JPS6141764A - Method and apparatus for vapor deposition under vacuum arc reaction - Google Patents

Method and apparatus for vapor deposition under vacuum arc reaction

Info

Publication number
JPS6141764A
JPS6141764A JP16159984A JP16159984A JPS6141764A JP S6141764 A JPS6141764 A JP S6141764A JP 16159984 A JP16159984 A JP 16159984A JP 16159984 A JP16159984 A JP 16159984A JP S6141764 A JPS6141764 A JP S6141764A
Authority
JP
Japan
Prior art keywords
cathode
vacuum arc
reactive gas
discharge surface
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16159984A
Other languages
Japanese (ja)
Other versions
JPH0225986B2 (en
Inventor
Hitoshi Shinno
新野 仁
Katsuo Fukutomi
福富 勝夫
Masakazu Fujitsuka
藤塚 正和
Masatoshi Okada
岡田 雅年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP16159984A priority Critical patent/JPS6141764A/en
Publication of JPS6141764A publication Critical patent/JPS6141764A/en
Publication of JPH0225986B2 publication Critical patent/JPH0225986B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve ionization efficiency and to perform vapor deposition stably at high speed without contaminating a film, by introducing reaction gas through a small hole provided at a discharging surface of a cathode and converging a vacuum arc cathode base point to the circumference of the opening hole end. CONSTITUTION:Small hole connecting a gas exit 4 and a gas inlet 5 is provided at the discharging surface 3 of the cathode 2. Reaction gas is ionized by a plasma generating system 6 provided just before the exit 5, then sent from the inlet 5. The cathode 2 is covered with a shield 7 such as Ti maintaining a narrow gap excluding the surface 3. A converging coil 9 is provided at the outer circumference of a water cooled anode 8 in front of the cathode 2, to control arbitrarily plasma beam diameter by magnetic field. In this way, discharge is stabilized, plasma reaction efficiency is improved, and good quality ceramic cover can be vapor deposited at a high speed. Trouble of short circuit between cathode and anode due to shield material evaporation and conductive material adhesion is eliminated.

Description

【発明の詳細な説明】 トカマク型核融合炉では、プラズマを包む容器壁の部品
に炭化チタンなどを金属表面に蒸着した被覆材料を用い
ている。これらの材料は核融合炉運転中に起きるプラズ
マ異常時の大きな熱流束により表面被覆層に破壊的な損
傷を被る。
DETAILED DESCRIPTION OF THE INVENTION In a tokamak-type fusion reactor, a coating material in which titanium carbide or the like is deposited on a metal surface is used for parts of the vessel wall that surrounds the plasma. These materials suffer catastrophic damage to the surface coating layer due to the large heat flux during plasma abnormalities that occur during fusion reactor operation.

これ罠よシ被覆層を失った部品金属は直接グラズマK1
1lされプラズマ汚染される。従って、損耗箇所を局所
的にその場で修復する技術開発がりを被覆する技術は、
核融合炉のみならず、各種の化学プラント反応装置等の
内面被覆あるいは補修技術としても、その研究開発が要
望されている。
This is a trap. Parts metal that has lost its coating layer can be directly replaced with Glazma K1.
1 liter and is contaminated with plasma. Therefore, the development of technology to locally repair damaged areas on the spot, and the technology to cover the damage,
Research and development is required not only for nuclear fusion reactors but also for internal coating or repair technology for various chemical plant reaction devices.

従来の技術 従来、真空アーク放電を利用したセラミック被覆法は知
られている。その方法として第5図に示すようK、陰極
2の端部に絶縁材11を接触、介在させて陽極1oを設
け、全体を真空容器12内に収容し、その容器内圧基体
を設置し、反応性ガスを容器内に導入し、金属蒸気と反
応性ガスのプラズマ流を基板13に当て蒸着させていた
。14は排気口を示す。
BACKGROUND OF THE INVENTION Conventionally, ceramic coating methods using vacuum arc discharge are known. As shown in FIG. 5, the method is as shown in FIG. A reactive gas was introduced into the container, and a plasma flow of metal vapor and reactive gas was applied to the substrate 13 for vapor deposition. 14 indicates an exhaust port.

