JPS6318056A - Arc type evaporation source - Google Patents

Arc type evaporation source

Info

Publication number
JPS6318056A
JPS6318056A JP16261386A JP16261386A JPS6318056A JP S6318056 A JPS6318056 A JP S6318056A JP 16261386 A JP16261386 A JP 16261386A JP 16261386 A JP16261386 A JP 16261386A JP S6318056 A JPS6318056 A JP S6318056A
Authority
JP
Japan
Prior art keywords
cathode
gas
arc
vacuum
cathode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16261386A
Other languages
Japanese (ja)
Other versions
JPH07122131B2 (en
Inventor
Koji Okamoto
康治 岡本
Masayasu Tanjiyou
正安 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP61162613A priority Critical patent/JPH07122131B2/en
Publication of JPS6318056A publication Critical patent/JPS6318056A/en
Publication of JPH07122131B2 publication Critical patent/JPH07122131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the evaporation of cathode material of a large lump in a device where the cathode material is evaporated by using an arc discharge in the cathode by providing a gas blowing device which blows a gas against the surface of the cathode. CONSTITUTION:The inside of a vacuum vessel 2 is evacuated to a specified vacuum, and a reactive gas G is introduced from a gas introducing port 48. The reactive gas G is streamed through the draft hole 46 of a shaft 44 and the draft hole 54 of a trigger electrode 52, and is blown against the specified area of the surface of the cathode 12. In such condition, and in the state that a specified voltage is impressed to the cathode 12 from an arc power source 26, the shaft 44 is driven by a driving device 18, brought into contact with the cathode 12 at its top end to generate sparks, and then withdrawn, so that the arc discharge is kept between the cathode 12 and the vacuum vessel 2, and the cathode material 20 is evaporated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば基板にカソード物質を被着させる真
空アーク蒸着装置や、基板に対するカソード物質の被着
とイオン照射とを併用する薄膜形成装置等に用いられる
ものであうで、カソードにおけるアーク放電を利用して
カソード物質を蒸発させるアーク式蒸発源に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to, for example, a vacuum arc evaporation device for depositing a cathode material onto a substrate, and a thin film forming device that uses both deposition of a cathode material to a substrate and ion irradiation. This invention relates to an arc type evaporation source that evaporates cathode material using arc discharge at the cathode.

〔従来の技術〕[Conventional technology]

第2図は、真空アーク蒸着装置の一例を示す概略図であ
る。真空ポンプ4によって所定の真空度に排気される真
空容器2内に、基板22保持用のホルダ24が設けられ
ており、それに対向するようにアーク式蒸発源10が設
けられている。
FIG. 2 is a schematic diagram showing an example of a vacuum arc evaporation apparatus. A holder 24 for holding a substrate 22 is provided in a vacuum container 2 that is evacuated to a predetermined degree of vacuum by a vacuum pump 4, and an arc type evaporation source 10 is provided so as to face the holder 24.

アーク式蒸発源10は、所望の組成をしたカソード12
、アーク点弧用のトリガ電極14、それをフィードスル
ー16を介して真空容器2外から矢印Aのように駆動す
る例えばエアシリンダ等から成る駆動装置18を備えて
おり、カソード12と真空容器2間には、両者間に真空
直流アーク放電を行わせるために例えば数十V程度の電
圧を印加するアーク電源26が接続されている。
The arc type evaporation source 10 includes a cathode 12 having a desired composition.
, a trigger electrode 14 for arc ignition, and a drive device 18 consisting of, for example, an air cylinder, which drives the trigger electrode 14 from outside the vacuum vessel 2 as shown by arrow A via a feedthrough 16, and connects the cathode 12 and the vacuum vessel 2. An arc power source 26 is connected between the two, which applies a voltage of, for example, several tens of volts to cause vacuum DC arc discharge between the two.

