JPS63262125A - Blood pressure measuring method - Google Patents

Blood pressure measuring method

Info

Publication number
JPS63262125A
JPS63262125A JP62098390A JP9839087A JPS63262125A JP S63262125 A JPS63262125 A JP S63262125A JP 62098390 A JP62098390 A JP 62098390A JP 9839087 A JP9839087 A JP 9839087A JP S63262125 A JPS63262125 A JP S63262125A
Authority
JP
Japan
Prior art keywords
light
blood pressure
optical means
pressure
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62098390A
Other languages
Japanese (ja)
Other versions
JP2753829B2 (en
Inventor
腰野 真司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Precision Instruments Inc
Original Assignee
Japan Precision Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Precision Instruments Inc filed Critical Japan Precision Instruments Inc
Priority to JP62098390A priority Critical patent/JP2753829B2/en
Priority to US07/074,204 priority patent/US4821734A/en
Publication of JPS63262125A publication Critical patent/JPS63262125A/en
Application granted granted Critical
Publication of JP2753829B2 publication Critical patent/JP2753829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分計) この発明はノンインベーシブの血圧計であって、主とし
て指又は肢又は尻尾等に装着され、その一部に加圧手段
を加えて、その加圧力と血管内部圧によって変化する血
管直径(体積)を光学手段により検出して血圧を測定す
る方法に関するものである。
Detailed Description of the Invention (Industrial Applicability Meter) The present invention is a non-invasive blood pressure monitor that is mainly attached to a finger, limb, tail, etc. The present invention relates to a method of measuring blood pressure by using optical means to detect a blood vessel diameter (volume) that changes depending on pressure and blood vessel internal pressure.

(従来の技術) 従来、この檻血圧計のように間接的に血圧測定を指等に
おいて行なうことは簡便であると云う埋山で有意義であ
る。例えば(1)、米国特許第4.406289号明細
書においては、サーボバランステクニックを用いている
。一方(2)、他の例では米国特許第4,597,39
3明細書に見られろよ5に、血管とその周囲の組織の弾
力性には直線性があると見做して最低血圧を計算により
推定する方法もある。また(3)、他の例では米国特許
第3,104.6 G 1号、第3,920.004号
及び第4,437,470号の各明細書にみられるよう
に複数のカフやセンサーを用いる方法もあろ〇(発明が
解決しようとする問題点) しかしながら、従来の(1)の場合、装置が大がかりで
あり、また装着や装着時の調整に時間を要し、随時に血
圧を計りたい用途には向かないという問題があった。ま
た、(2)の場合直線性と見做すことによる誤差の他に
1微少な波形の面積を計算することによるデーター量の
増加、そしてそのデーター量を節約しようとした時、発
生する誤差等の問題を持っている。次に、(3)の場合
は装着しなければならないものが2つ以上あるわずられ
しさと、また末梢側の検出器には加圧が誤差となること
があるため加圧は許されず、ざらに又最低血圧の決定に
おいては、それを決定できないか、或は決定論理があい
まいである等の問題があった。
(Prior Art) Conventionally, it is convenient and meaningful to indirectly measure blood pressure using a finger or the like using this cage sphygmomanometer. For example, (1) US Pat. No. 4,406,289 uses a servo balance technique. On the other hand (2), in another example, U.S. Patent No. 4,597,39
3, there is also a method of estimating the diastolic blood pressure by calculation, assuming that the elasticity of blood vessels and surrounding tissue is linear. (3) Other examples include multiple cuffs and sensors, as seen in U.S. Pat. 〇 (Problem to be solved by the invention) However, in the case of conventional method (1), the device is large-scale, it takes time to wear and adjust it, and it is difficult to measure blood pressure at any time. The problem was that it was not suitable for the intended purpose. In the case of (2), in addition to the error caused by assuming linearity, there is also an increase in the amount of data due to calculating the area of a minute waveform, and errors that occur when trying to save the amount of data. have a problem. Next, in the case of (3), it is cumbersome because two or more items must be attached, and pressurization is not allowed for the peripheral detector because pressurization may cause an error. Furthermore, in determining the diastolic blood pressure, there have been problems such as it being impossible to determine it or the decision logic being ambiguous.

したがって、この発明は前記従来技術が持っていた測定
精度や装置の複雑さによる問題点を解決し、簡単な構成
で精度の高い血圧計を提供することである。
Therefore, it is an object of the present invention to solve the problems of measurement accuracy and device complexity that the prior art had, and to provide a highly accurate blood pressure monitor with a simple configuration.

(問題点を解決するための手段) この発明は前記問題点を解決するだめの手段を、実施例
に対応する図面を用いて以下に説明する。
(Means for Solving the Problems) In the present invention, means for solving the above-mentioned problems will be explained below using drawings corresponding to embodiments.

第1の発明は、第2図に示すようにノンインベーシブの
血圧計であって、指Fに装着さnて、そちらの一部を加
圧する加圧手段BとC1この加圧手段に圧力乞供給及び
圧力を減する手段S1加圧力と血管への内部圧によって
変化する血管直径(体積)変化を検出する光学的手段E
a、 Eb及びDa、 Dbから成る血圧計において、
第1図に示す工うに(1)、光学的手段の発光部Ea、
 Ebが複数又は受光部Da、 Dbを複数とする。(
2)、発光(又は受光)素子Ea(又はDa)の1つは
他の発光(又は受光)素子Eb(又はDb)よりも心臓
側に位置するよ5配置する(第2図参照)。(3)、前
記複数の光学的手段は時分割的に動作させる。(4)、
これら光学的手段は遮蔽して外部光を遮断する。
The first invention is a non-invasive blood pressure monitor, as shown in FIG. and a means for reducing pressure S1; an optical means E for detecting changes in blood vessel diameter (volume) that change due to applied force and internal pressure to the blood vessel;
In a blood pressure monitor consisting of a, Eb and Da, Db,
The device shown in FIG. 1 (1), the light emitting part Ea of the optical means,
Eb is plural, or light receiving parts Da and Db are plural. (
2) One of the light emitting (or light receiving) elements Ea (or Da) is positioned closer to the heart than the other light emitting (or light receiving) element Eb (or Db) (see FIG. 2). (3) The plurality of optical means are operated in a time-divisional manner. (4),
These optical means are shielded to block external light.

<5)、i1図に示すように心臓側と末梢側に位i−r
る関係にある2つ以上の光学的手段(E。
<5), i-r on the cardiac side and peripheral side as shown in Figure i1.
Two or more optical means (E.