このような方法によると、(1)アーク放電を安定化す
るために放電面の面積を大きくする必要がある。
According to such a method, (1) it is necessary to increase the area of the discharge surface in order to stabilize arc discharge;

(2)反応性ガスは真空容器内圧導入するため、アーク
放電を安定化するには反応圧力をある程度高くせざるを
得ない。
(2) Since the reactive gas is introduced into the vacuum container, the reaction pressure must be increased to some extent in order to stabilize the arc discharge.

(3)陰極点の放電面からの逸散を防ぐために、陰極に
接触して絶縁材を用いるため、絶縁材の材料がアークで
蒸発し、蒸着被膜中に不純物としで混入する。また絶縁
材料にセラミックが蒸着し、しばしば短絡トラブルが発
生する。
(3) In order to prevent the cathode spot from escaping from the discharge surface, an insulating material is used in contact with the cathode, so the material of the insulating material is evaporated by the arc and mixed into the deposited film as impurities. Additionally, ceramic is deposited on the insulating material, often causing short circuit problems.

(4)この方法では、核融合炉、化学プラント反応装置
の内壁面の損傷箇所をその場で蒸着補修できない。など
の欠点があった〇 発明の目的 本発明は従来法の真空アーク反応蒸着法の欠点を解消す
べくなされたもので、核融合炉、化学プラント反応装置
の内壁の損傷箇所もその場で、蒸着することが可能で、
しかも真空アーク放電によるイオン化率も高く、高速安
定に、かつ蒸着被膜も汚染させることがなく、トラブル
の発生もない真空アーク反応性蒸着法ならびKその蒸着
装置を提供するにある。
(4) This method cannot repair damaged areas on the inner wall surfaces of nuclear fusion reactors and chemical plant reactors on the spot. 〇Purpose of the Invention The present invention was made to eliminate the drawbacks of the conventional vacuum arc reactive vapor deposition method. It is possible to deposit
Moreover, it is an object of the present invention to provide a vacuum arc reactive vapor deposition method that has a high ionization rate due to vacuum arc discharge, is stable at high speed, does not contaminate the deposited film, and does not cause any trouble, and also provides a vapor deposition apparatus thereof.

発明の構成 (1)真空アーク放電により発生させた金属蒸気   
Iと反応性ガスのプラズマ流を作り、これを収   1
束輸送して基体上に蒸着させる方法において、放電面に
細孔を有する真空アーク陰極を使用し、該細孔から反応
性ガスを吹出し、かつ真   1極で収束輸送させるこ
とを特徴とする真空アク反応性蒸着法。
Structure of the invention (1) Metal vapor generated by vacuum arc discharge
Create a plasma flow of I and reactive gas and collect it 1
A vacuum arc cathode having pores in its discharge surface is used, and a reactive gas is blown out from the pores and convergently transported with a single true pole in a method of vapor deposition on a substrate by bundle transport. AC reactive deposition method.

(2)真空アーク陰極がその放電面に反応性ガス吹出し
用の細孔を設けたものからなり、該陰極の周囲を冷却ジ
ャケットで囲むと共に、放電面を除く陰極全体を高融点
シールドで狭い間隙を隔てて覆い、かつ収束コイルを外
周に設けた陽極を陰極放電面の前方へ設けたことを特徴
とする真空アーク反応性蒸着装置にある。
(2) The vacuum arc cathode consists of a discharge surface with pores for blowing out reactive gas, and the cathode is surrounded by a cooling jacket, and the entire cathode except for the discharge surface is covered with a high melting point shield with a narrow gap. A vacuum arc reactive vapor deposition apparatus is characterized in that an anode is provided in front of a cathode discharge surface, and a converging coil is provided on the outer periphery of the anode.

