JPS6224501B2 - - Google Patents

Info

Publication number
JPS6224501B2
JPS6224501B2 JP7371478A JP7371478A JPS6224501B2 JP S6224501 B2 JPS6224501 B2 JP S6224501B2 JP 7371478 A JP7371478 A JP 7371478A JP 7371478 A JP7371478 A JP 7371478A JP S6224501 B2 JPS6224501 B2 JP S6224501B2
Authority
JP
Japan
Prior art keywords
substrate
reaction chamber
gas
coating
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7371478A
Other languages
Japanese (ja)
Other versions
JPS552715A (en
Inventor
Akio Nishama
Noribumi Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP7371478A priority Critical patent/JPS552715A/en
Publication of JPS552715A publication Critical patent/JPS552715A/en
Publication of JPS6224501B2 publication Critical patent/JPS6224501B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges

Description

【発明の詳細な説明】 この発明は、基体表面被覆方法、特に直流放電
空間中で反応ガスをプラスイオン化し、陰極とし
た基体の表面をこのプラスイオンが衝撃すること
によつて密着性および耐摩耗性のすぐれた周期律
表の4a族金属の窒化物からなる被覆層を形成する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a substrate surface coating method, in particular, to positively ionize a reactive gas in a DC discharge space and bombard the surface of a substrate, which is used as a cathode, with the positive ions, thereby improving adhesion and durability. The present invention relates to a method for forming a coating layer made of a nitride of a group 4a metal of the periodic table, which has excellent abrasion resistance.

金属、合金、超硬質合金、セラミツクス等の基
体表面に耐摩耗性が極度に優れる高融点化合物の
薄膜を被覆し、基体の耐摩耗性を向上させる方法
としては、従来から化学蒸着法(以下CVD法と
云う)及び物理蒸着法(以下PVD法と云う)が
知られている。
Chemical vapor deposition (hereinafter referred to as CVD) has traditionally been used as a method to improve the wear resistance of metals, alloys, superhard alloys, ceramics, etc., by coating the surface of the substrate with a thin film of a high-melting point compound that has extremely high wear resistance. PVD method) and physical vapor deposition method (hereinafter referred to as PVD method) are known.

上記CVD法は超硬合金スローアウエイチツプ
の被覆に実用化されており、炭化チタン、窒化チ
タン、酸化チタニウム等の単層あるいは多重層が
一般的である。さらに、CVD法は工具鋼の被覆
に用いられ、耐摩耗工具あるいは切削工具として
使用されている。
The above CVD method has been put into practical use for coating cemented carbide indexable chips, and single-layer or multi-layer coatings of titanium carbide, titanium nitride, titanium oxide, etc. are commonly used. Furthermore, the CVD method is used to coat tool steels, which are used as wear-resistant tools or cutting tools.

CVD法による高融点化合物の被覆は、900〜
1200℃で行なわれるが、基体によつては、より低
い温度で被覆する必要がある。すなわち、薄物あ
るいは細物の工具鋼部品に被覆する場合、上記の
如き高い温度では、部品が変形を起し易い。従つ
て、上記CVD法は被加工物の形状上の制限を受
けているのが実状である。また、高温度下におい
て基体の変質が起きる場合、被覆しても十分に耐
摩耗性を発揮できない虞れがあり、反応温度より
融点の低い基体には被覆できないという制限もあ
る。
Coating with high melting point compound by CVD method is 900~
Although it is carried out at 1200°C, some substrates may require coating at lower temperatures. That is, when coating thin or thin tool steel parts, the parts are likely to deform at such high temperatures. Therefore, the actual situation is that the above-mentioned CVD method is limited by the shape of the workpiece. Furthermore, if the substrate undergoes deterioration at high temperatures, there is a risk that sufficient wear resistance will not be exhibited even if the coating is applied, and there is also a limitation that substrates with a melting point lower than the reaction temperature cannot be coated.

CVD法における被覆形成速度は、一般に で表わされる。 The coating formation rate in CVD method is generally It is expressed as

ここで、Aは反応係数、 Eは活性化エネルギーと云われる定数
である。
Here, A is a reaction coefficient, and E is a constant called activation energy.

反応温度と被覆形成速度は負の指数関数の関係
にあるため反応温度を下げると、被覆形成速度は
著しく減少し、実用に耐えない。このため、反応
温度は900〜1200℃が必要とされている。
Since the reaction temperature and coating formation rate are in a negative exponential relationship, when the reaction temperature is lowered, the coating formation rate decreases significantly, making it impractical. For this reason, a reaction temperature of 900 to 1200°C is required.