一方、ホルダ24と真空容器2間には、ホルダ24上の
基板22に例えば数百v〜IK■程度の負バイアス電圧
を印加するバイアス電源28が接続すしている。また、
真空容器2内には、その壁面に設けられたガス導入口6
を介して、ガス源8からガスGが導入されるようになっ
ている。
On the other hand, a bias power supply 28 is connected between the holder 24 and the vacuum vessel 2 for applying a negative bias voltage of, for example, several hundred volts to IK■ to the substrate 22 on the holder 24. Also,
Inside the vacuum container 2, there is a gas inlet 6 provided on the wall surface of the vacuum container 2.
Gas G is introduced from a gas source 8 via the gas source 8 .

上記装置において基板22上に化合物膜を被着させる工
程を例示すれば次の通りである。
An example of the step of depositing a compound film on the substrate 22 in the above apparatus is as follows.

■ まず、基板22上に被着させる膜の密着性等を向上
させるため、基板22の清浄化を行う。
(2) First, the substrate 22 is cleaned in order to improve the adhesion of the film deposited on the substrate 22.

即ち、真空容器2内にガスGを導入することなく、真空
容器2内を例えば10−’Torr台の高真空に排気し
ておき、基板22に例えば−IKV程度のバイアス電圧
をかけながら、アーク式蒸発源10においてアーク放電
を行わせる。
That is, without introducing gas G into the vacuum container 2, the inside of the vacuum container 2 is evacuated to a high vacuum of, for example, 10-' Torr, and while applying a bias voltage of, for example, about -IKV to the substrate 22, an arc is applied. Arc discharge is caused in the type evaporation source 10.

即ち、トリガ電極14をカソード12に接触させて最初
の火花を発生させた後トリガ電極14をカソード12よ
り引き離すと、カソード12と真空容器2間にアーク放
電が持続され、それによってカソード12が溶融されて
そこからカソード物質20が蒸発させられる。
That is, when the trigger electrode 14 is brought into contact with the cathode 12 to generate an initial spark, and then the trigger electrode 14 is pulled away from the cathode 12, an arc discharge is sustained between the cathode 12 and the vacuum vessel 2, thereby causing the cathode 12 to melt. The cathode material 20 is evaporated therefrom.

その場合、カソード物質20の一部はイオン化されてお
り、このイオン化したカソード物質20は、負電位の基
板22に引き付けられて衝突し、そのエネルギーで基板
22上の汚染物質をスパッタさせ、これによって基板2
2の清浄化が行われる。
In that case, a portion of the cathode material 20 is ionized, and the ionized cathode material 20 is attracted to and collides with the substrate 22 at a negative potential, sputtering contaminants on the substrate 22 with its energy, thereby Board 2
2 cleaning is performed.

■ 次に、基板22上に化合物膜を被着させる。(2) Next, a compound film is deposited on the substrate 22.

即ち、真空容器2内にガスGとして例えば窒素ガス、炭
化水素系ガス、酸素ガス等の反応性ガスを、真空容器2
内が例えば10−”〜10−’To r r程度になる
ように導入し、また基板22に印加するバイアス電圧も
例えば−200V程度にし、そしてアーク式蒸発源10
において前記と同様にしてアーク放電を行わせる。
That is, a reactive gas such as nitrogen gas, hydrocarbon gas, oxygen gas, etc. is introduced into the vacuum container 2 as the gas G.
For example, the bias voltage applied to the substrate 22 is set to about -200V, and the arc type evaporation source 10
Then arc discharge is performed in the same manner as above.

それによって、カソード物質20と反応性ガスGとが化
合して、カソード物質20の例えば窒化物、炭化物、酸
化物等から成る化合物膜が基板22上に被着される。こ
の場合、基板22のバイアス電圧を下げるのは、カソー
ド物質20によるスパッタリングを小さくするためであ
る。
Thereby, the cathode material 20 and the reactive gas G are combined, and a compound film of the cathode material 20, such as nitride, carbide, oxide, etc., is deposited on the substrate 22. In this case, the reason for lowering the bias voltage of the substrate 22 is to reduce sputtering by the cathode material 20.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが上記のような従来のアーク式蒸発源1Oにおい
ては、カソード12からは細かいカソード物質20と共
に大きな塊のカソード物質20も同時に蒸発され、これ
らが基板22に付着して、基板22の表面を荒らして膜
の密着性を低下させると共に、膜組成の均一性や膜厚の
均−性等も低下させるという問題があった。特に、この
ような問題は、反応性ガスGを導入しない上記■の工程
において顕著であった。
However, in the conventional arc type evaporation source 1O as described above, large lumps of cathode material 20 as well as fine cathode material 20 are evaporated from the cathode 12 at the same time, and these adhere to the substrate 22 and roughen the surface of the substrate 22. There is a problem in that the adhesion of the film is reduced, and the uniformity of the film composition and the uniformity of the film thickness are also reduced. Particularly, such a problem was noticeable in the step (2) above, in which the reactive gas G was not introduced.