Da入(FA Db)の出力を比較する手段Cpを有し
、最高血圧は末梢側に位置する光学的手段(Eb。
It has means Cp for comparing the outputs of Da input (FA Db), and the systolic blood pressure is determined by optical means (Eb) located on the peripheral side.

Db)の出力Ssの出現点により決定し、最低血圧は前
記比較手段cpの出力Sdが消失する時点で決定するよ
うにしたものである。
Db), and the diastolic blood pressure is determined at the point at which the output Sd of the comparison means cp disappears.

第2の発明は第1の発明の検出部と全く同じ構成である
が、遮蔽はなく、外部からの光も受光素子Da、 Db
が受ける場合で、第6図に示すように(1)光学的手段
の発光部E^Ebが複数又は受光部D& Dbを複数と
する。(2)発光(又は受光)素子Ea(又はDa)の
1つは他の発光(又は受光)素子Eb(又はDb)より
も心臓側に位i1するよう配置する。(3)前記複数の
光学的手段は第3図に示すよう時分割的に動作させるが
、全ての発光が休止する位相を持つ。(4)前記休止時
の受光信号を蓄電器Ca、 Cb等により記憶させ、発
光時、前記信号から記憶信号を差し引く手段(差動増幅
器ん2、ん、)と、(5)心臓側と末梢側に位置する関
係にある2つ以上の光学的手段(Ea Da)、、 (
Etx Db)の出力を比較する手段cpを有し、最高
血圧は末梢側に位置する光学的手段(Eh、Eb)の出
力Ssの出現点により決定し、最低血圧は前記比較手段
C’pの出力Sdが消失する時点で決定するようにした
ものである。
The second invention has exactly the same configuration as the detection section of the first invention, but there is no shielding and the light receiving elements Da and Db receive light from the outside.
As shown in FIG. 6, (1) the optical means has a plurality of light emitting sections E^Eb or a plurality of light receiving sections D&Db. (2) One of the light emitting (or light receiving) elements Ea (or Da) is arranged so as to be located i1 closer to the heart than the other light emitting (or light receiving) element Eb (or Db). (3) Although the plurality of optical means are operated in a time-divisional manner as shown in FIG. 3, there is a phase in which all light emission is stopped. (4) a means (differential amplifier 2, n) for storing the light reception signal during rest in capacitors Ca, Cb, etc. and subtracting the stored signal from the signal when emitting light; and (5) cardiac side and peripheral side. Two or more optical means (Ea Da) in a relationship located at , (
The systolic blood pressure is determined by the appearance point of the output Ss of the optical means (Eh, Eb) located on the peripheral side, and the diastolic blood pressure is determined by the point of appearance of the output Ss of the optical means (Eh, Eb) located on the peripheral side, and the diastolic blood pressure is determined by the point of appearance of the output Ss of the optical means (Eh, Eb) located on the peripheral side. The determination is made at the time when the output Sd disappears.

第3の発明は第1、第2の発明の追加発明であって、第
7図、第8図に示すように、第1図、第6図における信
号Sa’XSb’のどちらか一方に可変ゲイン増幅器ん
を付加し、先ず最低血圧よりも明らかに小さい圧力値(
例えば30sa H9)に達した時に、両信号Sa’、
Sb’が等しくなるようゲインを制御するよ′う、な閉
ループ制御回路を一時的に作動させるようにし、最低血
圧を精度良く測定できるようにしたものである。
The third invention is an additional invention to the first and second inventions, and as shown in FIGS. 7 and 8, the signal Sa'XSb' in FIGS. 1 and 6 is variable. By adding a gain amplifier, we first obtain a pressure value that is clearly smaller than the diastolic blood pressure (
For example, when reaching 30sa H9), both signals Sa',
A closed loop control circuit is temporarily activated to control the gain so that Sb' becomes equal, and the diastolic blood pressure can be measured with high accuracy.

(作 用) 第1の発明及び第2の発明を以上のように構成すると、
ブラダ−Bを加圧手段Sにより一旦最高血圧よりも高く
加圧し、次に減圧手段SK、J:り除々に減圧すると、
血管体積変化は第4図に示すように、又信号Sa’XS
b’は第5図のように変化する〇 そこで、ブラダ−圧が最高血圧よりも高いときは血管は
閉塞したままで、血流もない(第4図(at参照)。血
流がないので、末梢側の血管体積は変化せず、光Lbに
変化はないが、心臓側の血管体積は変化して光Laが変
化する。
(Function) When the first invention and the second invention are configured as above,
Once the bladder B is pressurized to a level higher than the systolic blood pressure by the pressurizing means S, and then the pressure is gradually reduced by the depressurizing means SK, J:
As shown in Fig. 4, the blood vessel volume change is also expressed by the signal Sa'XS.
b' changes as shown in Figure 5. Therefore, when the bladder pressure is higher than the systolic blood pressure, the blood vessels remain occluded and there is no blood flow (see Figure 4 (at). Since there is no blood flow , the blood vessel volume on the peripheral side does not change and the light Lb does not change, but the blood vessel volume on the heart side changes and the light La changes.

即ち信号Sb1はなく、信号Sa’が発生している(第
5因の左側)。
That is, the signal Sb1 is not present, and the signal Sa' is generated (on the left side of the fifth factor).

ブラダ−王が最高血圧よりも僅か下まわると、内部圧が
外部圧よりも高い期間だけ血管が開き、血流が生ずる(
第4図(bl参照)。こ八により光Lb K変化が現わ
n1信号sb°が発生する(第5図最高血圧点参照)。
When the bladder king drops slightly below the systolic blood pressure, blood vessels open and blood flow occurs only during the period when the internal pressure is higher than the external pressure.
Figure 4 (see bl). Due to this, a change in light LbK appears and an n1 signal sb° is generated (see the systolic blood pressure point in Figure 5).

ブラダ−圧が最低血圧以下になると血管は閉じる期間が
なくなり(第4図(cl参照)、光LaとLbに対する
変化は等しくなり、信号Sa’、Sb’も等しくなる。
When the bladder pressure becomes lower than the diastolic blood pressure, there is no period during which the blood vessel closes (see FIG. 4 (cl)), the changes to the lights La and Lb become equal, and the signals Sa' and Sb' also become equal.

そこで比較手段cpは信号Sa’、Sb’を比較し、そ
の差Sdを出方しているので、最低血圧において出力は
ゼロになる(第5図下段の最低血圧以下照)。
Therefore, the comparison means cp compares the signals Sa' and Sb' and outputs the difference Sd, so that the output becomes zero at the diastolic blood pressure (see below the diastolic blood pressure in the lower part of FIG. 5).

