
応性イオンプレーティング法の一般的手法を採用すれば
よい。
Although the base material composition of the present invention is as described above, there is no particular limitation on the type of the wear-resistant film formed by the method of the present invention, and Ti and other IVa group, Va group, VIa group. And nitrides, carbides, carbonitrides, and the like of metals such as B, Si, and Al. In this case, the target (cathode electrode)
As it may be adopted the general procedure of reactive ion plating method for introducing into the device an N 2 and hydrocarbon gas such as a reactive gas together disposing the metal or an alloy thereof.

[実施例] 実施例1 Tiカソード電極を有するカソードアーク方式イオンプ
レーティング装置の基材ホルダーに超硬ドリルを取り付
けた。尚装置には基材を700℃まで昇温可能なヒータ及
び耐摩耗性膜被覆状態の均一をはかる為の基材回転機構
等を設置している。
[Example] Example 1 A carbide drill was attached to a substrate holder of a cathode arc type ion plating apparatus having a Ti cathode electrode. The apparatus is provided with a heater capable of raising the temperature of the substrate to 700 ° C., a substrate rotating mechanism for uniformizing the state of coating the wear-resistant film, and the like.

成膜に当たっては装置内を加熱しつつ雰囲気ガスの放
出を行ない、1×10-5Torrまで減圧すると共に、基材温
度を430℃まで昇温させた。その後イオンスパッタによ
り基材表面をクリーニングした。次いで基材を同温度保
持したまま、基材に−50Vのバイアス電圧を印加すると
共に、装置内に高純度N2ガスを7×10-3Torrまで導入
し、Tiアーク放電を開始して基材表面にTiN膜を被覆し
た。
At the time of film formation, the atmosphere gas was released while heating the inside of the apparatus, the pressure was reduced to 1 × 10 −5 Torr, and the temperature of the base material was raised to 430 ° C. Thereafter, the substrate surface was cleaned by ion sputtering. Then, while maintaining the substrate at the same temperature, a bias voltage of −50 V was applied to the substrate, high-purity N 2 gas was introduced into the apparatus to 7 × 10 −3 Torr, and Ti arc discharge was started to start the operation. A TiN film was coated on the material surface.

実施例2 反応性ガス導入操作を変える外は、実施例1と同様に
してTiCN−TiNの複合層膜の被覆を行なった。即ち第1
段階ではN2とCH4の混合ガスを導入して基材表面にTiCN
を成膜し、続いて第2段階ではN2のみを導入してTiCN層
の上層にTiNを成膜した。
Example 2 A TiCN-TiN composite layer film was coated in the same manner as in Example 1 except that the reactive gas introduction operation was changed. That is, the first
In the stage, a mixed gas of N 2 and CH 4 is introduced to
Then, in the second stage, only N 2 was introduced to form a TiN film on the TiCN layer.

比較例1〜3 比較の為、基材加熱を行なわなかった場合(比較例
1)、基材に−400Vのバイアス電圧を印加した場合
(比較例2)、成膜時の反応性ガス雰囲気圧力を5×
10-4Torrとした場合(比較例3)について夫々他の条件
は実施例1と同様にしてTiN膜の成膜を行なった。
Comparative Examples 1 to 3 For comparison, when the substrate was not heated (Comparative Example 1), when a bias voltage of -400 V was applied to the substrate (Comparative Example 2), the reactive gas atmosphere pressure during film formation Is 5 ×
In the case of 10 -4 Torr (Comparative Example 3), a TiN film was formed in the same manner as in Example 1 except for the other conditions.

実施例1,2及び比較例1〜3によって得られた耐摩耗
性膜被覆超硬ドリル(直径6mmφ)について切削試験を
行なったところ第1表に示す結果が得られた。但し被削
材にはS50C材を使用した。
Cutting tests were performed on the wear-resistant film-coated carbide drills (diameter 6 mmφ ) obtained in Examples 1 and 2 and Comparative Examples 1 to 3, and the results shown in Table 1 were obtained. However, S50C material was used as a work material.