そこでこの発明は、大きな塊のカソード物質が蒸発され
るのを防ぐことができるアーク式蒸発源を提供すること
を主たる目的とする。
Therefore, the main object of the present invention is to provide an arc type evaporation source that can prevent large lumps of cathode material from being evaporated.

〔問題点を解決するための手段〕[Means for solving problems]

この発明のアーク式蒸発源は、カソードにおけるアーク
放電を利用してカソード物質を蒸発させるものであって
、カソードの表面にガスを吹き付けるガス吹付は手段を
備えることを特徴とする。
The arc type evaporation source of the present invention evaporates cathode material using arc discharge at the cathode, and is characterized in that it includes a gas spraying means for spraying gas onto the surface of the cathode.

〔作用〕[Effect]

ガス吹付は手段によってカソードの表面にガスを吹き付
けながら真空アーク放電を行わせると、カソードの表面
にガスの吸着層ができて陰極点が多数でき、アーク電流
が多(の陰極点に分散される。それによって、個々の陰
極点から蒸発されるカソード物質は細かなものとなり大
きな塊のカソード物質が蒸発されるのが防止される。
Gas spraying is a means of blowing gas onto the surface of the cathode while causing vacuum arc discharge. This creates a gas adsorption layer on the surface of the cathode, creating many cathode spots, and the arc current is dispersed to many cathode spots. Thereby, the cathode material evaporated from the individual cathode spots becomes fine, and large chunks of cathode material are prevented from being evaporated.

〔実施例〕〔Example〕

第1図は、この発明の一実施例に係るアーク式蒸発源を
真空容器に取り付けた状態で示す断面図である。この実
施例においては、アーク点弧用のトリガ電極52であっ
て内部に通気孔54を有するものと、トリガ電極52を
機械的に保持かつ駆動するための軸44であって内部に
トリガ電極52の通気孔54に連通ずる通気孔46を有
するものと、軸44の通気孔46にガスGを導入するた
めのガス導入口48等によって前述したガス吹付は手段
を構成している。
FIG. 1 is a sectional view showing an arc type evaporation source according to an embodiment of the present invention attached to a vacuum container. In this embodiment, the trigger electrode 52 for arc ignition has a ventilation hole 54 inside, and the shaft 44 for mechanically holding and driving the trigger electrode 52 has a trigger electrode 52 inside. The above-mentioned gas blowing means includes a vent hole 46 communicating with the vent hole 54 of the shaft 44 and a gas inlet 48 for introducing the gas G into the vent hole 46 of the shaft 44.

全体を詳述すると、例えば前述したような真空容器2に
、絶縁物60を介してフランジ62が取り付けられてお
り、フランジ62の前面側(即ち真空容器2の内側)に
は前述したようなカソード12が取り付けられている。
To explain the whole in detail, for example, a flange 62 is attached to the vacuum vessel 2 as described above through an insulator 60, and a cathode as described above is attached to the front side of the flange 62 (i.e., inside the vacuum vessel 2). 12 is attached.