一方、PVD法による高融点化合物の被覆は、
大別すればスパツタリング法とイオンプレーテイ
ング法に区分され、さらに細分化された区分がな
されている。PVD法によれば、200℃程度から
800℃程度まで目的に応じて被覆時の温度を変え
ることが可能であるため、種々の用途に実用化さ
れている。PVD法は全て10-2atmよりも高真空下
で行なわれているが、このような条件下では、高
融点化合物被覆膜の形成に必要なメタル成分は、
真空中を一定方向にのみ飛散する。このために、
PVD法では上記何れの方法によつても、基体の
一方面のみしか良好に被覆できない。もし、円筒
形状の部品や、立方形の部品に均一な被覆を施す
ことが必要な場合は、その部品を回転させる治具
を高精度で部品の真下に設けることが必須の要件
となる。従つて、このような部品に均一に被覆を
施す場合、PVD法はCVD法に比べて遥かにコス
トの高いものになる。
On the other hand, coating with high melting point compounds by PVD method is
Broadly speaking, they can be divided into sputtering methods and ion plating methods, which are further subdivided. According to the PVD method, from about 200℃
Since it is possible to change the coating temperature up to about 800°C depending on the purpose, it has been put into practical use for a variety of purposes. All PVD methods are performed under a vacuum higher than 10 -2 atm, but under these conditions, the metal components necessary to form the high melting point compound coating film are
It scatters only in a certain direction in a vacuum. For this,
In the PVD method, only one side of the substrate can be well coated by any of the above methods. If it is necessary to uniformly coat a cylindrical or cubic part, it is essential that a jig for rotating the part be provided directly below the part with high precision. Therefore, PVD methods are much more expensive than CVD methods for uniformly coating such parts.

本願発明者等は、上述のような観点から、
CVD法およびPVD法の有する種々の問題点を解
決すべく研究を重ねた結果、以下の如き知見を得
た。
From the above-mentioned viewpoint, the inventors of the present application,
As a result of repeated research to solve various problems with CVD and PVD methods, the following findings were obtained.

すなわち、直流放電空間中における反応ガスの
化学反応、すなわちプラスイオン化は、CVD法
におけるそれと比べ、同一温度では極めて活発に
おこる。この理由は、十分に解明されていない
が、反応ガスがプラスイオン化されることによつ
て活性化エネルギーが増大するからであると考え
られる。更に詳しく云うならば、直流放電空間中
での反応ガスの活性化は、陰極の周囲数mmのとこ
ろにできる電位の急激な勾配によつていると考え
られる。すなわち、この急激な電位の勾配により
直流放電空間中でプラスイオン化された反応ガス
が加速され、大きな運動エネルギーをもつて陰極
を衝撃し、これによつて陰極表面に密着性の良好
な被覆物質が固定される。また、前記のプラスイ
オンの衝撃時に一部は陰極スパツタリングを起こ
し、陰極表面から分子や原子をたたき出すが、直
流放電空間中では次々に反応ガスのプラスイオン
が加速され陰極を衝撃する。このように高エネル
ギーのプラスイオンの衝撃が次々に繰り返えされ
る結果、低い温度で、密着性が良好にして耐摩耗
性のすぐれた被覆層の形成が可能になるのであ
る。
That is, the chemical reaction of the reactive gas in the DC discharge space, ie, positive ionization, occurs extremely actively at the same temperature compared to that in the CVD method. Although the reason for this has not been fully elucidated, it is thought that activation energy increases as the reactive gas is positively ionized. More specifically, the activation of the reactive gas in the DC discharge space is thought to be due to the rapid potential gradient created within a few millimeters around the cathode. In other words, this rapid potential gradient accelerates the positively ionized reaction gas in the DC discharge space and impacts the cathode with large kinetic energy, thereby forming a coating material with good adhesion on the cathode surface. Fixed. Further, when the positive ions are bombarded, some of them cause cathode sputtering and knock out molecules and atoms from the cathode surface, but in the DC discharge space, the positive ions of the reaction gas are accelerated one after another and bombard the cathode. As a result of repeated bombardment with high-energy positive ions in this way, it is possible to form a coating layer with good adhesion and excellent abrasion resistance at low temperatures.