このようにして信号Sblの出現点から最高血圧を、又
Sa’XSb’の差の信号Ssが消失する点から最低血
圧が決定できる。
In this way, the systolic blood pressure can be determined from the point at which the signal Sbl appears, and the diastolic blood pressure can be determined from the point at which the signal Ss representing the difference between Sa'XSb' disappears.

第3の発明は、生体側の原因ばかりでなく機器側の原因
、例えば発光素子のLEDやフォトトランジスタによる
受光素子の感度にばらつきがあるので、最低血圧を決定
するための2つの位置からの波形出方の一致をより完全
に行なわせるためで、予め信号sa1、sblの両信号
が等しくなるようにゲインをコントロールして一時に?
T8mbせしめておくOしたがって最低血圧の精度が良
く測定できる。
The third invention is based on the waveform from two positions for determining the diastolic blood pressure, since there are variations in the sensitivity of light receiving elements such as LEDs of light emitting elements and phototransistors, not only due to biological causes but also due to equipment side. This is to make the output match more completely, and the gain is controlled in advance so that both the signals sa1 and sbl are equal.
Therefore, the diastolic blood pressure can be measured with good accuracy.

(実施例) 第2図は、この発明の検出部の構成を示す一部切欠断面
図で、Fは左半分を断面図で示す人の指で、Aは指F内
の動脈、Bは空気圧を指Fに与えるプラダ−1Cはプラ
ダ−Bの膨張を制限するカフ、Sはプラダ−B内の空気
圧をコントロールする加減圧装置、EalEbは例えば
インフラレッドLED等の発光素子、Da、 Dbは例
えばフォトトランジスタ等の受光素子を示す。図におい
て発光素子Eaと受光素子Daは対向して配置さn1発
光素子Eaの光が指(動脈を含む)を介して到達するよ
うに置かnろ。例えばプラダ−Bが不透明であれば指F
とプラダ−Bの中間に置かれる。しかし若し、プラダ−
Bが透明であればプラダ−Bの内面或いはプラダ−Bと
カフCの中間でも良い。また、発光素子Ebと受光素子
Daも同様に対向して置かれる。しかし、発光素子Ea
と受光素子Daはプラダ−Bの中心よりも心臓側に置か
れ、発光素子Ebと受光素子Dbはプラダ−Bの中心よ
りも末梢側に置かnろ。
(Example) Fig. 2 is a partially cutaway cross-sectional view showing the configuration of the detection unit of the present invention, where F is a human finger whose left half is shown in cross-section, A is an artery in the finger F, and B is an air pressure Prada-1C is a cuff that restricts the expansion of Prada-B, S is a pressurization device that controls the air pressure inside Prada-B, EalEb is a light emitting element such as an InfraRed LED, and Da and Db are e.g. Shows a light receiving element such as a phototransistor. In the figure, the light-emitting element Ea and the light-receiving element Da are arranged facing each other so that the light from the light-emitting element Ea reaches the finger (including the artery). For example, if Prada B is opaque, finger F
It is placed between the Prada B and Prada B. But if Prada
If B is transparent, it may be on the inner surface of Prada B or between Prada B and cuff C. Further, the light emitting element Eb and the light receiving element Da are also placed facing each other. However, the light emitting element Ea
The light-receiving element Da is placed closer to the heart than the center of Prada-B, and the light-emitting element Eb and the light-receiving element Db are placed closer to the periphery than the center of Prada-B.

そして発光素子Eaより出て受光素子Da K達する光
Laは動脈(血管)Aの内部圧に応じた体積変化により
光の逍らねる嫌が変化して受光素子Daに信号を出力す
る。同様に、受光素子Dbからも発光素子Ebより出た
光LbK、J:り動脈体積変化の信号出力が得らnる。
Then, the light La that comes out of the light emitting element Ea and reaches the light receiving element DaK changes the flow rate of the light due to a volume change according to the internal pressure of the artery (blood vessel) A, and outputs a signal to the light receiving element Da. Similarly, from the light receiving element Db, a signal output of the light LbK, J: the arterial volume change emitted from the light emitting element Eb is obtained.

この場合、発光素子及び受光素子に外米光成分を受けろ
と測定に誤差を生じる恐nがある。そこで、この誤差の
生ずるのを避ける方法として第1の発明は外来光を遮断
して光学的手段を保護する。例えば手袋等を着用する。
In this case, if the light emitting element and the light receiving element receive external light components, there is a possibility that an error may occur in the measurement. Therefore, as a method for avoiding the occurrence of this error, the first invention protects the optical means by blocking external light. For example, wear gloves.

次に、第2の発明は外来光を受けても電気的にこれを取
除くようにしたものである。
Next, the second invention is designed to electrically remove external light even if it is received.

先ず、第1の発明について述べる。First, the first invention will be described.

この場合の発光素子Ea、 Ebは二相クロックにより
発光時間が重ならないように交互に発光させる。また、
受光素子Dh Dbは発光のクロックに同期してスイッ
チされ、それぞn対向した発光素子Ea、 Ebの光L
a、 Lbの光のみの受光信号を受光する。なお、これ
ら発光の点滅周波数は正しい脈波波形を再現するために
予想される最大脈拍数レートの60倍以上が採用されろ
In this case, the light emitting elements Ea and Eb are caused to emit light alternately using a two-phase clock so that their light emitting times do not overlap. Also,
The light receiving elements Dh and Db are switched in synchronization with the light emission clock, and the light L of the light emitting elements Ea and Eb facing each other is switched.
Receives the light reception signal of only the light of a and Lb. Note that the blinking frequency of these lights should be at least 60 times the expected maximum pulse rate in order to reproduce the correct pulse waveform.

次に、その操作を第1図の回路図により説明する。Next, the operation will be explained using the circuit diagram shown in FIG.

先ず、位相P、においてはスイッチSW、、 w介して
発光素子Eaが発光し、受光素子Daは外来光から遮断
されているので、発光素子Eaからの光Laのみを受光
する。これは電圧信号に置き換えらn1増幅器A、にて
増幅されて信号Saとなる。
First, in phase P, the light emitting element Ea emits light via the switches SW, , w, and the light receiving element Da is shielded from external light, so it receives only the light La from the light emitting element Ea. This is replaced with a voltage signal and amplified by the n1 amplifier A to become a signal Sa.