フランジ62の背面側には、カソード12の前面におけ
るアークの状態を制御するための磁石64が取り付けら
れている。カソード120回りには、カソード12とあ
る程度離れた所の真空容器2間でアーク放電させるため
のシールド板56が設けられており、それは抵抗器58
によって接地されている。そしてカソード12と真空容
器2間には、アーク放電用の前述したようなアーク電源
26が接続されている。
A magnet 64 is attached to the rear side of the flange 62 for controlling the state of the arc on the front surface of the cathode 12. A shield plate 56 is provided around the cathode 120 to cause arc discharge between the cathode 12 and the vacuum vessel 2 at a certain distance, and it is connected to a resistor 58.
is grounded by An arc power source 26 as described above for arc discharge is connected between the cathode 12 and the vacuum vessel 2.

一方、真空容器2の内外に、フィードスルー32を介し
て軸44が通されており、その真空容器2内側の先端部
にはトリガ電極52が、真空容器2外側の根元部には前
述したような駆動装置18がそれぞれ結合されている。
On the other hand, a shaft 44 is passed through the feedthrough 32 inside and outside the vacuum container 2, and a trigger electrode 52 is provided at the tip inside the vacuum container 2, and as described above, at the base outside the vacuum container 2. drive devices 18 are respectively coupled.

トリガ電極52の先端部は、その矢印Aのような動きに
よってカソード12の所定部分、例えば中央部分に当接
可能なように曲げられており、かつ当該トリガ電極52
の内部には端から端まで通気孔54が設けられている。
The tip of the trigger electrode 52 is bent so that it can come into contact with a predetermined portion, for example, the center portion, of the cathode 12 by moving in the direction of arrow A, and the trigger electrode 52
Ventilation holes 54 are provided inside from end to end.

軸44の内部にも、トリガ電極52の通気孔54に連通
ずる通気孔46がその先端から根元部付近まで設けられ
ており、当該通気孔46は軸44の根元部に設けられた
ガス導入口48に連通している。
A ventilation hole 46 communicating with the ventilation hole 54 of the trigger electrode 52 is also provided inside the shaft 44 from its tip to the vicinity of the base, and the ventilation hole 46 is connected to a gas inlet provided at the base of the shaft 44 It is connected to 48.

尚、フィードスルー32は、絶縁物34、ハウジング3
8、ハウジングカバー42等を備えており、絶縁物34
と真空容器2およびハウジング38間は、0リング等か
ら成るパツキン36によって真空シールされており、ハ
ウジング38と軸44間はXリング等から成るパツキン
4oによって摺動可能状態で真空シールされている。ま
た軸44は、アーク点弧時の電流制限用の抵抗器5oを
介して接地されている。
Note that the feed through 32 is connected to the insulator 34 and the housing 3.
8, includes a housing cover 42, etc., and an insulator 34
The space between the vacuum container 2 and the housing 38 is vacuum-sealed by a packing 36 made of an O-ring or the like, and the space between the housing 38 and the shaft 44 is vacuum-sealed in a slidable state by a packing 4o made of an X-ring or the like. The shaft 44 is also grounded via a resistor 5o for limiting current during arc ignition.

上記アーク式蒸発源の動作例を説明すると、真空容器2
内を所定の真空度に排気しておき、ガス導入口48に図
示しないフレキシブル配管等を介して、例えば前述した
ようなガス源8がら反応性ガスGをある程度の(例えば
1 k g /cm2G程度の)ガス圧で供給すると、
真空容器2内が真空であることと相俟って、当該反応性
ガスGは軸44の通気孔46およびトリガ電極52の通
気孔54を通してカソード12の表面の所定領域に吹き
付けられる。
To explain an example of the operation of the above-mentioned arc type evaporation source, the vacuum vessel 2
The inside is evacuated to a predetermined degree of vacuum, and reactive gas G is supplied to the gas inlet 48 via a flexible pipe (not shown) or the like to a certain extent (for example, about 1 kg/cm2G) ) When supplied with gas pressure,
Coupled with the vacuum inside the vacuum container 2, the reactive gas G is blown onto a predetermined area of the surface of the cathode 12 through the vent hole 46 of the shaft 44 and the vent hole 54 of the trigger electrode 52.