この発明は、上記知見に基づきなされたもので
あつて、 内部を1トール超〜10トールに減圧した反応室
またはその内壁を陽極とし、一方この反応室内に
装入した基体を陰極とし、 これら両極間に700V〜5KVの電圧を印加し
て、前記基体の温度を600℃超〜900℃未満に加熱
すると共に、前記基体周囲に直流放電空間を形成
せしめ、 この状態で、前記反応室内に周期律表の4a族金
属の化合物と水素と窒素を主成分とする反応ガス
を送り込み、この反応ガスを上記直流放電空間に
てプラスイオン化し、 陰極とした上記基体の表面を上記プラスイオン
が衝撃することにより密着性および耐摩耗性のす
ぐれた同4a族金属の窒化物からなる被覆層を形成
する方法に特徴を有するものである。
The present invention has been made based on the above knowledge, and the reaction chamber whose interior is depressurized to more than 1 Torr to 10 Torr or its inner wall serves as an anode, while the substrate charged in this reaction chamber serves as a cathode, and both of these electrodes are used as an anode. A voltage of 700V to 5KV is applied between them to heat the substrate to a temperature of more than 600°C to less than 900°C, and a DC discharge space is formed around the substrate. In this state, a periodic law is generated in the reaction chamber. A reaction gas containing a group 4a metal compound listed in the table as well as hydrogen and nitrogen as main components is fed, the reaction gas is positively ionized in the DC discharge space, and the positive ions bombard the surface of the substrate which is used as a cathode. This method is characterized by a method of forming a coating layer made of a nitride of a Group 4a metal, which has excellent adhesion and wear resistance.

つぎに、この発明の方法において、反応室内の
圧力、印加電圧、および基体加熱温度を上記の通
りに限定した理由を説明する。
Next, in the method of this invention, the reason why the pressure in the reaction chamber, the applied voltage, and the substrate heating temperature are limited as described above will be explained.

(a) 反応室内の圧力 その圧力が1トール以下では、実質的に反応室
内を流れる反応ガスが少なすぎて、複雑な形状の
基体表面に微細で緻密な組織を有する被覆層を均
一に形成することができず、一方その圧力が10ト
ールを越えると、基体表面に形成される被覆層は
粗雑な密度の低い組織や柱状組織になり易くな
り、微細にして十分な硬さを有する被覆層の形成
は困難となることから、その圧力を1トール超〜
10トールと定めた。
(a) Pressure inside the reaction chamber If the pressure is less than 1 Torr, the amount of reaction gas flowing inside the reaction chamber is too small to uniformly form a coating layer with a fine and dense structure on the complex-shaped substrate surface. On the other hand, if the pressure exceeds 10 Torr, the coating layer formed on the substrate surface tends to have a rough, low-density structure or a columnar structure, and it is difficult to form a fine coating layer with sufficient hardness. Since formation becomes difficult, the pressure should not exceed 1 Torr.
It was set at 10 torr.

(b) 印加電圧 印加電圧が700V未満では、反応ガスのプラス
イオンによる陰極基体表面の衝撃が不十分なた
め、被覆層は粗く、密度の低い組織となり易く、
微細で、十分な硬さを有する被覆層の形成が困難
となり、一方、印加電圧が5KVを越えると、反応
ガスのプラスイオンによる衝撃や陰極スパツタが
激しくなりすぎて安定した被覆層の形成が困難に
なるばかりでなく、それだけ高出力電源が必要と
なり、設備費が高価になることから、印加電圧を
700V〜5KVに定めた。
(b) Applied voltage If the applied voltage is less than 700V, the cathode substrate surface is not sufficiently impacted by the positive ions of the reaction gas, so the coating layer tends to have a rough and low-density structure.
It becomes difficult to form a fine and sufficiently hard coating layer. On the other hand, if the applied voltage exceeds 5KV, the impact caused by the positive ions of the reaction gas and the cathode spatter become too intense, making it difficult to form a stable coating layer. Not only that, but a high-output power supply is required, which increases equipment costs, so it is necessary to reduce the applied voltage.
It was set at 700V to 5KV.