本発明を図面に基づいて説明すると、第1図吐本発明に
おける電極の説明図で、陰極2は水冷ジャケット1によ
って冷却され、その放電面3には開口端をMするガス出
口4とガス人口5とを結ぶ細孔が設けられている0反応
性ガスは歯極のガス人口5の直前に設けた高周波などに
よるガスプラズマ発生系6により、予めイオン化した後
、ガス人口5から送や込む。
To explain the present invention based on the drawings, Fig. 1 is an explanatory diagram of an electrode according to the present invention, in which a cathode 2 is cooled by a water cooling jacket 1, and a discharge surface 3 has a gas outlet 4 with an open end M and a gas port. The reactive gas provided with the pores connecting with the tooth electrode is ionized in advance by a gas plasma generation system 6 using high frequency or the like provided just before the gas population 5 of the tooth electrode, and then sent from the gas population 5.

一方、真空アーク数式の陰極輝点が放電面から逸散する
のを防ぐために、陰極は放電面以外の周囲を、出来るだ
け狭い間隙を隔ててチタンなどの高融点のものからなる
ルールド7で覆われている。陰極2の前方に水冷等によ
り冷却された陽極8の外周に収束コイル9を設け、磁場
によりプラズマビーム径を任意に制御するように構成さ
れている。
On the other hand, in order to prevent the cathode bright spot of the vacuum arc formula from escaping from the discharge surface, the cathode is covered with a ruled 7 made of a material with a high melting point such as titanium, with a gap as narrow as possible, around the area other than the discharge surface. It is being said. A converging coil 9 is provided around the outer periphery of an anode 8 which is cooled by water cooling or the like in front of the cathode 2, and the plasma beam diameter is arbitrarily controlled by a magnetic field.

前記構成において、ガス人口5の直前にガスプラズマ発
生系6は必ずしも設けることを必要としない。
In the above configuration, the gas plasma generation system 6 does not necessarily need to be provided immediately before the gas population 5.

本発明においては陰極5の放電面に反応性ガスの出口の
細孔を設け、これより反応性ガスを導入するため、真空
アークの陰極輝点を開口端周辺部に集中させることがで
き、その放電を高度に安定させることができる。また、
反応性ガスを予めイオン化して導入すると、放電が安定
化し、且つプラズマ反応の効率が上昇し得られ、そのた
め良質のセラミック被膜の高速蒸着をすることができる
。更に放電面以外の陰極の周囲を小間隔を隔ててシール
ドで覆ったため、シールド材料の蒸発や導電性物質の付
着による陰極−陽極間の短絡のトラブルが全くなくなる
In the present invention, the discharge surface of the cathode 5 is provided with a pore for the outlet of the reactive gas, and the reactive gas is introduced through the pore, so that the cathode bright spot of the vacuum arc can be concentrated around the opening end. The discharge can be highly stabilized. Also,
Introducing a reactive gas that is ionized beforehand can stabilize the discharge and increase the efficiency of the plasma reaction, thereby allowing high-speed deposition of high-quality ceramic coatings. Furthermore, since the area around the cathode other than the discharge surface is covered with a shield at a small interval, there is no problem of short circuit between the cathode and the anode due to evaporation of the shield material or adhesion of conductive substances.

発明の効果 前記の効果に加え、本発明によると、(1)放電が高度
に安定化するため、放電を持続することができる雰囲気
ガス圧力、放電電流の範囲が広がる。(2)蒸着速度が
同一の放電電流で、従来法と比ベアークの輝点が集中安
定化するため、顕著に増加する。(3)陰極の放電面を
小さくすることが可能なため、小面積の陰極面から蒸着
物質を高密度で放出することができる。従って所望の場
所に局所被覆が可能となる。(4)小断面積を有するシ
リンダー状陰極を採用できるため、陰極材料を機械的K
かつ連続的に補給することが容易で、現場で蒸着するの
に適する電極構造とすることも容易である。等の優れた
効果を奏し得られる。
Effects of the Invention In addition to the above-mentioned effects, according to the present invention, (1) discharge is highly stabilized, so that the range of atmospheric gas pressure and discharge current that can sustain discharge is expanded; (2) At the same discharge current and evaporation rate, compared to the conventional method, the bright spots of the bare arc are concentrated and stabilized, so there is a significant increase. (3) Since the discharge surface of the cathode can be made small, the vapor deposited material can be discharged at high density from the small area of the cathode surface. Local coverage is therefore possible at desired locations. (4) Since a cylindrical cathode with a small cross-sectional area can be used, the cathode material can be
Moreover, it is easy to continuously replenish the vapor, and it is also easy to form an electrode structure suitable for on-site vapor deposition. Excellent effects such as these can be achieved.