次に、位相P、においては前記と同様発光素子Ebが発
光し、受光素子Dbは光Lbを受光し、電圧信号sbと
なる。これらの信号電圧Sa、 Sbは検波器D+、D
zにより検波される。即ちキャリアであるクロック成分
が除去されて血管の体ff変化に応じた信号Sa’、 
Sb’を得ろ。そして比較器cpにより信号Sa1、S
b1は比較さn1七〇差Sdを出力する◎そこで両者の
波形と振幅が一致しているときは出方はゼロとなる。
Next, in phase P, the light emitting element Eb emits light as described above, and the light receiving element Db receives light Lb, resulting in a voltage signal sb. These signal voltages Sa and Sb are detected by the detectors D+ and D.
The wave is detected by z. That is, the clock component which is the carrier is removed and the signal Sa' corresponding to the change in the body ff of the blood vessel is obtained.
Obtain Sb'. Then, comparator cp causes signals Sa1, S
b1 is compared and outputs n1 70 difference Sd ◎Then, when both waveforms and amplitudes match, the output will be zero.

以上のような構成において、最高血圧(SY−3TOI
JC)、 fi 低m E (DIASTOLIC)が
とノヨ’+Ic決定されるかを第4図、第5図に基づい
て説明する。
In the above configuration, the systolic blood pressure (SY-3TOI
JC), fi low m E (DIASTOLIC) is determined as Noyo'+Ic will be explained based on FIGS. 4 and 5.

先ず、プラダ−Bは加圧手段Sにより一旦最高血圧より
も高く加圧さnる。次に、減圧手段SKより除々匝減圧
されるが、この時血管体積変化は第4図(a)、(bl
、(clのよ5に、又信号sa’、sb’は第5図のよ
うに変化する。即ち、プラダ−圧が最高血圧よりも高い
ときは血管は閉塞したままであり、血流もない(第4図
(at参照)oしたがって、血流がないので、末梢側の
血管体積は変化せず、光Lbに対する変化はないが、心
臓側の血管体積は変化して光Laが変化する。即ち、信
号sb1はなく、信号SaIが発生じ℃いる(第5図の
左側参照)0そしてプラダ−王が最高血圧よりも僅か下
まわると、内部圧が外部圧工りも高い期間だけ血管は開
き、血流が生ずる(第4図(b)参照)0これにより光
Lbに対する変化が現われ、信号sb+が発生する(第
5図5YSTOLIC参照)。
First, Prada B is once pressurized to a level higher than the systolic blood pressure by the pressurizing means S. Next, the pressure is gradually reduced by the pressure reducing means SK, but at this time the blood vessel volume changes as shown in Figs.
, (cl), and the signals sa' and sb' change as shown in Figure 5. That is, when the Prader pressure is higher than the systolic blood pressure, the blood vessel remains occluded and there is no blood flow. (See FIG. 4 (at)) Therefore, since there is no blood flow, the blood vessel volume on the peripheral side does not change and there is no change with respect to the light Lb, but the blood vessel volume on the heart side changes and the light La changes. That is, there is no signal sb1, and a signal SaI is generated (see the left side of Figure 5).0 And when King Prada's blood pressure falls slightly below the systolic blood pressure, the blood vessels are closed only during the period when the internal pressure is high and the external pressure is also high. It opens and blood flow occurs (see FIG. 4(b)). This causes a change to the light Lb, and a signal sb+ is generated (see FIG. 5, 5YSTOLIC).

次にプラダ−圧が最低血圧以下になると血管は閉じる期
間がなくなり(第4図(c)参照)、光LaとLbに対
する変化は等しくなる0つまり信号Sa’、Sb’も等
しくなる。したがって比較器cpは信号Sa’、sb’
を比較し、その差Sdを出力しているので、最低血圧に
お(・て出力バー!!’ Oトfx ル(第5図下& 
DIASTOLIC参照)。
Next, when the Prader pressure becomes lower than the diastolic blood pressure, the blood vessels no longer have a closing period (see FIG. 4(c)), and the changes in the lights La and Lb become equal to 0, that is, the signals Sa' and Sb' also become equal. Therefore, comparator cp receives signals Sa', sb'
Since the difference Sd is outputted, the diastolic blood pressure is determined by the output bar!!'
(see DIASTOLIC).

このようにして信号Sb1の出現点から最高血圧を、ま
た信号Sa’XSb’の差の信号Sdが消失する点から
最低血圧を決定することができる。
In this way, the systolic blood pressure can be determined from the point at which the signal Sb1 appears, and the diastolic blood pressure can be determined from the point at which the difference signal Sd between the signals Sa'XSb' disappears.

次に、第2の発明について説明する。Next, the second invention will be explained.

第2図の検出部は第1の発明と全く同じ構成で、その外
部は遮蔽さねでいないO従って外部からの光を受光素子
D^Dbも受ける0その場合の発光素子Ea、 Ebは
多相クロックにより発光時間が重ならないように発光さ
せる。
The detection section in FIG. 2 has exactly the same configuration as the first invention, and the outside thereof is not shielded. Therefore, the light receiving element D^Db also receives light from the outside. In that case, the light emitting elements Ea and Eb are multi-layered. To emit light using a phase clock so that the light emitting times do not overlap.

また受光素子Da、 Dbは発光のクロックに同期して
スイッチされる。そして第3図に示すように位相P、で
は発光索子Eaが発光し、位相P。
Further, the light receiving elements Da and Db are switched in synchronization with the light emission clock. As shown in FIG. 3, in phase P, the light-emitting strand Ea emits light;

では発光素子Ebが発光し、位相P、ではどちらも発光
しない0これら発光の点滅周波数は正しい脈波波形を再
現するために予想される最大脈拍数レートの60倍以上
が採用される。
In phase P, the light emitting element Eb emits light, and in phase P, neither emits light.The blinking frequency of these light emissions is set at 60 times or more the expected maximum pulse rate in order to reproduce the correct pulse waveform.

なお発光素子Ea、 Ebの両方が発光しない位相Ps
においては受光素子Da、 Dbは外部光Lcを受光す
る。即ち周囲の光(電灯照明や太陽光)は指Fを照明し
、カフCの両端においては、光は指Fの組織により散乱
し、受光素子Da。
Note that there is a phase Ps in which both light emitting elements Ea and Eb do not emit light.
, the light receiving elements Da and Db receive external light Lc. That is, ambient light (electric lighting or sunlight) illuminates the finger F, and at both ends of the cuff C, the light is scattered by the tissue of the finger F, and the light receiving element Da.

Dbに到着する。これをLcとする。Arrive at Db. Let this be Lc.

次に、その操作を第6図により説明する。Next, the operation will be explained with reference to FIG.

受光素子Da Kより得ら扛る信号は増幅器A。The signal obtained from the light receiving element DaK is sent to the amplifier A.