(c) 基体加熱温度 その温度が600℃以下では、微細で緻密な被覆
層の形成が困難となるばかりでなく、被覆層の基
体表面に対する密着力が低下するようになり、一
方その温度が900℃以上になると、被覆層は柱状
組織を経て大きな塊状の組織になり、かつ基体に
変形や変質が生じるようになることから、その温
度を600℃超〜900℃未満と定めた。
(c) Substrate heating temperature If the temperature is below 600℃, it will not only be difficult to form a fine and dense coating layer, but also the adhesion of the coating layer to the substrate surface will decrease; If the temperature exceeds 600°C, the coating layer changes into a large lumpy structure through a columnar structure, and deformation or alteration occurs in the substrate.

つぎに、この発明の基体表面被覆方法を図面を
参照して具体的に説明する。
Next, the substrate surface coating method of the present invention will be specifically explained with reference to the drawings.

第1図は、例えばTiNの薄膜(被覆層)を基体
表面に被覆する場合の被覆方法を示すフローシー
トであり、第2図は、反応室の断面図である。す
なわち、 例えば金属Ti源としてTiCl4を入れた容器1
が、加熱容器2内に収容されていて、前記容器1
には還元ガスとしてH2ガスが供給されるように
なつていて、発生したTiCl4ガスはN2およびH2
スとともに反応ガスとして反応室3に送られるよ
うになつている。この際、必要に応じてArや
CH4ガスが加えられる。
FIG. 1 is a flow sheet showing a coating method for coating a substrate surface with a thin film (coating layer) of, for example, TiN, and FIG. 2 is a sectional view of a reaction chamber. That is, for example, a container 1 containing TiCl 4 as a metallic Ti source
is housed in a heating container 2, and the container 1
H 2 gas is supplied as a reducing gas, and the generated TiCl 4 gas is sent to the reaction chamber 3 as a reaction gas together with N 2 and H 2 gas. At this time, use Ar or
CH4 gas is added.

前記反応室3内の圧力は、反応室3上部の排ガ
ス口5に接続された真空ポンプ(図示せず)の排
気量と前記反応室3内に流入させる前記反応ガス
量を流量計A,B,C及びDを夫々調節すること
により1トール超〜10トールの適当な値に常に保
たれる。
The pressure inside the reaction chamber 3 is calculated by measuring the exhaust volume of a vacuum pump (not shown) connected to the exhaust gas port 5 at the top of the reaction chamber 3 and the amount of the reaction gas flowing into the reaction chamber 3 using flowmeters A and B. , C and D are constantly maintained at appropriate values of more than 1 Torr to 10 Torr.

前記TiCl4,N2およびH2ガスからなる反応ガス
は、反応室3で直流放電によりプラスイオン化さ
れて活性化され、反応室3内に陰極として装入さ
れた基体4の表面にTiNの被覆層を形成せしめ
る。反応後、反応ガスは前記真空ポンプにより反
応室3の排ガス口5から排出されるが、前記真空
ポンプの直前に設けられたトラツプ(図示せず)
で固形物及び反応ガス中の塩素およびその他の生
成ガスが除去される。しかし、一部は反応ガス中
に残存するので真空ポンプの直後で完全に除去さ
れ大気中に放出されるようになつている。
The reaction gas consisting of TiCl 4 , N 2 and H 2 gas is positively ionized and activated by direct current discharge in the reaction chamber 3, and the surface of the substrate 4 inserted as a cathode in the reaction chamber 3 is coated with TiN. Form a layer. After the reaction, the reaction gas is discharged from the exhaust gas port 5 of the reaction chamber 3 by the vacuum pump, but a trap (not shown) provided just before the vacuum pump
The solids and chlorine and other produced gases in the reaction gas are removed. However, some of it remains in the reaction gas, so it is completely removed immediately after the vacuum pump and released into the atmosphere.

上記反応室3は、第2図に示されるような構造
になつている。
The reaction chamber 3 has a structure as shown in FIG.

すなわち、図中6は真空容器であり、その側部
には窓7が設けられていて、ここから内部の直流
放電状態が自由に観測できるようになつている。
前記真空容器6の上部に設けられた排ガス口5
は、真空ポンプおよびトラツプ(何れも図示せ
ず)に接続されている。8は真空容器6内に設け
られた内壁である。前記内壁8は直流放電の際の
陽極になつていて、内壁8内に装入された基体4
に均一なTiNの被覆層が形成されるように、前記
内壁8は円筒形状に形成されており、その上壁に
はガス流出口10が多数個形成されている。
That is, the reference numeral 6 in the figure is a vacuum container, and a window 7 is provided on the side of the container, through which the internal DC discharge state can be observed freely.
An exhaust gas port 5 provided at the top of the vacuum container 6
is connected to a vacuum pump and trap (both not shown). 8 is an inner wall provided within the vacuum container 6. The inner wall 8 serves as an anode during DC discharge, and the substrate 4 inserted into the inner wall 8
The inner wall 8 is formed into a cylindrical shape so that a uniform TiN coating layer is formed on the inner wall 8, and a plurality of gas outlet ports 10 are formed on the upper wall thereof.