そのような状態で、かつカソード12にアーク電源26
から所定の電圧を印加した状態で、駆動装置18によっ
て軸44を駆動して、トリガ電極52の先端をカソード
12に接触させて火花を発生させた後引き離すと、カソ
ード12と真空容器2間にアーク放電が持続され、それ
によってカソード12が溶融されてそこからカソード物
質20が蒸発させられる。
In such a state, and when the cathode 12 is connected to the arc power source 26
When a predetermined voltage is applied to the drive device 18, the shaft 44 is driven, and the tip of the trigger electrode 52 is brought into contact with the cathode 12 to generate a spark, and then pulled apart. The arc discharge is sustained, thereby melting cathode 12 and vaporizing cathode material 20 therefrom.

その場合、従来と違って、カソード12の表面に反応性
ガスGを吹き付けながら真空アーク放電を行わせるので
、カソード12の表面上のガス圧が高くなり、カソード
12の表面には反応性ガスGの吸着層(言わば不純物層
)が生じて仕事関数の低い部分、即ちアーク放電の陰極
点が多数できる。その結果、アーク放電は多くの陰極点
に分散されることとなり、トータルのアーク電流が同じ
でも個々の陰極点におけるカソード12の溶融量は少な
くなるので、大きな塊ができにくくなり、個々の陰極点
から蒸発されるカソード物質は細かなものとなる。
In that case, unlike the conventional method, vacuum arc discharge is performed while spraying the reactive gas G onto the surface of the cathode 12, so the gas pressure on the surface of the cathode 12 increases, and the reactive gas G is applied to the surface of the cathode 12. An adsorption layer (so to speak, an impurity layer) is formed, and a large number of areas with a low work function, that is, cathode spots for arc discharge, are formed. As a result, the arc discharge is dispersed to many cathode spots, and even if the total arc current is the same, the amount of melting of the cathode 12 at each cathode spot is smaller, making it difficult to form large lumps and The cathode material evaporated from becomes fine.

従ってこのようなアーク式蒸発源を例えば第2図に示し
たような真空アーク蒸着装置に用いれば、基板22を清
浄化する場合および基板22に膜形成する場合のいずれ
においても、従来のような問題を排除することができる
。即ち、細かなカソード物質20によって基板22をス
パッタクリーニングすることができるので基板22の表
面を荒らすことはな(、しかも細かなカソード物質20
を基板22に被着させることができるので、基板22上
には粒子の細かな均質の膜が均一厚さに形成されるよう
になり、膜の密着性や膜質が向上する。
Therefore, if such an arc type evaporation source is used in a vacuum arc evaporation apparatus as shown in FIG. problem can be eliminated. That is, since the substrate 22 can be sputter-cleaned using the fine cathode material 20, the surface of the substrate 22 is not roughened (and the fine cathode material 20
can be deposited on the substrate 22, so that a homogeneous film with fine particles and a uniform thickness is formed on the substrate 22, and the adhesion and quality of the film are improved.

しかもこのアーク式蒸発源においては、多数の陰極点が
トリガ電極52のガス吹出し口に対向したカソード12
上の比較的限定された領域に集中するため、カソード物
質20の発散(広がり)が比較的少なく、カソード物質
20はカソード12の正面方向にある程度集中するので
、カソード12の正面におけるカソード物質20の被着
レートが高まり、効率的な膜形成が可能になるという効
果も得られる。
Moreover, in this arc type evaporation source, a large number of cathode points are connected to the cathode 12 facing the gas outlet of the trigger electrode 52.
Since the cathode material 20 is concentrated in a relatively limited area above, the divergence (spreading) of the cathode material 20 is relatively small, and the cathode material 20 is concentrated to some extent in the front direction of the cathode 12, so that the cathode material 20 in front of the cathode 12 is It also has the effect of increasing the deposition rate and making it possible to form a film efficiently.