実施例 陰極材料としてTiを、反応性ガスとしてN、を用より
イオン化して供給した。陰極表面の放電面を写真撮影し
て観察した結果、従来法における反応性ガスを陰極から
離れた場所から導入した場合には、アーク陰極輝点が放
電面全体を動きまわっていたが、本発明のように陰極の
放電面に設けた細孔から導入すると、反応性ガスの導入
前のイオン化操作の有無に係わらず、アーク陰極輝点が
反応性ガス出口周辺のみにあり、蒸着物質が高密度で放
出されることが判った。
EXAMPLE Ti was supplied as a cathode material, and N was ionized as a reactive gas. As a result of photographing and observing the discharge surface of the cathode surface, it was found that when the reactive gas was introduced from a place away from the cathode in the conventional method, the arc cathode bright spot moved around the entire discharge surface, but in the present invention When the reactive gas is introduced through the pores provided on the discharge surface of the cathode, the arc cathode bright spot is only around the reactive gas outlet, and the vapor deposited material is densely deposited, regardless of whether or not ionization is performed before introducing the reactive gas. It was found that it was released.

雰囲気ガス圧力と放電電流との関係を示すと第2図の通
りである。図においてAは従来法、B、Cは本発明の方
法で、Bは反応性ガスを予めイオン化せずに導入した場
合、Cは反応性ガスを予めイりである。結晶学的に健全
なTiNの格子定数の値は4.24Aである。この点を
考慮すると、化学量論組成(Ti/N=1.0)を有す
る被膜の生成する雰囲気ガス圧は3X10”〜I X 
10−” Torrの範囲であることがわかる。従来法
によると、この圧力範囲では安定放電が得られないが、
本発明の方法によると、安定放電領域に入り、従って良
質の皮膜を得ることができる。
The relationship between atmospheric gas pressure and discharge current is shown in FIG. 2. In the figure, A is the conventional method, B and C are the methods of the present invention, B is the case where the reactive gas is introduced without being ionized in advance, and C is the case where the reactive gas is introduced without being ionized in advance. The value of the lattice constant of crystallographically sound TiN is 4.24A. Considering this point, the atmospheric gas pressure generated by a film having a stoichiometric composition (Ti/N=1.0) is 3X10"~IX
It can be seen that the pressure is in the range of 10-” Torr. According to the conventional method, stable discharge cannot be obtained in this pressure range, but
According to the method of the present invention, it is possible to enter the stable discharge region and therefore obtain a film of good quality.