前記内壁8内の基体4は、内壁8内の中央部に
垂直に固定された支柱9に等間隔をあけて水平に
固定されている。前記支柱9は直流放電の際の陰
極になつている。従つて、基体4も陰極となる。
The base bodies 4 within the inner wall 8 are fixed horizontally at equal intervals to columns 9 vertically fixed in the center of the inner wall 8. The pillar 9 serves as a cathode during DC discharge. Therefore, the base body 4 also becomes a cathode.

前記内壁8の底部および支柱9とは夫々絶縁材
10により電気的に絶縁されている。尚、基体4
に均一な被覆層を形成させるには、均一な状態で
内壁8と基体4間に直流放電を行なわしめる必要
があるので、このために内壁8と基体4および支
柱9とは、1cm以上、好ましくは4cm以上隔絶す
る必要がある。
The bottom of the inner wall 8 and the support column 9 are electrically insulated by an insulating material 10, respectively. Furthermore, the base body 4
In order to form a uniform coating layer on the inner wall 8 and the base 4, it is necessary to generate a DC discharge in a uniform state between the inner wall 8, the base 4, and the support 9. must be separated by at least 4 cm.

前記支柱9の下部には、ドーナツ状のガス流出
パイプ11が配されており、ここから、TiCl4
H2,N2からなる反応ガスあるいはArガス等が反
応室3内に均一に噴射されるようになつている。
A doughnut-shaped gas outflow pipe 11 is arranged at the bottom of the support 9, from which TiCl 4 ,
A reaction gas consisting of H 2 and N 2 or Ar gas or the like is uniformly injected into the reaction chamber 3.

反応室3は以上の如く構成されているので、内
壁8と基体4間に700V〜5KVの電圧を印加して
基体4周囲に直流放電空間を形成せしめて、反応
室3内の圧力を1トール超〜10トールに調整しな
がら、これに反応ガスを送り込んでやれば、基体
4の表面には均質かつ均一な膜厚の被覆層が形成
される。反応後の反応ガスは、排ガス口5から真
空ポンプによりトラツプを経て排気される。
Since the reaction chamber 3 is configured as described above, a voltage of 700V to 5KV is applied between the inner wall 8 and the substrate 4 to form a DC discharge space around the substrate 4, and the pressure inside the reaction chamber 3 is reduced to 1 Torr. By feeding the reaction gas into the reactor while adjusting the pressure to ultra-10 torr, a uniform coating layer with a uniform thickness is formed on the surface of the substrate 4. The reaction gas after the reaction is exhausted from the exhaust gas port 5 via a trap by a vacuum pump.

さらに、この発明の基体表面被覆方法を実施例
により具体的に説明する。
Further, the method for coating a substrate surface of the present invention will be specifically explained with reference to Examples.

実施例 1 高さ:45mm、 外径:75mmφ、 内径:12mmφ、 材質:SKD11 からなる環状金型を基体として用意し、これに第
1図および第2図で説明した装置を用い、TiNの
被覆層を以下の手順で形成した。
Example 1 An annular mold made of SKD11 (height: 45 mm, outer diameter: 75 mmφ, inner diameter: 12 mmφ) was prepared as a base, and was coated with TiN using the apparatus described in Figs. 1 and 2. The layers were formed using the following procedure.