実施例1,2では基材バイアス電圧を低くしているので
イオンの運動エネルギーが抑えられて熱エネルギーへの
変換が低減し、基材の温度上昇が防止された。又基材の
加熱によって基材と膜の密着性が向上し、優れた耐摩耗
性を得ることができた。
In Examples 1 and 2, since the base material bias voltage was reduced, the kinetic energy of ions was suppressed, conversion to thermal energy was reduced, and a rise in the temperature of the base material was prevented. In addition, the adhesion between the substrate and the film was improved by heating the substrate, and excellent abrasion resistance was obtained.

これに対し、比較例1は基材を加熱しなかった為に膜
の剥離が起こった。比較例2は基材バイアス負電圧の絶
対値が大きすぎる為に基材温度が800℃以上に上昇し、
母材の劣化に伴なうチッピングが発生した。比較例3は
ガス圧力が5×10-4Torrと低すぎる為、膜組成が適中せ
ず脆い膜質のTiN膜が形成され、その結果膜の剥離が発
生した。
On the other hand, in Comparative Example 1, the film was peeled off because the substrate was not heated. In Comparative Example 2, the substrate temperature rose to 800 ° C. or higher because the absolute value of the substrate bias negative voltage was too large,
Chipping occurred due to the deterioration of the base material. In Comparative Example 3, since the gas pressure was too low as 5 × 10 −4 Torr, the film composition was not appropriate and a brittle TiN film was formed, and as a result, the film was peeled.

[発明の効果] 本発明は以上の様に構成されており、カソードアーク
方式イオンプレーティング法の特長を生かしつつ密着性
並びに耐摩耗性の優れた硬質膜を成膜することができ
た。又カソードアーク方式の採用により複雑な形状の基
材に対しても効率良く成膜することができた。
[Effects of the Invention] The present invention is configured as described above, and a hard film having excellent adhesion and abrasion resistance can be formed while utilizing the features of the cathodic arc ion plating method. Further, by employing the cathode arc method, a film could be efficiently formed even on a substrate having a complicated shape.

【図面の簡単な説明】[Brief description of the drawings]

第1図は基材バイアス電圧と基材表面温度の関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between the substrate bias voltage and the substrate surface temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 保之 兵庫県神戸市垂水区つつじが丘4―8― 1 (72)発明者 田中 裕介 兵庫県明石市大久保町大久保町947―1 (72)発明者 下郡 一利 兵庫県神戸市垂水区西舞子8―4―35 (56)参考文献 特開 昭52−149277(JP,A) 特開 昭53−80379(JP,A) 特開 昭52−10871(JP,A) Surface and Coati ugs Technology 29 (1986)P.275−290 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yasuyuki Yamada 4-8-1 Tsutsujigaoka, Tarumizu-ku, Kobe-shi, Hyogo (72) Inventor Yusuke Tanaka 947-1 Okubo-cho, Okubo-cho, Akashi-shi, Hyogo (72) Inventor Kazutoshi Shimogori 8-4-35 Nishimaiko, Tarumi-ku, Kobe City, Hyogo Prefecture (56) References JP-A-52-149277 (JP, A) JP-A-53-80379 (JP, A) JP-A-52-10871 ( JP, A) Surface and Coaitugs Technology 29 (1986) 275-290

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蒸発させようとするターゲット金属に負の
電圧を印加してアーク放電を起こしターゲット金属のプ
ラズマを形成するカソードアーク方式反応性イオンプレ
ーティング法によって基材上に耐摩耗性膜を被覆するに
当たり、基材を400〜600℃に加熱すると共に、反応性ガ
ス雰囲気圧力を10-2〜10-3Torrに保持し、基材に300V以
下の負電圧を印加することを特徴とする耐摩耗性膜被覆
方法。
An abrasion-resistant film is formed on a substrate by a cathode arc reactive ion plating method in which a negative voltage is applied to a target metal to be vaporized to cause an arc discharge to form a plasma of the target metal. In coating, the substrate is heated to 400 to 600 ° C., and the reactive gas atmosphere pressure is maintained at 10 −2 to 10 −3 Torr, and a negative voltage of 300 V or less is applied to the substrate. Wear-resistant film coating method.
JP62292478A 1987-11-18 1987-11-18 Wear-resistant coating method Expired - Lifetime JP2590349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62292478A JP2590349B2 (en) 1987-11-18 1987-11-18 Wear-resistant coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292478A JP2590349B2 (en) 1987-11-18 1987-11-18 Wear-resistant coating method

Publications (2)

Publication Number Publication Date
JPH01132756A JPH01132756A (en) 1989-05-25
JP2590349B2 true JP2590349B2 (en) 1997-03-12

Family

ID=17782333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292478A Expired - Lifetime JP2590349B2 (en) 1987-11-18 1987-11-18 Wear-resistant coating method

Country Status (1)

Country Link
JP (1) JP2590349B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545144B2 (en) * 1989-12-26 1996-10-16 住友金属鉱山株式会社 Method for producing surface-coated cemented carbide and method for producing surface-coated steel
JP6510771B2 (en) * 2013-06-26 2019-05-08 日立金属株式会社 Coated cutting tool for milling titanium or titanium alloy and method of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210871A (en) * 1975-07-15 1977-01-27 Sumitomo Electric Ind Ltd Composite coating tip
JPS52149277A (en) * 1976-06-07 1977-12-12 Tsuneo Nishida Golden colored decorative casing parts
JPS5380379A (en) * 1976-12-27 1978-07-15 Tsuneo Nishida Ion plating apparatus
US4448799A (en) * 1983-04-21 1984-05-15 Multi-Arc Vacuum Systems Inc. Arc-initiating trigger apparatus and method for electric arc vapor deposition coating systems
JPS6141764A (en) * 1984-08-02 1986-02-28 Natl Res Inst For Metals Method and apparatus for vapor deposition under vacuum arc reaction
JPS6210266A (en) * 1985-07-06 1987-01-19 Kobe Steel Ltd Vapor deposition device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Surface and Coatiugs Technology 29(1986)P.275−290

Also Published As

Publication number Publication date
JPH01132756A (en) 1989-05-25

Similar Documents

Publication Publication Date Title
KR101779634B1 (en) Pvd hybrid method for depositing mixed crystal layers
Randhawa Review of plasma-assisted deposition processes
JP2010528179A (en) Vacuum processing apparatus and vacuum processing method
GB2075068A (en) Articles coated with hard materials
US5549975A (en) Coated tool and cutting process
US5272014A (en) Wear-resistant coating for substrate and method for applying
CN111945111A (en) Composite coating deposited on surface of cubic boron nitride cutter and deposition method
JP2004043867A (en) Coated article with carbon film, and manufacturing method therefor
JP4500061B2 (en) Hard film formation method
CN212335269U (en) Composite coating deposited on surface of cubic boron nitride cutter and vacuum coating device
JP2989746B2 (en) Steel-based composite surface-treated product and its manufacturing method
JP2590349B2 (en) Wear-resistant coating method
JPH0356675A (en) Coating of ultrahard alloy base and ultrahard tool manufactured by means of said coating
JPH04297568A (en) Surface coated member excellent in wear resistance and formation of film
JPH07108404A (en) Surface coated cutting tool
CN113564539A (en) Nitride coating preparation method, nitride coating and application thereof
KR100305885B1 (en) Coating alloy for a cutting tool/an abrasion resistance tool
JP3822655B2 (en) Hard film and hard film coated member with excellent wear resistance
JP2003145309A (en) Diamond-coated machining tool
JPH07300665A (en) Method for forming boron cementation layer and boron film on metallic base material
JP2006169614A (en) Metal-diamond-like-carbon (dlc) composite film, forming method therefor and sliding member
JPH0995763A (en) Formation of abrasion resistant film
JPS6224501B2 (en)
JP4868534B2 (en) Method for depositing a high melting point metal carbide layer
JPH07150337A (en) Production of nitride film