にて増幅され、スイッチ5w1tを介して差動増幅器A
a+に導かれる。この場合、スイッチ溝い遭tと差動増
幅器A、1の動作を説明すると、位相PIにおいてはス
イッチ溝、を介して発光素子Eaが発光する。受光素子
Daは発光素子Eaからの光Laを受光するが、同時に
外来光Lcをも受光する◇即ち位相P、においては光L
a−+−Lc ’に受光する。こnは電圧信号に置き換
えらn1増幅器A1にて増幅されて、信号Sa+Scと
なる。
is amplified by the differential amplifier A via the switch 5w1t.
Guided by a+. In this case, the operation of the switch groove t and the differential amplifier A, 1 will be explained. In phase PI, the light emitting element Ea emits light via the switch groove. The light receiving element Da receives the light La from the light emitting element Ea, but at the same time it also receives the external light Lc ◇ That is, at phase P, the light L
It receives light at a-+-Lc'. This n is replaced with a voltage signal and amplified by the n1 amplifier A1, resulting in a signal Sa+Sc.

次に、位相P、においては、前記と同様、発光素子Eb
が発光し、受光素子Dbは光Lb−1(、cを受光し電
圧信号Sb + Scとなる。さらに位相P、において
は前述のように光Lcのみを受光するが、このときの信
号Scはスイッチ溝いs′w32により2つの差動増幅
器A87、ん2の非反転入力側にそnそれ接続される。
Next, in the phase P, the light emitting element Eb
emits light, and the light-receiving element Db receives the light Lb-1 (, c, resulting in a voltage signal Sb + Sc.Furthermore, at phase P, only the light Lc is received as described above, but the signal Sc at this time is It is connected to the non-inverting input side of two differential amplifiers A87 and 2 by the switch groove s'w32.

しかし、非反転入力端子にはキャパシターCa 、 C
bが接続されているので、この時の信号電圧は位相P、
を終了した後にも非反転入力側に保持される。
However, the capacitors Ca and C are connected to the non-inverting input terminal.
b is connected, the signal voltage at this time is phase P,
It is held on the non-inverting input side even after completing the process.

また、位相PIにおいては信号Sa + Scは差動増
幅器As+の反転入力側に、スイッチ歴8.により接続
され、したがって差動増幅器A31 は両入力の差、即
ち5c−(Sa +5c)=−8aの信号を出力する◇
同様に、位相P、においても差動増幅器Aa鵞は5c−
(Sb + 5c)−−8bの信号を出力する。
Moreover, in phase PI, the signal Sa + Sc is connected to the inverting input side of the differential amplifier As+, and the switch history 8. Therefore, the differential amplifier A31 outputs a signal of the difference between both inputs, that is, 5c - (Sa + 5c) = -8a
Similarly, in phase P, the differential amplifier Aa is 5c-
(Sb+5c)--8b signal is output.

このように差動増幅器A□、ん、の出力には外来光によ
る信号Scの除去された信号成分のみが出力される。次
に、この信号電圧Sa、 Sbは検波器D1、Dtによ
り検波される。即ちキャリアであるクロック成分が除去
されて血管の体積変化に応じた信号Sa’、Sb’を得
る。以上は第1の発明と同じ比較器cpにより信号Ba
 118b1が比較さnその差Sdを出力する。そこで
両者の波形と振幅が一致しているときは出力はゼロとな
る。
In this way, only the signal component from which the signal Sc due to external light has been removed is output from the differential amplifiers A□, N,. Next, these signal voltages Sa and Sb are detected by detectors D1 and Dt. That is, the clock component, which is a carrier, is removed to obtain signals Sa' and Sb' corresponding to changes in blood vessel volume. The above is based on the signal Ba using the same comparator cp as in the first invention.
118b1 compares n and outputs the difference Sd. Therefore, when both waveforms and amplitudes match, the output becomes zero.

以上のような構成において、最高血圧(SY−3TOL
IC)、 fi 低面EE (DIASTOLIC)が
ト17)J:5に決定されるかは、第1の発明の際と全
く同じであるので、説明は省略する。
In the above configuration, the systolic blood pressure (SY-3TOL
IC), fi low surface EE (DIASTOLIC) is determined to 17) J:5 is exactly the same as in the first invention, so the explanation will be omitted.

以上の方法によれば、最低血圧を精度良(測定できるが
、例えば素子のばらつき、生体側の原因等により最低血
圧を決定するための2つの位置からの波形出力の一致を
より完全に行なわせろための改良を次に述べる。
According to the above method, the diastolic blood pressure can be measured with high accuracy, but due to, for example, variations in the elements, causes on the biological side, etc., it is necessary to more completely match the waveform outputs from the two positions to determine the diastolic blood pressure. The improvements for this purpose are described below.

第7図はその回路図、第8図はその動作説明図である。FIG. 7 is a circuit diagram thereof, and FIG. 8 is an explanatory diagram of its operation.

図において信号Sa’、Sb’は第1図に示した血管の
体積変化に応じた夫々の信号で、その何れかの信号の1
つを可変ゲイン増幅器んを通してから、第1図の比較回
路Cpに入力する。次に、両信号が等しくなろよ5に、
可変ゲイン増幅器尤のゲインを制御する。
In the figure, the signals Sa' and Sb' are the respective signals corresponding to the volume change of the blood vessel shown in Figure 1, and one of the signals
After passing through a variable gain amplifier, the signal is input to the comparator circuit Cp shown in FIG. Next, both signals should be equal.
Control the gain of a variable gain amplifier.

即ち、比較器Cpからの出力を増幅器んを介して可変ゲ
イン増幅器んに接続される閉ループコントロールを一時
的に作動させる。
That is, a closed loop control is temporarily activated in which the output from the comparator Cp is connected to a variable gain amplifier via an amplifier.

それは、第8図に示す工うに加減圧過程の加圧の初まり
において最低血圧よりも明らかに小さい圧力値Pc(例
えば30va Hf )に達したどきに行なう。この時
には加圧をt時間停止して圧力を一定に保つ。
This is done at the beginning of the pressurization process in the process shown in FIG. 8, when a pressure value Pc (for example, 30 va Hf) which is clearly smaller than the diastolic blood pressure is reached. At this time, pressurization is stopped for t time to keep the pressure constant.