まず、金型(基本)を支柱に取付けた後、反応
室内を10-3トールに減圧し、その後、Arガスを
反応室内圧力が6×10-1トールになるようにコン
トロールしながら注入した。そして、金型を陰
極、反応室内壁を陽極にして、2KVの直流電圧を
印加して放電させると共に、金型温度を620℃と
した。つぎにArガスを真空に引いて除いた後、
反応室内の圧力が2トールになるようにガス成分
比TiCl4:H2:N2=1:10:1.1の混合反応ガス
を反応室に注入しながら、40分間反応を続行し
た。この結果、平均厚さ6μの均質なTiNの被覆
層が基体たる金型の表面に均一に形成された。
First, after attaching the mold (basic) to the support, the pressure in the reaction chamber was reduced to 10 -3 Torr, and then Ar gas was injected while controlling the pressure in the reaction chamber to 6 × 10 -1 Torr. Then, using the mold as a cathode and the wall of the reaction chamber as an anode, a DC voltage of 2 KV was applied to cause discharge, and the mold temperature was set at 620°C. Next, after removing the Ar gas by vacuuming it,
The reaction was continued for 40 minutes while a mixed reaction gas having a gas component ratio of TiCl 4 :H 2 :N 2 =1:10:1.1 was injected into the reaction chamber so that the pressure in the reaction chamber was 2 Torr. As a result, a homogeneous TiN coating layer with an average thickness of 6 μm was uniformly formed on the surface of the base mold.

実施例 2 内径:900mmφ×1000mmの反応室の中央部の600
mmφ×600mmの円形空間に、基体としてP10のグ
レードの超硬チツプSNMA432を8000個セツト
し、反応室内を10-3トールに減圧し、その後、
Arガスを反応室圧力が0.1トールになるようにコ
ントロールして注入した。ついで、超硬チツプを
陰極とし、反応室内壁を陽極として、4KVの直流
電圧を30分間印加し直流放電させた。このとき、
超硬チツプの温度は870℃であつた。その後、Ar
ガスを真空に引いて除いた後、反応室内圧力が2
トールとなるように、ガス成分比TiCl4:H2:N2
=1:8:4の混合反応ガスを反応室に注入しな
がら、35分間放電を続けた。この結果、基体たる
超硬チツプ表面には、平均厚さ6μの均質なTiN
の被覆層が形成された。なお、形成された被覆層
の被覆場所によるバラツキは少なく、厚みは±
0.7μ以内におさまつた。さらに、この超硬チツ
プと同一基材で被覆を行なわない比較超硬チツプ
とを用い、被削材:SNCM8(HB230)の合金
鋼、切削初速:150m/min、送り速度:0.3mm/
min、切り込み厚さ:2mmの条件で切削試験を行
なつた。この結果、この発明の方法により被覆を
施した超硬チツプは比較超硬チツプに対して2倍
以上寿命が向上したことが確認された。
Example 2 Inner diameter: 600 mm in the center of a reaction chamber of 900 mmφ x 1000 mm
In a circular space of mmφ x 600 mm, 8000 P10 grade carbide chips SNMA432 were set as a substrate, the pressure inside the reaction chamber was reduced to 10 -3 Torr, and then,
Ar gas was injected while controlling the reaction chamber pressure to be 0.1 Torr. Then, using the carbide chip as a cathode and the wall of the reaction chamber as an anode, a DC voltage of 4 KV was applied for 30 minutes to cause DC discharge. At this time,
The temperature of the carbide chip was 870°C. Then Ar
After the gas is removed by vacuum, the pressure in the reaction chamber is 2.
Gas component ratio TiCl 4 :H 2 :N 2 so that
Discharge was continued for 35 minutes while a mixed reaction gas of 1:8:4 was injected into the reaction chamber. As a result, a homogeneous TiN layer with an average thickness of 6 μm was formed on the surface of the carbide chip.
A coating layer was formed. In addition, there is little variation in the formed coating layer depending on the coating location, and the thickness is ±
It was within 0.7μ. Furthermore, using this carbide chip and a comparison carbide chip made of the same base material but without coating, the work material: SNCM8 (HB230) alloy steel, initial cutting speed: 150 m/min, feed rate: 0.3 mm/min.
A cutting test was conducted under the conditions of min, cut thickness: 2 mm. As a result, it was confirmed that the life of the carbide chips coated by the method of the present invention was more than twice that of the comparative carbide chips.