第4図に蒸着速度を示す。図中、Aは従来法、B、Cは
本発明の方法を示す。Bは反応性ガスを予めイオン化せ
ずに導入した場合、Cは反応性ガスを予めイオン化して
導入した場合である。図が示すように、本発明の方法に
よると蒸発速度が早いことがわかる。
Figure 4 shows the deposition rate. In the figure, A shows the conventional method, and B and C show the method of the present invention. B is a case in which the reactive gas is introduced without being ionized beforehand, and C is a case in which the reactive gas is introduced after being ionized in advance. As shown in the figure, the evaporation rate is fast according to the method of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における電極の一実施態様図で、第2図
は雰囲気ガス圧力と放電電流との関係図、第3図は本発
明方法によって得られたTiN皮膜の格子定数と雰囲気
ガス圧との関係図、pc4図は蒸着速度の比較図、第5
図は従来法における電極概要図を示す。 1:水冷ジャケット 2:陰 極 3:放電面     4:反応性ガス出口5:反応性ガ
ス人口 6:ガスプラズマ発生系7:シールド    
8:水冷陽極 9:収束コイル   1o:陽 極 11:絶縁材     12:真空容器13:基 板 
    14:排気ロ A線:従来法の場合、B線:本発明の方法で、予め反応
性ガスをイオン化しない場合、C線二本発明の方法で、
予め反注ガスをイオン化した場合、
Fig. 1 is a diagram showing one embodiment of the electrode according to the present invention, Fig. 2 is a diagram showing the relationship between atmospheric gas pressure and discharge current, and Fig. 3 is a diagram showing the lattice constant of the TiN film obtained by the method of the present invention and atmospheric gas pressure. Figure 5 is a comparison diagram of vapor deposition speed.
The figure shows a schematic diagram of electrodes in the conventional method. 1: Water cooling jacket 2: Cathode 3: Discharge surface 4: Reactive gas outlet 5: Reactive gas population 6: Gas plasma generation system 7: Shield
8: Water-cooled anode 9: Convergent coil 1o: Anode 11: Insulating material 12: Vacuum vessel 13: Substrate
14: Exhaust Ro A line: In the case of the conventional method, B line: When the reactive gas is not ionized in advance in the method of the present invention, C line 2.
If the counter-injection gas is ionized in advance,

Claims (1)

【特許請求の範囲】 1、真空アーク放電により発生させた金属蒸気と反応性
ガスのプラズマ流を作り、これを収束輸送して基体上に
蒸着させる方法において、放電面に細孔を有する真空ア
ーク陰極を使用し、該細孔から反応性ガスを吹出し、か
つ真空アークの放電面を除く陰極全体を高融点のシール
ドで狭い間隙を隔てて覆い、真空アーク陰極輝点を放電
面のガス吹出し口周辺部に集中させたプラズマ流を発生
させ、これを陽極で収束輸送させることを特徴とする真
空アーク反応性蒸着法。 2、反応性ガスを導入する直前において、反応性ガスを
放電によりイオン化して導入する特許請求の範囲第1項
記載の真空アーク反応性蒸着法。 3、真空アーク陰極がその放電面に反応性ガス吹出し用
の細孔を設けたものからなり、該陰極の周囲を冷却ジャ
ケットで囲むと共に、放電面を除く陰極全体を高融点シ
ールドで狭い間隙を隔てて覆い、かつ収束コイルを外周
に設けた陽極を陰極放電面の前方へ設けたことを特徴と
する真空アーク反応性蒸着装置。 4、反応性ガスの入口の直前に反応性ガスプラズマ発生
装置を設けた特許請求の範囲第3項記載の真空アーク反
応性蒸着装置。
[Claims] 1. A vacuum arc having pores on the discharge surface in a method of creating a plasma flow of metal vapor and reactive gas generated by vacuum arc discharge, and convergently transporting the plasma flow to deposit it on a substrate. Using a cathode, reactive gas is blown out from the pores, and the entire cathode except for the discharge surface of the vacuum arc is covered with a high melting point shield with a narrow gap, and the bright spot of the vacuum arc cathode is connected to the gas outlet on the discharge surface. A vacuum arc reactive evaporation method that is characterized by generating a plasma stream concentrated in the periphery and convergently transporting it at the anode. 2. The vacuum arc reactive vapor deposition method according to claim 1, wherein immediately before introducing the reactive gas, the reactive gas is ionized by electric discharge and introduced. 3. The vacuum arc cathode consists of a discharge surface with pores for blowing out reactive gas, and the cathode is surrounded by a cooling jacket, and the entire cathode except the discharge surface is covered with a high melting point shield with a narrow gap. A vacuum arc reactive vapor deposition apparatus characterized in that an anode is provided in front of a cathode discharge surface, the anode being separated and covered and having a converging coil on its outer periphery. 4. The vacuum arc reactive vapor deposition apparatus according to claim 3, wherein a reactive gas plasma generator is provided immediately before the inlet of the reactive gas.
JP16159984A 1984-08-02 1984-08-02 Method and apparatus for vapor deposition under vacuum arc reaction Granted JPS6141764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16159984A JPS6141764A (en) 1984-08-02 1984-08-02 Method and apparatus for vapor deposition under vacuum arc reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16159984A JPS6141764A (en) 1984-08-02 1984-08-02 Method and apparatus for vapor deposition under vacuum arc reaction

Publications (2)

Publication Number Publication Date
JPS6141764A true JPS6141764A (en) 1986-02-28
JPH0225986B2 JPH0225986B2 (en) 1990-06-06

Family

ID=15738210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16159984A Granted JPS6141764A (en) 1984-08-02 1984-08-02 Method and apparatus for vapor deposition under vacuum arc reaction

Country Status (1)

Country Link
JP (1) JPS6141764A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318056A (en) * 1986-07-10 1988-01-25 Nissin Electric Co Ltd Arc type evaporation source
JPH01132756A (en) * 1987-11-18 1989-05-25 Kobe Steel Ltd Method for coating of wear-resistant film
JPH01287270A (en) * 1988-05-13 1989-11-17 Matsushita Electric Ind Co Ltd Sputtering device
JPH05193916A (en) * 1992-01-24 1993-08-03 Agency Of Ind Science & Technol Thin titanium nitride film
US5843293A (en) * 1995-01-23 1998-12-01 Nissin Electric Co., Ltd. Arc-type evaporator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318056A (en) * 1986-07-10 1988-01-25 Nissin Electric Co Ltd Arc type evaporation source
JPH01132756A (en) * 1987-11-18 1989-05-25 Kobe Steel Ltd Method for coating of wear-resistant film
JPH01287270A (en) * 1988-05-13 1989-11-17 Matsushita Electric Ind Co Ltd Sputtering device
JPH05193916A (en) * 1992-01-24 1993-08-03 Agency Of Ind Science & Technol Thin titanium nitride film
US5843293A (en) * 1995-01-23 1998-12-01 Nissin Electric Co., Ltd. Arc-type evaporator

Also Published As

Publication number Publication date
JPH0225986B2 (en) 1990-06-06

Similar Documents

Publication Publication Date Title
US3540993A (en) Sputtering apparatus
JPH0773994A (en) Hollow cathode array and surface treatment using it
JPH0791654B2 (en) Thin film formation method
JP4364950B2 (en) Plasma processing equipment
JPS6141764A (en) Method and apparatus for vapor deposition under vacuum arc reaction
JPH01108374A (en) Cathodic sputtering apparatus
JPH10204625A (en) Formation of magnesium oxide film and film forming device
JPS5947728A (en) Method and apparatus for plasma coating
US4540868A (en) Plasma gun that reduces cathode contamination
JPH0565633A (en) Process for producing thin film and apparatus therefor
JPS61266568A (en) Coating apparatus
US3595773A (en) Process for depositing on surfaces
US20100230276A1 (en) Device and method for thin film deposition using a vacuum arc in an enclosed cathode-anode assembly
JP2001059165A (en) Arc type ion plating device
JPS6380534A (en) Plasma processing apparatus
JPS6016419A (en) Plasma cvd processing apparatus
JP2001143894A (en) Plasma generator and apparatus for producing thin film
JP2000017431A (en) MgO FILM FORMING METHOD AND PANEL
JP3079789B2 (en) Plasma gun and plasma generator
JPH09256148A (en) Ion plating device
US3881038A (en) Low temperature metallization of ferrite
JP2000017429A (en) Vacuum deposition apparatus
JP2005105314A (en) Vapor deposition source, vapor deposition system having the vapor deposition source, and method of producing thin film
JPH0445254A (en) Formation of sprayed composite coating film
JPH04191364A (en) Method and device for ion plating

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term