その理由は、最低血圧以下では信号Sa 118blに
等しくなければならない◇即ち比較回路Cpの出力はゼ
ロであらねばならない。しかし、若し、信号Sa’、S
b’が等しくないならば比較回路Cpの出力はゼロでは
ない。ゼロでなげ3ifその比較回路Cpの出力を可変
ゲイン増幅器九に加え、ゲインを制御し比較回路Cp。
The reason is that below the diastolic blood pressure, the signal Sa must be equal to 118bl, ◇ that is, the output of the comparator circuit Cp must be zero. However, if the signals Sa', S
If b' are not equal, the output of the comparator Cp is not zero. If the output of the comparator circuit Cp is zero, the output of the comparator circuit Cp is added to the variable gain amplifier 9 to control the gain and the comparator circuit Cp.

の出力がゼロになるようにコントロールする。Control the output so that it becomes zero.

このコントロール値は測定が終了されるまで例えば蓄・
電器CCに蓄えられて保持されろ0そして保持が行なわ
れ次第、再び加圧が行なわれ、最高血圧より高く加圧さ
nてから上述したように測定が開始さnる。なお、この
可変ゲイン増幅器は、例えば増幅器のゲインを決める抵
抗をスイッチにより選択するような方法でもよい。又そ
のスイッチをデジタル信号でコントロールすることもで
きる。この方法は生体側の原因ばかりでなく、機器側の
原因、例えばLEDやフォトトランジスタの感度のばら
つき等も吸収する。
This control value is stored, for example, until the measurement is finished.
As soon as the pressure is stored and held in the electric device CC, the pressure is increased again, and the measurement is started as described above after the pressure is increased to a level higher than the systolic blood pressure. Note that this variable gain amplifier may be constructed, for example, by using a switch to select a resistor that determines the gain of the amplifier. Moreover, the switch can also be controlled by a digital signal. This method absorbs not only causes on the biological side but also causes on the equipment side, such as variations in sensitivity of LEDs and phototransistors.

この2組の光学系の出力の低い圧力での一致を見るとい
う思想は、他の手段でも実現できる。その例を次に述べ
る。
This idea of matching the outputs of the two sets of optical systems at low pressures can also be realized by other means. An example of this is given below.

そnは、第9図に示すように、アナログ手段の一部をデ
ジタル手段に置きかえることである。即ち光学手段につ
いては第1図、第6図で述べたものと同じであるが、差
動増幅器As1、ん宏、検波回路り7、D2、比較回路
cpを持っていない。これらの機能はデジタル的に行な
われろ0 即ち、2組の光学手段の各出力は、何れもルの変換器C
tにて変換さn1デジタル量としてメモリMに記憶され
る。勿論、位相P3における発光素子が発光していない
時の出力も、別に記憶さnる。又差動増幅器んI 、A
32の役割りは外部光の影響の除去であり、これは位相
P、における信号から、位相P、における信号を減算す
ることである。同様に位相P、についても同じであり、
各信号はデジタル量で記憶さnているので、中央処理装
置CPUによりデジタル的減算で容易に目的を達成でき
る。次に、検波回路り0、D2の役割りは脈波の周波数
成分の抽出である。即ちクロック成分(キャリアー)の
除去である。したがってルの変換器はクロックと同期し
て行なわせる事ができるので、クロック成分は自動的に
除去される。さらに、比較回路Cpも又デジタル的に行
なうことができる。
The second step is to replace some of the analog means with digital means, as shown in FIG. That is, the optical means are the same as those described in FIG. 1 and FIG. 6, but the differential amplifier As1, the differential amplifier As1, the detection circuit 7, D2, and the comparison circuit CP are not provided. These functions are performed digitally, i.e. each output of the two sets of optical means is connected to a transducer C.
t and stored in the memory M as n1 digital quantities. Of course, the output when the light emitting element is not emitting light in phase P3 is also stored separately. Also, differential amplifier I, A
The role of 32 is to remove the influence of external light, which is to subtract the signal at phase P from the signal at phase P. Similarly, the same is true for phase P,
Since each signal is stored as a digital quantity, the purpose can be easily achieved by digital subtraction by the central processing unit CPU. Next, the role of the detection circuits 0 and D2 is to extract the frequency component of the pulse wave. That is, the clock component (carrier) is removed. Therefore, since the converter can be made to operate synchronously with the clock, the clock component is automatically removed. Furthermore, the comparison circuit Cp can also be implemented digitally.

この方法はい(つかのアナログ部品を省略できるが、多
くのメモリ素子を必要とする。
This method (some analog components can be omitted, but requires many memory devices).

なお、本発明は人体の指だけでなく、動物の手足や尻尾
にも適用できることは当然である。
It goes without saying that the present invention can be applied not only to human fingers but also to animal limbs and tails.

(発明の効果) 従来の光学系が1組のものでは、最低血圧求めることが
難かしいため最高血圧の慣に平均血圧を求めていた。そ
して平均血圧をより正しく求めるために光学手段は中央
附近に置(しかなかった。しかしこのことは本発明にお
ける血管の体積変化に応じた信号Sa“、Sb“の中間
の信号を得ることになり、明らかに最高血圧は実際より
高く測定される。又2組の光学手段の距離が短かいので
血管や皮質の物理的特性の差異が少な(、位相差も少な
い。
(Effects of the Invention) Since it is difficult to determine the diastolic blood pressure with one set of conventional optical systems, the average blood pressure has been determined in addition to the systolic blood pressure. In order to obtain the average blood pressure more accurately, the optical means was placed near the center. However, this resulted in obtaining a signal between the signals Sa" and Sb" according to the volume change of the blood vessel in the present invention. , the systolic blood pressure is clearly measured higher than the actual one. Also, since the distance between the two sets of optical means is short, there is little difference in the physical properties of the blood vessels and cortex (and the phase difference is also small).

また、両光学系には同一の圧力が印加さnるので、最低
血圧における出力の一致は精度が高い。さらに時分割的
発光は消費電力低減にに効果があるが、両発光素子を発
光させない位相P、を設ける事と、この時間を長くする
事はその効果をさらに高める。
Furthermore, since the same pressure is applied to both optical systems, the outputs at the diastolic blood pressure match with high precision. Furthermore, time-divisional light emission is effective in reducing power consumption, but providing a phase P in which both light emitting elements do not emit light and lengthening this time further enhance this effect.