なお、この発明の方法を実施するに際して、例
えばTiNの被覆層を工具鋼や高速度あるいはWC
基超硬合金の基体の表面に形成する場合には、反
応室内に注入する混合反応ガスをモル比で
TiCl4:H2:N2=1:5〜10:1〜5にコントロ
ールするのが好ましい。この混合反応ガスにおい
て、TiCl4に対してH2を5〜10倍流すのは、
TiCl4を希薄にさせ、塩素の基体への衝撃を柔げ
るとともに、塩素をできるだけ塩素ガスとして存
在させずに塩化水素にするためである。また、
N2ガスのモル比をTiCl4に対して1〜5と多くす
るのは、基体の脱酸を防止するためで、積極的な
意味では基体表面近傍を強い窒素雰囲気にさらし
て部分的な窒化により塩素の基体への衝撃を柔
げ、微細でしかも格子欠陥の少ないTiN被覆層を
形成せしめるためである。なお、N2ガスモル比
を5より多くすると、TiNの被覆層の緻密度およ
び密着力が劣下し、ビツカース硬度で2000Kg/mm2
以上の硬さの被覆層を得ることが困難となるから
である。
Note that when carrying out the method of this invention, for example, the TiN coating layer may be applied to tool steel, high speed or WC.
When forming on the surface of a base cemented carbide, the molar ratio of the mixed reaction gas injected into the reaction chamber is
It is preferable to control TiCl4 : H2 : N2 =1:5 to 10:1 to 5. In this mixed reaction gas, flowing 5 to 10 times more H2 than TiCl4 means that
This is to dilute the TiCl 4 to soften the impact of chlorine on the substrate, and to prevent chlorine from existing as chlorine gas as much as possible and convert it into hydrogen chloride. Also,
The reason why the molar ratio of N 2 gas to TiCl 4 is increased to 1 to 5 is to prevent the substrate from deoxidizing. This is to soften the impact of chlorine on the substrate and form a fine TiN coating layer with fewer lattice defects. In addition, when the N2 gas molar ratio is increased to more than 5, the density and adhesion of the TiN coating layer deteriorates, and the Vickers hardness reaches 2000Kg/ mm2.
This is because it becomes difficult to obtain a coating layer with a hardness higher than that.

また、上記方法では、反応ガスおよび基体に悪
影響をおよぼさないガスを反応室に添加し、予
め、基体温度を昇温させておくこと、および前記
添加ガスの衝撃により基体表面をクリーニング
し、基体と被覆層との密着強度を良くする前処理
が必要となる。
Further, in the above method, a reaction gas and a gas that does not adversely affect the substrate are added to the reaction chamber, the substrate temperature is raised in advance, and the substrate surface is cleaned by the impact of the added gas, Pretreatment is required to improve the adhesion strength between the substrate and the coating layer.

上記実施例は、基体表面にTiNの被覆層を形成
する場合であるが、Ti以外の周期律表の4a族金
属の窒化物からなる被覆層を形成することも勿論
可能である。
In the above embodiment, a coating layer of TiN is formed on the surface of the substrate, but it is of course possible to form a coating layer made of a nitride of a group 4a metal in the periodic table other than Ti.

以上説明したように、この発明の方法によれ
ば、基体が複雑な形状であつても、均質かつ均一
な膜厚の窒化物の被覆層を比較的低温で形成する
ことができるという極めて有用な効果がもたらさ
れる。
As explained above, the method of the present invention is extremely useful in that it is possible to form a nitride coating layer with a homogeneous and uniform thickness at a relatively low temperature even if the substrate has a complicated shape. effect is brought about.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の被覆方法を示すフローシ
ートであり、第2図は、第1図における反応室の
断面図である。図面において、 1……容器、2……加熱容器、3……反応室、
4……基体、5……排ガス口、6……真空容器、
7……窓、8……内壁、9……支柱、10……ガ
ス流出口。
FIG. 1 is a flow sheet showing the coating method of the present invention, and FIG. 2 is a sectional view of the reaction chamber in FIG. 1. In the drawings, 1... Container, 2... Heating container, 3... Reaction chamber,
4... Base body, 5... Exhaust gas port, 6... Vacuum container,
7...window, 8...inner wall, 9...pillar, 10...gas outlet.