ちなみに、第2図のような装置においても真空容器2内
に反応性ガスGを導入すれば、導入しないときに比べて
カソード12における陰極点数はある程度増える場合も
あるが、この実施例のように反応性ガスGをカソード1
2に吹き付けるものではないため、その増え方は少なく
、また陰極点は広い領域に分散するので、この実施働程
の効果は得られない。
Incidentally, even in the apparatus shown in FIG. 2, if the reactive gas G is introduced into the vacuum vessel 2, the number of cathodes in the cathode 12 may increase to some extent compared to when it is not introduced. Reactive gas G to cathode 1
2, the amount of increase is small, and the cathode spots are dispersed over a wide area, so the effect of this implementation process cannot be obtained.

また、この実施例におていは、カソード12に対するガ
ス吹付は手段として、アーク点弧用のトリガ電極52お
よびその駆動用の軸44を兼用しているので、余分なも
のを設ける必要がなく、構成が簡単でスペースも少なく
て済むという利点もある。もっとも、トリガ電極52等
を兼用することなく、専用のガス導入管等によってカソ
ード12に対するガス吹付は手段を構成しても良いのは
勿論である。
Furthermore, in this embodiment, the gas is sprayed onto the cathode 12 using the trigger electrode 52 for arc ignition and the shaft 44 for driving it, so there is no need to provide any extra components. It also has the advantage of being simple to configure and requiring less space. Of course, it is also possible to use a dedicated gas introduction pipe or the like to spray gas onto the cathode 12 without also using the trigger electrode 52 or the like.

尚、上記のようなアーク式蒸発源は、第2図に示した以
外の真空アーク蒸着装置や、一番初めに例示したような
薄膜形成装置等に広く用いることができるのは言うまで
もない。
It goes without saying that the arc type evaporation source as described above can be widely used in vacuum arc evaporation apparatuses other than those shown in FIG. 2, thin film forming apparatuses as exemplified at the beginning, and the like.

〔発明の効果〕 以上のようにこの発明によれば、大きな塊のカソード物
質が蒸発されるのが防止される。即ち、細かいカソード
物質を主体に蒸発させることができ、従ってこのアーク
式蒸発源を用いれば、例えば基板に対して密着性や膜質
の優れた膜を被着させることが可能になる。
[Effects of the Invention] As described above, according to the present invention, large lumps of cathode material are prevented from being evaporated. That is, it is possible to evaporate mainly fine cathode materials, and therefore, by using this arc type evaporation source, it is possible to deposit a film with excellent adhesion and film quality onto a substrate, for example.

またこの発明によれば、蒸発させられるカソード物質は
カソードの正面方向にある程度集中するので、カソード
の正面におけるカソード物質の被着レートが高まるとい
う効果も得られる。
Further, according to the present invention, since the evaporated cathode material is concentrated to some extent in the front direction of the cathode, the deposition rate of the cathode material on the front surface of the cathode is increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例に係るアーク式蒸発源を
真空容器に取り付けた状態で示す断面図である。第2図
は、真空アーク蒸着装置の一例を示す概略図である。 2・・・真空容器、12・・・カソード、20・・・カ
ソード物質、44・・・軸、46.54・・・通気孔、
52・・・ トリガ電極、G・・・ガス。
FIG. 1 is a sectional view showing an arc type evaporation source according to an embodiment of the present invention attached to a vacuum container. FIG. 2 is a schematic diagram showing an example of a vacuum arc evaporation apparatus. 2... Vacuum container, 12... Cathode, 20... Cathode material, 44... Shaft, 46.54... Vent hole,
52... Trigger electrode, G... Gas.

Claims (2)

【特許請求の範囲】[Claims] (1)カソードにおけるアーク放電を利用してカソード
物質を蒸発させるものであって、カソードの表面にガス
を吹き付けるガス吹付け手段を備えることを特徴とする
アーク式蒸発源。
(1) An arc-type evaporation source that evaporates cathode material using arc discharge at the cathode, and is characterized by comprising a gas spraying means for spraying gas onto the surface of the cathode.
(2)前記ガス吹付け手段が、アーク点弧用のトリガ電
極であって内部に通気孔を有するものと、トリガ電極を
機械的に保持かつ駆動するための軸であって内部にトリ
ガ電極の通気孔に連通する通気孔を有するものと、軸の
通気孔にガスを導入するガス導入手段とを備えることを
特徴とする特許請求の範囲第1項記載のアーク式蒸発源
(2) The gas blowing means is a trigger electrode for arc ignition and has a ventilation hole inside, and a shaft for mechanically holding and driving the trigger electrode and has a trigger electrode inside. 2. The arc type evaporation source according to claim 1, further comprising: a vent hole communicating with the vent hole; and a gas introducing means for introducing gas into the vent hole of the shaft.
JP61162613A 1986-07-10 1986-07-10 Arc type evaporation source Expired - Lifetime JPH07122131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61162613A JPH07122131B2 (en) 1986-07-10 1986-07-10 Arc type evaporation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61162613A JPH07122131B2 (en) 1986-07-10 1986-07-10 Arc type evaporation source

Publications (2)

Publication Number Publication Date
JPS6318056A true JPS6318056A (en) 1988-01-25
JPH07122131B2 JPH07122131B2 (en) 1995-12-25

Family

ID=15757926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61162613A Expired - Lifetime JPH07122131B2 (en) 1986-07-10 1986-07-10 Arc type evaporation source

Country Status (1)

Country Link
JP (1) JPH07122131B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294332A (en) * 1988-05-20 1989-11-28 Nissin Electric Co Ltd Ion source
EP0725424A1 (en) * 1995-01-23 1996-08-07 Nissin Electric Company, Limited Arc-type evaporator
US20140251791A1 (en) * 2013-03-05 2014-09-11 United Technologies Corporation Cathodic arc deposition stinger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141764A (en) * 1984-08-02 1986-02-28 Natl Res Inst For Metals Method and apparatus for vapor deposition under vacuum arc reaction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141764A (en) * 1984-08-02 1986-02-28 Natl Res Inst For Metals Method and apparatus for vapor deposition under vacuum arc reaction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294332A (en) * 1988-05-20 1989-11-28 Nissin Electric Co Ltd Ion source
EP0725424A1 (en) * 1995-01-23 1996-08-07 Nissin Electric Company, Limited Arc-type evaporator
US5843293A (en) * 1995-01-23 1998-12-01 Nissin Electric Co., Ltd. Arc-type evaporator
US20140251791A1 (en) * 2013-03-05 2014-09-11 United Technologies Corporation Cathodic arc deposition stinger
US10704136B2 (en) * 2013-03-05 2020-07-07 Raytheon Technologies Corporation Cathodic arc deposition stinger

Also Published As

Publication number Publication date
JPH07122131B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
US4915977A (en) Method of forming a diamond film
JP2601127B2 (en) Plasma CVD equipment
JPH02285072A (en) Coating of surface of workpiece and workpiece thereof
US6220203B1 (en) Device for vacuum coating bulk material
JPS6318056A (en) Arc type evaporation source
US6730365B2 (en) Method of thin film deposition under reactive conditions with RF or pulsed DC plasma at the substrate holder
JP3287163B2 (en) Arc evaporation source
JPH06346236A (en) Direct current reactive plasma deposition apparatus for electrical insulating material using shielded secondary anode
CA2194742A1 (en) Process and device for coating a substrate surface
HU188635B (en) Apparatus for reactive application of layer with plasmatrone
JP4019457B2 (en) Arc type evaporation source
JPS6324068A (en) Continuous vacuum deposition plating device
JPH05331634A (en) Sputtering device
JP3291088B2 (en) Coating method
KR100295618B1 (en) High vacuum magnetron sputtering method using ion beam
JPS63458A (en) Vacuum arc vapor deposition device
RU2210619C2 (en) Technology forming film coat and magnetron facility for its implementation
JP2001011600A (en) Device and method for film formation
JPH10140335A (en) Formation of chromium nitride film
JPS6199670A (en) Ion plating device
JP2831169B2 (en) CBN film forming equipment
JPS63241162A (en) High frequency ion plating device
JPH06306578A (en) Method and device for forming electromagnetic shielding film
JPH04371570A (en) Formation of cubic nitride film
JPS63210270A (en) Method for coating film to insulator substrate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term