以上詳細に説明したように、1組の光学手段を加圧部中
央に設けた方法に比べ、最高血圧’if度よく測定でき
る上、2組の光学手段の距離が短かいので、離れた個所
にセンサーを置く方法に比べ、高精度に最低血圧を測定
することができる。さらに時分割点灯により、外来光の
除去、2組の光学手段の相互干渉除去、低消費電力化を
同時に行な5効来がある。
As explained in detail above, compared to the method in which one set of optical means is provided in the center of the pressurizing part, the systolic blood pressure can be measured better, and since the distance between the two sets of optical means is short, It is possible to measure diastolic blood pressure with higher accuracy compared to the method of placing a sensor on the wall. Furthermore, time-division lighting has five effects: removing extraneous light, removing mutual interference between two sets of optical means, and reducing power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不発明の一実施例を示す血圧測定法による信号
処理回路図、第2図は不発明の検出部における構成の一
部切欠@面図、第3図は発光素子における発光点滅の位
相関係を示す図、第4図、第5図は最高及び最低血圧を
決定する血管及び血流の説明図、第6図は本発明の他の
実施例を示す信号処理回路図、第7図は本発明の改良の
ための一部付加回路図、第8図はその動作説明図、第9
図は本発明の別の実施例を示す信号処理回路図である。 Ea、 Eb・・・発光素子、Da、Db・・・受光素
子、ん、ん、A5・・・増幅器、んいAs、・・・差動
増幅器、Dい込・・・検波器、Cp・・・比較器、A・
・・動脈、B・・・プラダ−1C・・・カフ、F・・・
指、S・・・加減圧装置、ん・・・可変ゲイン増幅器、
C1・・・ル■変換器、M・・・メモリ、CPU・・・
中央処理装置。 特許出願人  日本精密測器株式会社 本flに称ろA官号尺理回刻H4 第1因 R、La  Q−丁に− pl、Lb  Wヒ @J図 第5図 La   lb 血ずつ劾イド叛im+21 第4図 改丸り行加田井口 動作説明図 第ε口
Fig. 1 is a signal processing circuit diagram according to a blood pressure measurement method showing an embodiment of the invention, Fig. 2 is a partially cutaway @ side view of the configuration of the detection unit of the invention, and Fig. 3 is a diagram of blinking light emitted from a light emitting element. 4 and 5 are illustrations of blood vessels and blood flow that determine the systolic and diastolic blood pressures. FIG. 6 is a signal processing circuit diagram showing another embodiment of the present invention. FIG. 7 8 is a partially added circuit diagram for improving the present invention, FIG. 8 is an explanatory diagram of its operation, and FIG.
The figure is a signal processing circuit diagram showing another embodiment of the present invention. Ea, Eb... Light emitting element, Da, Db... Light receiving element, A5... Amplifier, N As,... Differential amplifier, D Insertion... Detector, Cp.・Comparator, A・
...Artery, B...Prada-1C...Cuff, F...
Finger, S... Pressure regulator, Hm... Variable gain amplifier,
C1... Le ■Converter, M... Memory, CPU...
Central processing unit. Patent Applicant Japan Precision Instruments Co., Ltd. Title A Government Name Shaku Rinku H4 1st Cause R, La Q-To-pl, Lb W Hi@J Figure 5 La lb Bloody Blood Rebellion im+21 Figure 4 Kaimaru line Kata Iguchi movement explanation diagram ε mouth

Claims (3)

【特許請求の範囲】[Claims] (1)ノンインベーシブの血圧計であって、指、肢又は
尻尾等に装着され、それらの一部を加圧する手段と、こ
の加圧手段の圧力を加減圧する手段と、その加圧力と血
管内部圧によって変化する血管直径又は体積変化を検出
する光学的手段からなる血圧計において、 光学的手段の発光部又は受光部の少なくと も一方は複数個の素子を有し、これら複数の光学的手段
は外部からの光が遮断されて時分割的に交互に動作し、
かつ発光又は受光素子の1つは他の発光又は受光素子よ
りも心臓側に位置するように配置して、末梢側に位置す
る光学的手段の出力により最高血圧を決定し、一方、心
臓側と末梢側に位置する関係にある2つ以上の光学的手
段の各出力を比較し、その比較手段の出力により最低血
圧を決定するようにしたことを特徴とする血圧測定法。
(1) A non-invasive blood pressure monitor that is attached to a finger, limb, tail, etc., and includes a means for pressurizing a part thereof, a means for increasing and decreasing the pressure of this pressurizing means, and the pressurizing force and the inside of a blood vessel. In a sphygmomanometer comprising optical means for detecting changes in blood vessel diameter or volume that vary with pressure, at least one of the light emitting part or the light receiving part of the optical means has a plurality of elements, and these plural optical means are connected to an external The light from the
One of the light-emitting or light-receiving elements is arranged so as to be located closer to the heart than the other light-emitting or light-receiving element, and the systolic blood pressure is determined by the output of the optical means located on the peripheral side; A blood pressure measurement method characterized in that the outputs of two or more peripherally located optical means are compared, and the diastolic blood pressure is determined based on the output of the comparison means.
(2)ノンインベーシブの血圧計であって、指、肢又は
、尻尾等に装着され、それらの一部を加圧する手段と、
この加圧手段の圧力を加減圧する手段と、その加圧力と
血管内部圧によって変化する血管直径又は体積変化を、
検出する光学的手段からなる血圧計において、光学的手
段の発光部又は受光部の少なくと も一方は複数個の素子を有し、これら複数の光学的手段
は時分割的に動作し、かつ全ての発光が休止する位相を
持ち、さらに休止時の受光信号を記憶する手段と発光時
、信号から前記記憶信号を差し引く手段を設け、その上
発光又は受光素子の1つは他の発光又は受光素子よりも
心臓側に位置するように配置して末梢側に位置する光学
的手段の出力により最高血圧を決定し、一方心臓側と末
梢側に位置する関係にある2つ以上の光学的手段の各出
力を比較し、その比較手段の出力により最低血圧を決定
するようにしたことを特徴とする血圧測定法。
(2) A non-invasive blood pressure monitor, which is attached to a finger, limb, tail, etc., and means for pressurizing a part thereof;
A means for increasing and decreasing the pressure of this pressurizing means, and a change in blood vessel diameter or volume that changes depending on the pressurizing force and the internal blood vessel pressure.
In a blood pressure monitor consisting of an optical means for detection, at least one of the light emitting part and the light receiving part of the optical means has a plurality of elements, and these plurality of optical means operate in a time division manner, and all the light emitted has a phase in which the light-emitting or light-receiving element is at rest, and further includes means for storing the light-receiving signal at rest and means for subtracting the stored signal from the signal when emitting light; Systolic blood pressure is determined by the output of an optical means disposed on the heart side and disposed on the peripheral side, while each output of two or more optical means located on the heart side and the peripheral side is determined. A blood pressure measuring method characterized in that the diastolic blood pressure is determined based on the output of the comparing means.
(3)ノンインベーシブの血圧計であって指、肢又は尻
尾等に装着され、それらの一部を加圧する手段と、この
加圧手段の圧力を加減する手段と、その加圧力と血管内
部圧によって変化する血管直径又は体積変化を検出する
光学的手段からなる血圧計において、光学的手段の発光
部又は受光部の少なくとも一方は複数個の素子を有し、
これら複数の光学的手段は外部からの光を遮断若くは受
光に関係なくかつ、発光又は受光素子の1つは他の発光
又は受光素子よりも心臓側に位置するよう配置して末梢
側に位置する光学的手段の出力により最高血圧を決定し
、一方心臓側と末梢側に位置する関係にある2つ以上の
光学的手段の各出力を比較し、その比較手段の出力によ
り最低血圧を決定する血圧測定法において、 前記複数の光学的手段からの信号を処理す る過程で、そのいずれか1つ以上の信号に対しゲインを
可変できる増幅器を付加し、加減圧過程の加圧の初まり
において、大多数の人の最低血圧より低い圧力で加圧を
停止し、その圧力をほぼ一定に保持した状態で、2つ以
上の光学的手段の出力が等しくなるよう前記可変ゲイン
増幅器のゲインを制御して最低血圧を測定することを特
徴とする血圧測定法。
(3) A non-invasive blood pressure monitor that is attached to a finger, limb, tail, etc., and includes a means for pressurizing a part of the blood pressure monitor, a means for adjusting the pressure of this pressurizing means, and a means for controlling the pressurizing force and internal blood vessel pressure. In a blood pressure monitor comprising an optical means for detecting a changing blood vessel diameter or volume change, at least one of the light emitting part or the light receiving part of the optical means has a plurality of elements,
These plurality of optical means block external light or are not related to light reception, and are located on the peripheral side so that one of the light emitting or light receiving elements is located closer to the heart than the other light emitting or light receiving elements. The systolic blood pressure is determined by the output of the optical means that performs the calculation, and the outputs of two or more optical means located on the cardiac side and the peripheral side are compared, and the diastolic blood pressure is determined from the output of the comparing means. In the blood pressure measurement method, in the process of processing the signals from the plurality of optical means, an amplifier whose gain can be varied for any one or more of the signals is added, and at the beginning of pressurization in the pressurization process, Stop pressurization at a pressure lower than the diastolic blood pressure of the majority of people, and control the gain of the variable gain amplifier so that the outputs of the two or more optical means are equal while the pressure is maintained approximately constant. A blood pressure measurement method characterized by measuring the diastolic blood pressure.
JP62098390A 1987-04-21 1987-04-21 Blood pressure measurement device Expired - Fee Related JP2753829B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62098390A JP2753829B2 (en) 1987-04-21 1987-04-21 Blood pressure measurement device
US07/074,204 US4821734A (en) 1987-04-21 1987-07-16 Sphygmomanometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62098390A JP2753829B2 (en) 1987-04-21 1987-04-21 Blood pressure measurement device