Claims (1)

【特許請求の範囲】 1 内部を1トール超〜10トールに減圧した反応
室またはその内壁を陽極とし、一方この反応室内
に装入した基体を陰極とし、 これら両極間に700V〜5KVの電圧を印加し
て、前記基体の温度を600℃超〜900℃未満に加熱
すると共に、前記基体周囲に直流放電空間を形成
せしめ、 この状態で、前記反応室内に周期律表の4a族金
属の化合物と水素と窒素を主成分とする反応ガス
を送り込み、この反応ガスを上記直流放電空間に
てプラスイオン化し、 陰極とした上記基体の表面を上記プラスイオン
が衝撃することにより密着性および耐摩耗性のす
ぐれた同4a族金属の窒化物からなる被覆層を形成
することを特徴とする金属窒化物による基体表面
被覆方法。
[Claims] 1. A reaction chamber whose internal pressure is reduced to more than 1 Torr to 10 Torr or its inner wall is used as an anode, while a substrate placed in this reaction chamber is used as a cathode, and a voltage of 700 V to 5 KV is applied between these two electrodes. A voltage is applied to heat the substrate to a temperature of more than 600°C to less than 900°C, and a DC discharge space is formed around the substrate, and in this state, a compound of a group 4a metal of the periodic table is heated in the reaction chamber. A reactive gas containing hydrogen and nitrogen as main components is fed, and this reactive gas is positively ionized in the DC discharge space, and the positive ions impact the surface of the substrate, which is used as a cathode, to improve adhesion and wear resistance. A method for coating a substrate surface with a metal nitride, the method comprising forming a coating layer made of an excellent nitride of a group 4a metal.
JP7371478A 1978-06-20 1978-06-20 Coating method for base material surface with metallic nitride Granted JPS552715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7371478A JPS552715A (en) 1978-06-20 1978-06-20 Coating method for base material surface with metallic nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7371478A JPS552715A (en) 1978-06-20 1978-06-20 Coating method for base material surface with metallic nitride

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7471984A Division JPS6036665A (en) 1984-04-13 1984-04-13 Method for coating surface of substrate with metallic nitride

Publications (2)

Publication Number Publication Date
JPS552715A JPS552715A (en) 1980-01-10
JPS6224501B2 true JPS6224501B2 (en) 1987-05-28

Family

ID=13526156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7371478A Granted JPS552715A (en) 1978-06-20 1978-06-20 Coating method for base material surface with metallic nitride

Country Status (1)

Country Link
JP (1) JPS552715A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581067A (en) * 1981-06-26 1983-01-06 Toshiba Corp Formation of ornamental metallic nitride film
JPS62180900U (en) * 1986-05-09 1987-11-17
FR2726834B1 (en) * 1994-11-07 1997-07-18 Neuville Stephane METHOD FOR DEPOSITING ON AT LEAST ONE PART A HIGH-HARDNESS PROTECTIVE COATING
FR2726579A1 (en) * 1994-11-07 1996-05-10 Neuville Stephane PROCESS FOR DEPOSITING A PROTECTIVE COATING OF THE PSEUDO CARBON DIAMOND AMORPHOUS TYPE

Also Published As

Publication number Publication date
JPS552715A (en) 1980-01-10

Similar Documents

Publication Publication Date Title
US4401719A (en) Highly hard material coated articles
US8173278B2 (en) Coated body
KR100567983B1 (en) Method for depositing fine-grained alumina coatings on cutting tools
JP2006152424A (en) Hard film, and hard film-coated cutting tool
JP2926439B2 (en) Method for coating a metal substrate with a non-conductive coating material
US5549975A (en) Coated tool and cutting process
JP6311700B2 (en) Hard coating, hard coating covering member, and manufacturing method thereof
JP2001232501A (en) Cutting tool, cutting tip, and manufacturing method for them
JPH0453642B2 (en)
JP4975906B2 (en) Method for producing cutting tool coated with PVD aluminum oxide
JP3480086B2 (en) Hard layer coated cutting tool
CN1028546C (en) Arc-glowing ionized metal infusion process and its equipment
JPS6224501B2 (en)
JPH0356675A (en) Coating of ultrahard alloy base and ultrahard tool manufactured by means of said coating
KR100920725B1 (en) Thin film deposition apparatus, thin film deposition process and coated tool thereof
JPH0118150B2 (en)
JPS61195971A (en) Formation of wear resisting film
JPH07108404A (en) Surface coated cutting tool
JP2012016797A (en) Surface coated cutting tool with hard coating layer excellent in chipping resistance and peeling resistance
JPH03232957A (en) Production of wear resistant member
JPS5913586B2 (en) Method for coating substrate surface with carbide or carbonitride
JP2590349B2 (en) Wear-resistant coating method
JPH0617228A (en) Cutting tool made of gradient hard layer coated sintered hard alloy
JPH07300665A (en) Method for forming boron cementation layer and boron film on metallic base material
WO1993024316A1 (en) Durable surface coatings and coating process