Publications (2)

Publication Number Publication Date
JPS63262125A true JPS63262125A (en) 1988-10-28
JP2753829B2 JP2753829B2 (en) 1998-05-20

Family

ID=14218521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62098390A Expired - Fee Related JP2753829B2 (en) 1987-04-21 1987-04-21 Blood pressure measurement device

Country Status (1)

Country Link
JP (1) JP2753829B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165886A (en) * 2014-02-13 2015-09-24 日本電気株式会社 Blood pressure estimation device, blood pressure estimation method, blood pressure estimation program, and blood pressure measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101949346B1 (en) * 2018-01-31 2019-02-18 (주)오비이랩 Method, system and non-transitory computer-readable recording medium for controlling a monitoring device including a plurality of sources and detectors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586442A (en) * 1978-12-22 1980-06-30 Ueda Electronic Works Indirect yonometer
JPS61199832A (en) * 1985-03-04 1986-09-04 アイシン精機株式会社 Pulse signal detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586442A (en) * 1978-12-22 1980-06-30 Ueda Electronic Works Indirect yonometer
JPS61199832A (en) * 1985-03-04 1986-09-04 アイシン精機株式会社 Pulse signal detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165886A (en) * 2014-02-13 2015-09-24 日本電気株式会社 Blood pressure estimation device, blood pressure estimation method, blood pressure estimation program, and blood pressure measuring device
US10194811B2 (en) 2014-02-13 2019-02-05 Nec Corporation Blood pressure measurement device, blood pressure measurement method, and non-transitory recording medium

Also Published As

Publication number Publication date
JP2753829B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
US4821734A (en) Sphygmomanometer
US6355000B1 (en) Superior-and-inferior-limb blood-pressure index measuring apparatus
US5882311A (en) Calibration for blood pressure pulses
US7497831B2 (en) Blood pressure measuring system and method
KR100867283B1 (en) Arterial-pulse-wave detecting apparatus
US20030109789A1 (en) Inferior-and-superior-limb blood-pressure-index measuring apparatus
EP3773157B1 (en) Apparatus for use with a wearable cuff
CN112426141B (en) Blood pressure detection device and electronic device
US20180338695A1 (en) Systolic pressure calibration
CN107028596A (en) A kind of wrist monitoring or diagnostic device
US6561985B2 (en) Automatic blood-pressure measuring apparatus
US6338718B1 (en) Superior-and-inferior-limb blood-pressure index measuring apparatus
CN102715893B (en) Device and method for detecting blood pressure and oxyhemoglobin saturation simultaneously
US20160235371A1 (en) Pulsimeter, frequency analysis device, and pulse measurement method
JPS63262125A (en) Blood pressure measuring method
US20040039290A1 (en) Cuff pulse wave detecting apparatus and pulse-wave-propagation-velocity-related information obtaining device
JP2012075820A (en) Pulse wave propagation velocity measuring device and pulse wave propagation velocity measuring program
JP2004173872A (en) Arteriostenosis degree measuring instrument
CN114587307A (en) Non-contact blood pressure detector and method based on capacitive coupling electrode
JP2019122552A (en) Biological signal processing device and control method of the same
JP5006509B2 (en) Pulse wave velocity measurement method for measuring pulse wave velocity in a pulse wave velocity measuring device
SU1308316A1 (en) Apparatus for measuring arterial blood pressure
CN115336990A (en) Cuff-less dynamic blood pressure measuring method based on multi-point calibration
Singh et al. Towards a Simple System for Indicating Temporal Variations in Blood Pressure
JP4320925B2 (en) Pulse rate detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees