JP2753829B2 - Blood pressure measurement device - Google Patents

Blood pressure measurement device

Info

Publication number
JP2753829B2
JP2753829B2 JP62098390A JP9839087A JP2753829B2 JP 2753829 B2 JP2753829 B2 JP 2753829B2 JP 62098390 A JP62098390 A JP 62098390A JP 9839087 A JP9839087 A JP 9839087A JP 2753829 B2 JP2753829 B2 JP 2753829B2
Authority
JP
Japan
Prior art keywords
light
blood pressure
optical
optical detection
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62098390A
Other languages
Japanese (ja)
Other versions
JPS63262125A (en
Inventor
真司 腰野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEIMITSU SOTSUKI KK
Original Assignee
NIPPON SEIMITSU SOTSUKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEIMITSU SOTSUKI KK filed Critical NIPPON SEIMITSU SOTSUKI KK
Priority to JP62098390A priority Critical patent/JP2753829B2/en
Priority to US07/074,204 priority patent/US4821734A/en
Publication of JPS63262125A publication Critical patent/JPS63262125A/en
Application granted granted Critical
Publication of JP2753829B2 publication Critical patent/JP2753829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はノンインベーシブの血圧計であつて、生体
の一部に装着され、その一部に加圧手段を加えて、その
加圧力と血管内部圧によつて変化する血管直径(体積)
を光学手段により検出して血圧を測定する装置に関する
ものである。 (従来の技術) 従来、この種血圧計のように間接的に血圧測定を指等
において行なうことは簡便であると云う理由で有意義で
ある。例えば(1)、米国特許第4,406,289号明細書に
おいては、サーボバランステクニツクを用いている。一
方(2)、他の例では米国特許第4,597,393明細書に見
られるように、血管とその周囲の組織の弾力性には直線
性があると見做して最低血圧を計算により推定する方法
もある。また(3)、他の例では米国特許第3,104,661
号、第3,920,004号及び第4,437,470号の各明細書にみら
れるように複数のカフやセンサーを用いる方法もある。 (発明が解決しようとする問題点) しかしながら、従来の(1)の場合、装置が大がかり
であり、また装着や装着時の調整に時間を要し、随時に
血圧を計りたい用途には向かないという問題があつた。
また、(2)の場合直線性と見做すことによる誤差の他
に、微少な波形の面積を計算することによるデーター量
の増加、そしてそのデーター量を節約しようとした時、
発生する誤差等の問題を持つている。次に、(3)の場
合は装着しなければならないものが2つ以上あるいわず
らわしさと、また末梢側の検出器には加圧が誤差となる
ことがあるため加圧は許されず、さらに又最低血圧の決
定においては、それを決定できないか、或は決定論理が
あいまいである等の問題があつた。 したがつて、この発明は前記従来技術が持つていた測
定精度や装置の複雑さによる問題点を解決し、簡単な構
成で精度の高い血圧測定装置を提供することを目的とす
るものである。 (問題点を解決するための手段) 上記目的を達成するために、この発明の第1の実施態
様は、生体の一部に装着され、非観血的に血圧測定を行
う血圧測定装置であって、前記生体の一部を加圧し次い
で減圧することにより、血管に直径方向の形状変化を発
生させる加減圧手段と、前記生体の末梢側に配設され、
第1の発光部及び第1の受光部からなり、前記血管の直
径方向の形状変化を光学的に検出する第1の光学検出手
段と、前記生体の心臓側に配設され、第2の発光部及び
第2の受光部からなり、前記血管の直径方向の形状変化
を光学的に検出する第2の光学検出手段と、外来光を遮
断した状態で、前記第1の発光部と前記第2の発光部と
を交互に点灯させることによって、前記第1の光学検出
手段と前記第2の光学検出手段とを時分割的に作動させ
る切換作動手段と、前記第1の光学検出手段の検出信号
から最高血圧を、前記第1の光学検出手段の検出信号と
前記第2の光学検出手段の検出信号との比較により最低
血圧をそれぞれ測定する制御判定手段とを有することを
特徴とする血圧測定装置を特徴とするものである。 またこの発明の第2の実施態様は、生体の一部に装着
され、非観血的に血圧測定を行う血圧測定装置であっ
て、前記生体の一部を加圧し次いで減圧することによ
り、血管に直径方向の形状変化を発生させる加減圧手段
と、前記生体の末梢側に配設され、第1の発光部及び第
1の受光部からなり、前記血管の直径方向の形状変化を
光学的に検出する第1の光学検出手段と、前記生体の心
臓側に配設され、第2の発光部及び第2の受光部からな
り、前記血管の直径方向の形状変化を光学的に検出する
第2の光学検出手段と、外来光の遮断状態で、前記第1
の発光部と前記第2の発光部とが同時に非作動状態とな
る期間を設けて、前記第1の発光部と前記第2の発光部
とを交互に点灯させることによって、前記第1の光学検
出手段と前記第2の光学検出手段とを、時分割的に交互
に作動させる切換作動手段と、前記第1の光学検出手段
と前記第2の光学検出手段の作動状態で、それぞれ得ら
れる第1の検出信号と、前記第1の発光部と前記第2の
発光部の非作動状態で、それぞれ得られる第2の検出信
号との差演算に基づき、前記外来光の影響を除去する外
来光除去手段と、該外来光除去手段で演算され外来光が
除去された前記第1の光学検出手段の検出信号から最高
血圧を前記外来光除去手段で演算され外来光が除去され
た前記第1の光学検出手段および前記第2の光学検出手
段の検出信号の比較値により最低血圧を判定する判定手
段とを有することを特徴とする血圧測定装置を特徴とす
るものである。 さらに、この発明では、前記第1または第2の実施態
様に係る血圧測定装置おいて、前記加減圧手段の加圧開
始時に、平均最低血圧以下の加圧力において、前記第1
の光学検出手段の検出値と前記第2の光学検出手段との
検出値が等しくなるように、前記第1の光学検出手段の
検出信号または前記第2の光学検出手段の検出信号のゲ
インを調整する調整手段が設けられたことが好ましい。 次に、この発明を実施例に対応する図面を用いて詳細
に説明する。 第1の発明は、第2図に示すようにノンインベーシブ
の血圧計であつて、生体の指Fに装着されて、それらの
一部を加圧する加圧手段BとC、この加圧手段に圧力を
供給及び圧力を減ずる手段S、加圧力と血管Aの内部圧
によつて変化する血管直径(体積)変化を検出する光学
的手段Ea、Eb及びDa、Dbから成る血圧計において、第1
図に示すように(1)、光学的手段の発光部Ea、Ebと従
来の技術Da、Dbを複数とする。(2)、発光素子Eaと受
光素子Daからなる第2の光学検出手段は、発光素子Ebと
受光素子Dbからなる第1の光学検出手段よりも心臓側に
位置するよう配置する(第2図参照)。(3)、前記複
数の光学的手段は時分割的に動作させる。(4)、これ
ら光学的手段は遮蔽して外部光を遮断する。(5)、第
1図に示すように心臓側と末梢側に位置する関係にある
2つ以上の光学的手段(Ea、Da)、(Eb、Db)の出力を
比較する手段Cpを有し、最高血圧は末梢側に位置する光
学的手段(Eb、Db)の出力Ssの出現点により決定し、最
低血圧は前記比較手段Cpの出力Sdが消失する時点で決定
するようにしたものである。 第2の発明は第1の発明の検出部と全く同じ構成であ
るが、遮蔽はなく、外部からの光も受光素子Da、Dbが受
ける場合で、第6図に示すように(1)光学的手段の発
光部Ea、Ebと受光部Da、Dbを複数とする。(2)発光素
子Eaと受光素子Daからなる第2の光学検出手段は、発光
素子Ebと受光素子Dbからなる第1の光学検出手段よりも
心臓側に位置するよう配置する。(3)前記複数の光学
的手段は第3図に示すように時分割的に動作させるが、
全ての発光が休止する位相を持つ。(4)前記休止時の
受光信号を蓄電器Ca、Cb等により記憶させ、発光時、前
記信号から記憶信号を差し引く手段(差動増幅器A31、A
32)と、(5)心臓側と末梢側に位置する関係にある2
つ以上の光学的手段(Ea、Da)、(Eb、Db)の出力を比
較する手段Cpを有し、最高血圧は末梢側に位置する光学
的手段(Eb、Eb)の出力Ssの出現点により決定し、最低
血圧は前記比較手段Cpの出力Sdが消失する時点で決定す
るようにしたものである。 第3の発明は第1、第2の発明の追加発明であつて、
第7図、第8図に示すように、第1図、第6図における
信号Sa′、Sb′のどちらか一方に可変ゲイン増幅器A4
付加し、先ず最低血圧よりも明らかに小さい圧力値(例
えば30mmHg)に達した時に、両信号Sa′、Sb′が等しく
なるようゲインを制御するような閉ループ制御回路を一
時的に作動させるようにし、最低血圧を精度良く測定で
きるようにしたものである。 (作用) 第1の発明及び第2の発明を以上のように構成する
と、ブラダーBを加圧手段Sにより一旦最高血圧よりも
高く加圧し、次に減圧手段Sにより除々に減圧すると、
血管体積変化は第4図に示すように、又信号Sa′、Sb′
は第5図のように変化する。 そこで、ブラダー圧が最高血圧よりも高いときは血管
は閉塞したままで、血流もない(第4図(a)参照)。
血流がないので、末梢側の血管体積は変化せず、光Lbに
変化はないが、心臓側の血管体積は変化して光Laが変化
する。即ち信号Sb′はなく、信号Sa′が発生している
(第5図の左側)。 ブラダー圧が最高血圧よりも僅か下まわると、内部圧
が外部圧よりも高い期間だけ血管が開き、血流が生ずる
(第4図(b)参照)。これにより光Lbに変化が現わ
れ、信号Sb′が発生する(第5図最高血圧点参照)。 ブラダー圧が最低血圧以下になると血管は閉じる期間
がなくなり(第4図(c)参照)、光LaとLbに対する変
化は等しくなり、信号Sa′、Sb′も等しくなる。そこで
比較手段Cpは信号Sa′、Sb′を比較し、その差Sdを出力
しているので、最低血圧において出力はゼロになる(第
5図下段の最低血圧点参照)。 このようにして信号Sb′の出現点から最高血圧を、又
Sa′、Sb′の差の信号Ssが消失する点から最低血圧が決
定できる。 第3の発明は、生体側の原因ばかりでなく機器側の原
因、例えば発光素子のLEDやフオトトランジスタによる
受光素子の感度にばらつきがあるので、最低血圧を決定
するための2つの位置から波形出力の一致をより完全に
行なわせるためで、予め信号Sa′、Sb′の両信号が等し
くなるようにゲインをコントロールして一時に作動せし
めておく。したがつて最低血圧の精度が良く測定でき
る。 (実施例) 第2図は、この発明の検出部の構成を示す一部切欠断
面図で、Fは左半分を断面図で示す人の指で、Aは生体
の指F内の動脈、Bは空気圧を指Fに与えるブラダー、
CはブラダーBの膨張を制限するカフ、SはブラダーB
内の空気圧をコントロールする加減圧装置、Ea、Ebは例
えばインフラレツドLED等の発光素子、Da、Dbは例えば
フオトトランジスタ等の受光素子を示す。図において発
光素子Eaと受光素子Daは対向して配置され、発光素子Ea
の光が指(動脈を含む)を介して到達するように置かれ
る。例えばブラダーBが不透明であれば指Fとブラダー
Bの中間に置かれる。しかし若し、ブラダーBが透明で
あればブラダーBの内面或いはブラダーBとカフCの中
間でも良い。また、発光素子Ebと受光素子Daも同様に対
向して置かれる。しかし、発光素子Eaと受光素子Daはブ
ラダーBの中心よりも心臓側に置かれ、発光素子Ebと受
光素子DbはブラダーBの中心よりも末梢側に置かれる。
そして発光素子Eaより出て受光素子Daに達する光Laは動
脈(血管)Aの内部圧に応じた体積変化により光の遮ら
れる量が変化して受光素子Daに信号を出力する。同様
に、受光素子Dbからも発光素子Ebより出た光Lbにより動
脈体積変化の信号出力が得られる。この場合、発光素子
及び受光素子に外来光成分を受けると測定に誤差を生じ
る恐れがある。そこで、この誤差の生ずるのを避ける方
法として第1の発明は外来光を遮断して光学的手段を保
護する。例えば手袋等を着用する。次に、第2の発明は
外来光を受けても電気的にこれを取除くようにしたもの
である。 先ず、第1の発明について述べる。 この場合の発光素子Ea、Ebは二相クロツクにより発光
時間が重ならないように交互に発光させる。また、受光
素子Da、Dbは発光のクロツクに同期してスイツチされ、
それぞれ対向した発光素子Ea、Ebの光La、Lbの光のみの
受光信号を受光する。なお、これら発光の点滅周波数は
正しい脈波波形を再現するために予想される最大脈拍数
レートの60倍以上が採用される。 次に、その操作を第1図の回路図により説明する。 先ず、位相P1においてはスイツチSW11を介して発光素
子Eaが発光し、受光素子Daは外来光から遮断されている
ので、発光素子Eaからの光Laのみを受光する。これは電
圧信号に置き換えられ、増幅器A1にて増幅されて信号Sa
となる。 次に、位相P2においては前記と同様の発光素子Ebが発
光し、受光素子Dbは光Lbを受光し、電圧信号Sbとなる。
これらの信号電圧Sa、Sbは検波器D1、D2により検波され
る。即ちキヤリアであるクロツク成分が除去されて血管
の体積変化に応じた信号Sa′、Sb′を得る。そして比較
器Cpにより信号Sa′、Sb′は比較され、その差Sdを出力
する。そこで両者の波形と振幅が一致しているときは出
力はゼロとなる。 以上のような構成において、最高血圧(SY−STOLI
C)、最低血圧(DIASTOLIC)がどのように決定されるか
を第4図、第5図に基づいて説明する。 先ず、ブラダーBは加圧手段Sにより一旦最高血圧よ
りも高く加圧される。次に減圧手段Sにより徐々に減圧
されるが、この時血管体積変化は第4図(a)、
(b)、(c)のように、又信号Sa′、Sb′は第5図の
ように変化する。即ち、ブラダー圧が最高血圧よりも高
いときは血管は閉塞したままであり、血流もない(第4
図(a)参照)。したがつて、血流がないので、末梢側
に血管体積は変化せず、光Lbに対する変化はないが、心
臓側の血管体積は変化して光Laが変化する。即ち、信号
Sb′はなく、信号Sa′が発生している(第5図の左側参
照)。 そして、ブラダー圧が最高血圧よりも僅か下まわる
と、内部圧が外部圧よりも高い期間だけ血管は開き、血
流が生ずる(第4図(b)参照)。これにより光Lbに対
する変化が現われ、信号Sb′が発生する(第5図SYSTOL
IC参照)。 次にブラダー圧が最低血圧以下になると血管は閉じる
期間がなくなり(第4図(c)参照)、光LaとLbに対す
る変化は等しくなる。つまり信号Sa′、Sb′も等しくな
る。したがつて比較器Cpは信号Sa′、Sb′を比較し、そ
の差Sdを出力しているので、最低血圧において出力はゼ
ロとなる(第5図下段DIASTOLIC参照)。 このようにして信号Sb′の出現点から最高血圧を、ま
た信号Sa′、Sb′の差の信号Sdが消失する点から最低血
圧を決定することができる。 次に、第2の発明について説明する。 第2図の検出部は第1の発明と全く同じ構成で、その
外部は遮蔽されていない。従つて外部からの光を受光素
子Da、Dbも受ける。その場合の発光素子Ea、Ebは多相ク
ロツクにより発光時間が重ならないように発光させる。
また受光素子Da、Dbは発光のクロツクに同期してスイツ
チされる。そして第3図に示すように位相P1では発光素
子Eaが発光し、位相P2では発光素子Ebが発光し、位相P3
ではどちらも発光しない。これら発光の点滅周波数は正
しい脈波波形を再現するために予想される最大脈拍数レ
ートの60倍以上が採用される。なお発光素子Ea、Ebの両
方が発光しない位相P3においては受光素子Da、Dbは外部
光Lcを受光する。即ち周囲の光(電灯照明や太陽光)は
指Fを照明し、カフCの両端においては、光は指Fの組
織により散乱し、受光素子Da、Dbに到着する。これをLc
とする。 次に、その操作を第6図により説明する。 受光素子Daにより得られる信号は増幅器A1にて増幅さ
れ、スイツチSW12を介して差動増幅器A31に導かれる。
この場合、スイツチSW11、SW12と差動増幅器A31の動作
を説明すると、位置P1においてはスイツチSW11を介して
発光素子Eaが発光する。受光素子Daは発光素子Eaからの
光Laを受光するが、同時に外来光Lcをも受光する。即ち
位相P1においては光La+Lcを受光する。これは電圧信号
に置き換えられ、増幅器A1にて増幅されて、信号Sa+Sc
となる。 次に、位相P2においては、前記と同様、発光素子Ebが
発光し、受光素子Dbは光Lb+Lcを受光し電圧信号Sb+Sc
となる。さらに位相P3においては前述のように光Lcのみ
を受光するが、このときの信号ScはスイツチSW31、SW32
により2つの差動増幅器A31、A32の非反転入力側にそれ
ぞれ接続される。しかし、非反転入力端子にはキヤパシ
ターCa、Cbが接続されているので、この時の信号電圧は
位相P3を終了した後にも非反転入力側に保持される。ま
た、位相P1においては信号Sa+Scは差動増幅器A31の反
転入力側に、スイツチSW31により接続され、したがつて
差動増幅器A31は両入力の差、即ちSc−(Sa+Sc)=−S
aの信号を出力する。同様に、位相P2においても差動増
幅器A32はSc−(Sb+Sc)=−Sbの信号を出力する。 このように差動増幅器A31、A32の出力には外来光によ
る信号Scの除去された信号成分のみが出力される。次
に、この信号出力Sa、Sbは検波器D1、D2により検波され
る。即ちキヤリアであるクロツク成分が除去されて血管
の体積変化に応じた信号Sa′、Sb′を得る。以上は第1
の発明と同じ比較器Cpにより信号Sa′、Sb′が比較され
その差Sdを出力する。そこで両者の波形と振幅が一致し
ているときは出力はゼロとなる。 以上のような構成において、最高血圧(SY−STOLI
C)、最低血圧(DIASTOLIC)がどのように決定されるか
は、第1の発明の際と全く同じであるので、説明は省略
する。 以上の装置によれば、最低血圧を精度良く測定できる
が、例えば素子のばらつき、生体側の原因等により最低
血圧を決定するための2つの位置からの波形出力の一致
をより完全に行なわせるための改良を次に述べる。 第7図はその回路図、第8図はその動作説明図であ
る。図において信号Sa′、Sb′は第1図に示した血管の
体積変化に応じた夫々の信号で、その何れかの信号の1
つを可変ゲイン増幅器A4を通してから、第1図の比較回
路Cpに入力する。次に、両信号が等しくなるように、可
変ゲイン増幅器A4のゲインを制御する。即ち、比較器Cp
からの出力を増幅器A5を介して可変ゲイン増幅器A4に接
続される閉ループコントロールを一時的に作動させる。 それは、第8図に示すように加減圧過程の加圧の初ま
りにおいて最低血圧よりも明らかに小さい圧力値Pc(例
えば30mmHg)に達したときに行なう。この時には加圧を
t時間停止して圧力を一定に保つ。 その理由は、最低血圧以下では信号Sa′、Sb′は等し
くなければならない。即ち比較回路Cpの出力はゼロであ
らねばならない。しかし、若し、信号Sa′、Sb′が等し
くないならば比較回路Cpの出力はゼロではない。ゼロで
なければその比較回路Cpの出力を可変ゲイン増幅器A4
加え、ゲインを制御し比較回路Cpの出力がゼロになるよ
うにコントロールする。このコントロール値は測定が終
了されるまで例えば蓄電器Ccに蓄えられて保持される。 そして保持が行なわれ次第、再び加圧が行なわれ、最
高血圧より高く加圧されてから上述したように測定が開
始される。なお、この可変ゲイン増幅器は、例えば増幅
器のゲインを決める抵抗をスイツチにより選択するよう
な方法でもよい。又そのスイツチをデジタル信号でコン
トロールすることもできる。この方法は生体側の原因ば
かりでなく、機器側の原因、例えばLEDやフオトトラン
ジスタの感度のばらつき等も吸収する。 この2組の光学系の出力の低い圧力での一致を見ると
いう思想は、他の手段でも実現できる。その例を次に述
べる。 それは、第9入力示すように、アナログ手段の一部を
デジタル手段に置きかえることである。即ち光学手段に
ついては第1図、第6図で述べたものと同じであるが、
差動増幅器A31、A32、検波回路D1、D2、比較回路Cpを持
つていない。これらの機能はデジタル的に行なわれる。 即ち、2組の光学手段の各出力は、何れもA/D変換器C
tにて変換され、デジタル量としてメモリMに記憶され
る。勿論、位相P3における発光素子が発光していない時
の出力も、別に記憶される。又、差動増幅器A31、A32
役割りは外部光の影響の除去であり、これは位相P1にお
ける信号から、位相P3における信号を減算することであ
る。同様に位相P2についても同じであり、各信号はデジ
タル量で記憶されているので、中央処理装置CPUにより
デジタル的減算で容易に目的を達成できる。次に、検波
回路D1、D2の役割りは脈波の周波数成分の抽出である。
即ちクロツク成分(キヤリアー)の除去である。したが
つてA/D変換器はクロツクと同期して行なわせる事がで
きるので、クロツク成分は自動的に除去される。さら
に、比較回路Cpも又デジタル的い行なうことができる。 この方法はいくつかのアナログ部品を省略できるが、
多くのメモリ素子を必要とする。なお、本発明は人体の
指だけでなく、動物の手足や尻尾にも適用できることは
当然である。 (発明の効果) 従来の光学系が1組のものでは、最低血圧求めること
が難しいため最高血圧の他に平均血圧を求めていた。そ
して平均血圧をより正しく求めるために光学手段は中央
附近に置くしかなかつた。しかしこのことは本発明にお
ける血管の体積変化に応じた信号Sa′、Sb′の中間の信
号を得ることになり、明らかに最高血圧は実際より高く
測定される。又2組の光学手段の距離が短いので血管や
皮質の物理的特性の差異が少なく、位相差も少ない。ま
た、両光学系には同一の圧力が印加されるので、最低血
圧における出力の一致は精度が高い。さらに時分割的発
光は消費電力低減にに効果があるが、両発光素子を発光
させない位相P3を設ける事と、この時間を長くする事は
その効果をさらに高める。 以上詳細に説明したように、1組の光学手段を加圧部
中央に設けた方法に比べ、最高血圧を精度よく測定でき
る上、2組の光学手段の距離が短いので、離れた個所に
センサーを置く方法に比べ、高精度に最低血圧を測定す
ることができる。さらに時分割点灯により、外来光の除
去、2組の光学手段の相互干渉除去、低消費電力化を同
時に行なう効果がある。
Description: TECHNICAL FIELD The present invention relates to a non-invasive sphygmomanometer, which is mounted on a part of a living body, and a pressurizing means is applied to a part of the sphygmomanometer so that the pressure and the inside of a blood vessel can be measured. Vascular diameter (volume) that changes with pressure
And an apparatus for detecting blood pressure by optical means to measure blood pressure. 2. Description of the Related Art Conventionally, indirectly measuring blood pressure with a finger or the like as in this type of sphygmomanometer is meaningful because it is simple. For example, (1), in U.S. Pat. No. 4,406,289, a servo balance technique is used. On the other hand, (2) In another example, as shown in US Pat. No. 4,597,393, a method of estimating the diastolic blood pressure by calculating the elasticity of the blood vessel and the surrounding tissue assuming that the elasticity is linear is also known. is there. (3) In another example, US Pat. No. 3,104,661
No. 3,920,004 and No. 4,437,470, there is also a method using a plurality of cuffs and sensors. (Problems to be Solved by the Invention) However, in the case of the conventional (1), the device is large-scale, and time is required for mounting and adjusting at the time of mounting, and it is not suitable for applications where blood pressure is to be measured at any time. There was a problem.
In addition, in the case of (2), in addition to the error due to linearity, when calculating the area of a minute waveform, the data amount increases, and when the data amount is reduced,
It has problems such as errors that occur. Next, in the case of (3), pressurization is not allowed because two or more objects need to be mounted and the pressurization of the peripheral detector may cause an error. In determining the diastolic blood pressure, there have been problems such as the inability to determine it or the determination logic being ambiguous. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a highly accurate blood pressure measurement device with a simple configuration by solving the problems caused by the measurement accuracy and the complexity of the device, which the prior art has. (Means for Solving the Problems) In order to achieve the above object, a first embodiment of the present invention is a blood pressure measurement device which is attached to a part of a living body and performs non-invasive blood pressure measurement. By pressurizing a part of the living body and then reducing the pressure, a pressure increasing / decreasing means for generating a diametrical shape change in a blood vessel, and disposed on a peripheral side of the living body,
A first optical detecting means, comprising a first light emitting unit and a first light receiving unit, for optically detecting a change in the diameter of the blood vessel in the diametrical direction; And a second light receiving unit, wherein the second optical detection means for optically detecting a change in the shape of the blood vessel in the diameter direction, and the first light emitting unit and the second light receiving unit in a state where extraneous light is blocked. Switching operation means for operating the first optical detection means and the second optical detection means in a time-division manner by alternately lighting the light-emitting portions of the first and second optical detection means, and a detection signal of the first optical detection means. Blood pressure measuring device, comprising: a control judging unit for measuring a diastolic blood pressure and a diastolic blood pressure by comparing a detection signal of the first optical detection unit with a detection signal of the second optical detection unit. It is characterized by the following. A second embodiment of the present invention is a blood pressure measurement device which is attached to a part of a living body and performs non-invasive blood pressure measurement. And a first light-emitting unit and a first light-receiving unit, which are arranged on the distal side of the living body and optically detect the change in the diameter of the blood vessel. A first optical detecting means for detecting the blood vessel, a second light emitting section and a second light receiving section disposed on the heart side of the living body, and optically detecting a change in the diameter of the blood vessel in the second direction. The first optical detection means and the first
By providing a period in which the light-emitting unit and the second light-emitting unit are simultaneously inactive, and alternately turning on the first light-emitting unit and the second light-emitting unit, the first optical Switching operating means for alternately operating the detecting means and the second optical detecting means in a time-sharing manner; and a second operating means obtained respectively in an operating state of the first optical detecting means and the second optical detecting means. External light that removes the influence of the external light based on a difference operation between the first detection signal and a second detection signal that is obtained when the first light emitting unit and the second light emitting unit are not operated. Removing means for calculating the systolic blood pressure from the detection signal of the first optical detection means from which the extraneous light has been removed by calculation by the extraneous light removing means; Ratio of detection signals of optical detection means and the second optical detection means And it is characterized in the blood pressure measuring apparatus characterized by having a determining means for determining diastolic blood pressure by the value. Further, according to the present invention, in the blood pressure measurement device according to the first or second embodiment, at the time of starting pressurization of the pressurizing / depressurizing means, the first pressure is not more than the average diastolic blood pressure.
The gain of the detection signal of the first optical detection means or the gain of the detection signal of the second optical detection means is adjusted so that the detection value of the optical detection means is equal to the detection value of the second optical detection means. It is preferable to provide an adjusting means for performing the adjustment. Next, the present invention will be described in detail with reference to the drawings corresponding to the embodiments. The first invention is a non-invasive sphygmomanometer as shown in FIG. 2, which is mounted on a finger F of a living body and pressurizes a part of them, and a pressure is applied to the pressurizing means. A blood pressure monitor comprising means S for supplying and reducing pressure, and optical means Ea, Eb and Da, Db for detecting a change in blood vessel diameter (volume) which changes due to the applied pressure and the internal pressure of the blood vessel A.
As shown in the figure, (1), a plurality of light emitting units Ea and Eb of optical means and conventional techniques Da and Db are provided. (2) The second optical detecting means including the light emitting element Ea and the light receiving element Da is disposed closer to the heart than the first optical detecting means including the light emitting element Eb and the light receiving element Db (FIG. 2). reference). (3) The plurality of optical means are operated in a time-division manner. (4) These optical means block external light. (5) As shown in FIG. 1, there is provided a means Cp for comparing the outputs of two or more optical means (Ea, Da) and (Eb, Db) which are located on the cardiac side and the peripheral side. The systolic blood pressure is determined by the appearance point of the output Ss of the optical means (Eb, Db) located on the peripheral side, and the diastolic blood pressure is determined when the output Sd of the comparing means Cp disappears. . The second invention has exactly the same configuration as the detection unit of the first invention, but has no shielding and receives light from the outside at the light receiving elements Da and Db. As shown in FIG. There are a plurality of light emitting units Ea and Eb and light receiving units Da and Db. (2) The second optical detecting means including the light emitting element Ea and the light receiving element Da is disposed closer to the heart than the first optical detecting means including the light emitting element Eb and the light receiving element Db. (3) The plurality of optical means are operated in a time-division manner as shown in FIG.
It has a phase in which all light emission stops. (4) Means for storing the light receiving signal at the time of rest by the capacitors Ca, Cb, etc., and subtracting the stored signal from the signal at the time of light emission (differential amplifiers A 31 , A
32 ) and (5) the relationship between the heart and the periphery 2
A means Cp for comparing the outputs of two or more optical means (Ea, Da) and (Eb, Db), and the systolic blood pressure is the point of appearance of the output Ss of the optical means (Eb, Eb) located on the peripheral side And the diastolic blood pressure is determined when the output Sd of the comparison means Cp disappears. The third invention is an additional invention of the first and second inventions,
Figure 7, as shown in FIG. 8, FIG. 1, the signal Sa in Fig. 6 ', Sb' variable gain amplifier A 4 is added to either of, first, the diastolic blood pressure clearly smaller pressure value than (E.g., 30 mmHg), a closed-loop control circuit that controls the gain so that both signals Sa 'and Sb' are equal to each other is temporarily activated so that the diastolic blood pressure can be accurately measured. is there. (Operation) When the first invention and the second invention are configured as described above, the bladder B is once pressurized by the pressurizing means S to a pressure higher than the systolic blood pressure, and then gradually depressurized by the depressurizing means S.
As shown in FIG. 4, the change in the blood vessel volume is represented by the signals Sa 'and Sb'.
Changes as shown in FIG. Therefore, when the bladder pressure is higher than the systolic blood pressure, the blood vessel remains closed and there is no blood flow (see FIG. 4 (a)).
Since there is no blood flow, the peripheral vascular volume does not change and the light Lb does not change, but the cardiac vascular volume changes and the light La changes. That is, there is no signal Sb 'and a signal Sa' is generated (left side in FIG. 5). When the bladder pressure is slightly lower than the systolic blood pressure, the blood vessels are opened only during a period in which the internal pressure is higher than the external pressure, and a blood flow occurs (see FIG. 4 (b)). As a result, a change appears in the light Lb, and a signal Sb 'is generated (see the systolic blood pressure point in FIG. 5). When the bladder pressure falls below the minimum blood pressure, there is no longer a period in which the blood vessels are closed (see FIG. 4 (c)), the changes to the light La and Lb are equal, and the signals Sa 'and Sb' are equal. Then, the comparing means Cp compares the signals Sa 'and Sb' and outputs the difference Sd, so that the output becomes zero at the diastolic blood pressure (see the diastolic blood pressure point in the lower part of FIG. 5). In this way, the systolic blood pressure is obtained from the appearance point of the signal Sb ′, and
The diastolic blood pressure can be determined from the point at which the signal Ss of the difference between Sa 'and Sb' disappears. According to the third invention, waveforms are output from two positions for determining the diastolic blood pressure because there is variation in not only the cause on the living body side but also the cause on the device side, for example, the sensitivity of the light receiving element by the LED of the light emitting element or the phototransistor. In order to make the coincidence of the signals more complete, the gain is controlled in advance so that the signals Sa 'and Sb' are equal to each other, and the operation is performed at once. Therefore, the accuracy of the diastolic blood pressure can be measured with good accuracy. (Embodiment) FIG. 2 is a partially cutaway sectional view showing the structure of a detection unit according to the present invention. F is a human finger showing a left half in a sectional view, A is an artery in a finger F of a living body, and B is a finger. Is a bladder that gives air pressure to the finger F,
C is a cuff that limits the inflation of bladder B, S is bladder B
Ea and Eb indicate light emitting elements such as infra-red LEDs, for example, and Da and Db indicate light receiving elements such as phototransistors. In the figure, the light emitting element Ea and the light receiving element Da are arranged to face each other, and the light emitting element Ea
Of light reach through the fingers (including the arteries). For example, if bladder B is opaque, it is placed between finger F and bladder B. However, if bladder B is transparent, the inner surface of bladder B or the middle between bladder B and cuff C may be used. In addition, the light emitting element Eb and the light receiving element Da are similarly placed facing each other. However, the light-emitting element Ea and the light-receiving element Da are located closer to the heart than the center of the bladder B, and the light-emitting element Eb and the light-receiving element Db are located more distally than the center of the bladder B.
The light La that exits the light emitting element Ea and reaches the light receiving element Da changes the amount of light blocked by a volume change according to the internal pressure of the artery (blood vessel) A, and outputs a signal to the light receiving element Da. Similarly, a signal output of a change in arterial volume is obtained from the light receiving element Db by the light Lb emitted from the light emitting element Eb. In this case, if an external light component is received by the light emitting element and the light receiving element, an error may occur in the measurement. Therefore, as a method for avoiding the occurrence of this error, the first invention protects the optical means by blocking extraneous light. For example, gloves are worn. Next, in the second invention, even if external light is received, it is electrically removed. First, the first invention will be described. In this case, the light emitting elements Ea and Eb emit light alternately by a two-phase clock so that the light emitting times do not overlap. The light receiving elements Da and Db are switched in synchronization with the clock of light emission,
Light-receiving signals of only the light La and Lb of the light-emitting elements Ea and Eb facing each other are received. Note that the blinking frequency of these lights is 60 times or more the maximum pulse rate expected to reproduce a correct pulse waveform. Next, the operation will be described with reference to the circuit diagram of FIG. First, the light emitting element Ea emits light through the switch SW 11 in the phase P 1, the light receiving element Da is because it is shielded from external light, and receives only the light La from the light emitting element Ea. This is replaced by a voltage signal, the signal Sa is amplified by an amplifier A 1
Becomes Next, the light emitting element Eb similar to the emits light in phase P 2, the light receiving element Db receives light Lb, the voltage signal Sb.
These signal voltages Sa and Sb are detected by detectors D 1 and D 2 . That is, the carrier clock component is removed, and signals Sa 'and Sb' corresponding to the change in the volume of the blood vessel are obtained. Then, the signals Sa 'and Sb' are compared by the comparator Cp, and the difference Sd is output. Therefore, when the amplitudes of both waveforms match, the output becomes zero. In the above configuration, the systolic blood pressure (SY-STOLI)
C) How the diastolic blood pressure (DIASTOLIC) is determined will be described with reference to FIGS. 4 and 5. First, the bladder B is once pressurized by the pressurizing means S to a pressure higher than the systolic blood pressure. Next, the pressure is gradually reduced by the pressure reducing means S. At this time, the blood vessel volume change is as shown in FIG.
As shown in FIGS. 5B and 5C, the signals Sa 'and Sb' change as shown in FIG. That is, when the bladder pressure is higher than the systolic blood pressure, the blood vessel remains occluded and there is no blood flow (fourth blood pressure).
FIG. (A)). Therefore, since there is no blood flow, the blood vessel volume does not change on the peripheral side and there is no change for the light Lb, but the blood vessel volume on the heart side changes and the light La changes. That is, the signal
There is no Sb ', and a signal Sa' is generated (see the left side of FIG. 5). Then, when the bladder pressure is slightly lower than the systolic blood pressure, the blood vessel opens only during a period in which the internal pressure is higher than the external pressure, and a blood flow occurs (see FIG. 4 (b)). As a result, a change with respect to the light Lb appears, and a signal Sb 'is generated (FIG. 5: SYSTOL).
IC). Next, when the bladder pressure falls below the minimum blood pressure, there is no longer a period in which the blood vessels are closed (see FIG. 4 (c)), and the changes to the light La and Lb become equal. That is, the signals Sa 'and Sb' are also equal. Accordingly, since the comparator Cp compares the signals Sa 'and Sb' and outputs the difference Sd, the output becomes zero at the lowest blood pressure (see the lower DIASTOLIC in FIG. 5). In this way, the systolic blood pressure can be determined from the appearance point of the signal Sb ', and the diastolic blood pressure can be determined from the point at which the signal Sd of the difference between the signals Sa' and Sb 'disappears. Next, the second invention will be described. The detector of FIG. 2 has exactly the same configuration as that of the first invention, and its outside is not shielded. Therefore, the light receiving elements Da and Db also receive light from outside. In this case, the light emitting elements Ea and Eb emit light by the multi-phase clock so that the light emitting times do not overlap.
The light receiving elements Da and Db are switched in synchronization with the clock of light emission. The phase P 1 in the light-emitting element Ea as shown in Figure 3 to emit light, and light emission phase P 2 in the light-emitting element Eb is the phase P 3
Then neither emits light. The flashing frequency of these lights is 60 times or more the maximum pulse rate expected to reproduce the correct pulse waveform. Note In the phase P 3 of the light emitting element Ea, both Eb does not emit light receiving element Da, Db is receiving external light Lc. That is, ambient light (light illumination or sunlight) illuminates the finger F, and at both ends of the cuff C, the light is scattered by the tissue of the finger F and reaches the light receiving elements Da and Db. This is Lc
And Next, the operation will be described with reference to FIG. Signals obtained by the light receiving element Da is amplified by an amplifier A 1, it is guided to the differential amplifier A 31 via the switch SW 12.
In this case, when describing the operation of the switch SW 11, SW 12 and the differential amplifier A 31, the light emitting element Ea emits light via the switch SW 11 is at the position P 1. The light receiving element Da receives the light La from the light emitting element Ea, but also receives the external light Lc at the same time. That receives light La + Lc in phase P 1. This is replaced by a voltage signal is amplified by an amplifier A 1, the signal Sa + Sc
Becomes Then, in the phase P 2, the same, the light emitting element Eb emits light, the light receiving element Db is a voltage signal by receiving light Lb + Lc Sb + Sc
Becomes While still in the phase P 3 receives only the light Lc as described above, the switch SW 31 signal Sc is in this case, SW 32
Connected to the non-inverting input sides of the two differential amplifiers A 31 and A 32 respectively. However, Kiyapashita Ca to the non-inverting input terminal, since Cb is connected, the signal voltage at this time is maintained even after the completion of the phase P 3 to the non-inverting input. Further, the inverting input of the differential amplifier A 31 is the signal Sa + Sc in phase P 1, is connected by a switch SW 31, the difference between the but connexion differential amplifier A 31 both inputs, i.e. Sc- (Sa + Sc) = - S
Output the signal of a. Similarly, the differential amplifier A 32 also in the phase P 2 is Sc- (Sb + Sc) = - outputs a signal Sb. As described above, only the signal component from which the signal Sc due to extraneous light has been removed is output to the outputs of the differential amplifiers A 31 and A 32 . Next, the signal outputs Sa and Sb are detected by detectors D 1 and D 2 . That is, the carrier clock component is removed, and signals Sa 'and Sb' corresponding to the change in the volume of the blood vessel are obtained. The above is the first
The signals Sa 'and Sb' are compared by the same comparator Cp as in the invention of the first embodiment, and the difference Sd is output. Therefore, when the amplitudes of both waveforms match, the output becomes zero. In the above configuration, the systolic blood pressure (SY-STOLI)
C) How the diastolic blood pressure (DIASTOLIC) is determined is exactly the same as that in the first invention, and the description is omitted. According to the above apparatus, the diastolic blood pressure can be measured with high accuracy. However, in order to more completely match the waveform outputs from the two positions for determining the diastolic blood pressure due to, for example, variations in elements, factors on the living body side, and the like. The improvement of is described below. FIG. 7 is a circuit diagram thereof, and FIG. 8 is an explanatory diagram of the operation thereof. In the figure, signals Sa 'and Sb' are signals corresponding to the change in the volume of the blood vessel shown in FIG.
One of through the variable gain amplifier A 4, and inputs to the comparator circuit Cp of FIG. 1. Then, as both signals become equal, control the gain of the variable gain amplifier A 4. That is, the comparator Cp
The output from through the amplifier A 5 is temporarily operate the closed loop control that is connected to the variable gain amplifier A 4. This is performed when a pressure value Pc (for example, 30 mmHg), which is clearly lower than the diastolic blood pressure, is reached at the beginning of pressurization in the pressurization / decompression process as shown in FIG. At this time, pressurization is stopped for t hours to keep the pressure constant. The reason is that the signals Sa 'and Sb' must be equal below the diastolic blood pressure. That is, the output of the comparison circuit Cp must be zero. However, if the signals Sa 'and Sb' are not equal, the output of the comparison circuit Cp is not zero. If zero plus the output of the comparator circuit Cp to the variable gain amplifier A 4, the output of the controlled gain comparator circuit Cp is controlled to be zero. This control value is stored and held, for example, in the battery Cc until the measurement is completed. Then, as soon as the holding is performed, the pressure is increased again, and after the pressure is increased to be higher than the systolic blood pressure, the measurement is started as described above. The variable gain amplifier may employ a method in which, for example, a resistor for determining the gain of the amplifier is selected by a switch. Further, the switch can be controlled by a digital signal. This method absorbs not only the cause on the living body side but also the cause on the device side, for example, variations in the sensitivity of the LED and the phototransistor. The idea of seeing the output of the two sets of optical systems coincide at low pressure can also be realized by other means. An example is described below. That is, as shown in the ninth input, a part of the analog means is replaced by digital means. That is, the optical means is the same as that described in FIGS. 1 and 6,
It does not have the differential amplifiers A 31 and A 32 , the detection circuits D 1 and D 2 , and the comparison circuit Cp. These functions are performed digitally. That is, each output of the two sets of optical means is an A / D converter C
It is converted at t and stored in the memory M as a digital quantity. Of course, the output when the light-emitting element in the phase P 3 does not emit light are also stored separately. Further, role of the differential amplifier A 31, A 32 is a removal of the influence of the external light, which is the signal in the phase P 1, it is to subtract the signals in the phase P 3. Similarly the same applies to the phase P 2, since each signal is stored in digital amount, easily object can be achieved by digitally subtracting by the central processing unit CPU. Next, the role of the detection circuits D 1 and D 2 is to extract the frequency component of the pulse wave.
That is, the removal of the clock component (carrier). Therefore, the A / D converter can be operated in synchronization with the clock, so that the clock component is automatically removed. Furthermore, the comparison circuit Cp can also be performed digitally. Although this method can save some analog components,
Requires many memory elements. It should be noted that the present invention can be applied not only to the fingers of the human body but also to the limbs and tails of animals. (Effect of the Invention) With a single set of conventional optical systems, it is difficult to determine the diastolic blood pressure, so the average blood pressure is determined in addition to the systolic blood pressure. The optical means had to be placed near the center in order to determine the mean blood pressure more correctly. However, this results in obtaining an intermediate signal between the signals Sa 'and Sb' according to the change in the volume of the blood vessel in the present invention, and obviously the systolic blood pressure is measured higher than it actually is. Also, since the distance between the two sets of optical means is short, there is little difference in physical characteristics of blood vessels and cortex, and there is little phase difference. Further, since the same pressure is applied to both optical systems, the coincidence of the outputs at the lowest blood pressure is high in accuracy. Although more time-divisionally emitting the effect on the reduction of power consumption, and by providing a phase P 3 which does not emit both light-emitting elements, possible to increase this time further enhance the effect. As described in detail above, the systolic blood pressure can be measured more accurately than the method in which one set of optical means is provided at the center of the pressurizing section, and the distance between the two sets of optical means is short. It is possible to measure the diastolic blood pressure with higher accuracy than the method of placing. Further, the time-division lighting has the effect of simultaneously removing extraneous light, eliminating mutual interference between two sets of optical means, and reducing power consumption.

【図面の簡単な説明】 第1図は本発明に係る血圧測定装置の一実施例による信
号処理回路図、第2図は本発明の検出部における構成の
一部切欠断面図、第3図は発光素子における発光点滅の
位相関係を示す図、第4図、第5図は最高及び最低血圧
を決定する血管及び血流の説明図、第6図は本発明の他
の実施例を示す信号処理回路図、第7図は本発明の改良
のための一部付加回路図、第8図はその動作説明図、第
9図は本発明の別の実施例を示す信号処理回路図であ
る。 Ea、Eb…発光素子、Da、Db…受光素子、A1、A2、A5…増
幅器、A31、A32…差動増幅器、D1、D2…検波器、Cp…比
較器、A…動脈、B…ブラダー、C…カフ、F…指、S
…加減圧装置、A4…可変ゲイン増幅器、Ct…A/D変換
器、M…メモリ、CPU…中央処理装置。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a signal processing circuit diagram according to one embodiment of the blood pressure measuring device according to the present invention, FIG. 2 is a partially cutaway sectional view of a configuration of a detecting section of the present invention, and FIG. FIG. 4 and FIG. 5 are diagrams showing blood vessels and blood flow for determining the highest and lowest blood pressure, and FIG. 6 is a signal processing showing another embodiment of the present invention. FIG. 7 is a circuit diagram showing a partly added circuit for improving the present invention, FIG. 8 is an explanatory diagram of the operation thereof, and FIG. 9 is a signal processing circuit diagram showing another embodiment of the present invention. Ea, Eb ... light emitting element, Da, Db ... light-receiving element, A 1, A 2, A 5 ... amplifiers, A 31, A 32 ... differential amplifier, D 1, D 2 ... detector, Cp ... comparator, A ... Artery, B ... Bladder, C ... Cuff, F ... Finger, S
… Pressure / decompression device, A 4 … Variable gain amplifier, Ct… A / D converter, M… Memory, CPU… Central processing unit.

Claims (1)

(57)【特許請求の範囲】 1.生体の一部に装着され、非観血的に血圧測定を行う
血圧測定装置であって、前記生体の一部を加圧し次いで
減圧することにより、血管に直径方向の形状変化を発生
させる加減圧手段と、前記生体の末梢側に配設され、第
1の発光部及び第1の受光部からなり、前記血管の直径
方向の形状変化を光学的に検出する第1の光学検出手段
と、前記生体の心臓側に配設され、第2の発光部及び第
2の受光部からなり、前記血管の直径方向の形状変化を
光学的に検出する第2の光学検出手段と、外来光を遮断
した状態で、前記第1の発光部と前記第2の発光部とを
交互に点灯させることによって、前記第1の光学検出手
段と前記第2の光学検出手段とを時分割的に作動させる
切換作動手段と、前記第1の光学検出手段の検出信号か
ら最高血圧を、前記第1の光学検出手段の検出信号と前
記第2の光学検出手段の検出信号との比較により最低血
圧をそれぞれ測定する制御判定手段とを有することを特
徴とする血圧測定装置。 2.生体の一部に装着され、非観血的に血圧測定を行う
血圧測定装置であって、前記生体の一部を加圧し次いで
減圧することにより、血管に直径方向の形状変化を発生
させる加減圧手段と、前記生体の末梢側に配設され、第
1の発光部及び第1の受光部からなり、前記血管の直径
方向の形状変化を光学的に検出する第1の光学検出手段
と、前記生体の心臓側に配設され、第2の発光部及び第
2の受光部からなり、前記血管の直径方向の形状変化を
光学的に検出する第2の光学検出手段と、外来光の非遮
断状態で、前記第1の発光部と前記第2の発光部とが同
時に非作動状態となる期間を設けて、前記第1の発光部
と前記第2の発光部とを交互に点灯させることによっ
て、前記第1の光学検出手段と前記第2の光学検出手段
とを、時分割的に交互に作動させる切換作動手段と、前
記第1の光学検出手段と前記第2の光学検出手段の作動
状態で、それぞれ得られる第1の検出信号と、前記第1
の発光部と前記第2の発光部の非作動状態で、それぞれ
得られる第2の検出信号との差演算に基づき、前記外来
光の影響を除去する外来光除去手段と、該外来光除去手
段で演算された外来光が除去された前記第1の光学検出
手段の検出信号から最高血圧を前記外来光除去手段で演
算され外来光が除去された前記第1の光学検出手段およ
び前記第2の光学検出手段の検出信号の比較値により最
低血圧を判定する判定手段とを有することを特徴とする
血圧測定装置。 3.前記加減圧手段の加圧開始時に、平均最低血圧以下
の加圧力において、前記第1の光学検出手段の検出値と
前記第2の光学検出手段との検出値が等しくなるよう
に、前記第1の光学検出手段の検出信号または前記第2
の光学検出手段の検出信号のゲインを調整する調整手段
が設けられていることを特徴とする請求項1または2記
載の血圧測定装置。
(57) [Claims] A blood pressure measurement device attached to a part of a living body and performing non-invasive blood pressure measurement, wherein a pressure is applied to the part of the living body and then reduced to generate a dimensional change in a blood vessel in a diameter direction. Means, disposed on the distal side of the living body, comprising a first light-emitting unit and a first light-receiving unit, and first optical detection means for optically detecting a change in the shape of the blood vessel in the diameter direction; A second optical detecting means disposed on the heart side of the living body and comprising a second light emitting unit and a second light receiving unit, for optically detecting a change in the shape of the blood vessel in the diameter direction; A switching operation for operating the first optical detection means and the second optical detection means in a time-division manner by alternately lighting the first light-emitting section and the second light-emitting section in a state. Means for detecting a systolic blood pressure from a detection signal of the first optical detection means. Blood pressure measuring apparatus characterized by a control determining means for measuring the diastolic blood pressure respectively by comparing the detection signals of the optical detecting means and the detection signal of the second optical detection means. 2. A blood pressure measurement device attached to a part of a living body and performing non-invasive blood pressure measurement, wherein a pressure is applied to the part of the living body and then reduced to generate a dimensional change in a blood vessel in a diameter direction. Means, disposed on the distal side of the living body, comprising a first light-emitting unit and a first light-receiving unit, and first optical detection means for optically detecting a change in the shape of the blood vessel in the diameter direction; A second optical detection means disposed on the heart side of the living body and comprising a second light emitting unit and a second light receiving unit, for optically detecting a change in the shape of the blood vessel in the diameter direction; In the state, by providing a period in which the first light emitting unit and the second light emitting unit are simultaneously in a non-operation state, and by alternately lighting the first light emitting unit and the second light emitting unit, , The first optical detection means and the second optical detection means are alternately time-divisionally And switching operation means for moving, in the operating state of the first optical detector and the second optical detection means, a first detection signal obtained respectively, said first
External light removing means for removing the influence of the extraneous light based on a difference operation between the second light emitting section and the second light emitting section in a non-operating state, and the extraneous light removing means, The first optical detection means and the second optical blood pressure calculated from the detection signal of the first optical detection means from which the extraneous light has been removed and the extraneous light removed from the detection signal by the extraneous light removal means. A blood pressure measurement device comprising: a determination unit configured to determine a diastolic blood pressure based on a comparison value of a detection signal of the optical detection unit. 3. At the start of pressurization by the pressurizing / depressurizing means, the first optical detecting means and the second optical detecting means are set so that the detected value of the first optical detecting means is equal to the detected value of the second optical detecting means at a pressurizing force equal to or lower than the average diastolic blood pressure. The detection signal of the optical detection means of
3. The blood pressure measurement device according to claim 1, further comprising an adjustment unit that adjusts a gain of a detection signal of the optical detection unit.
JP62098390A 1987-04-21 1987-04-21 Blood pressure measurement device Expired - Fee Related JP2753829B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62098390A JP2753829B2 (en) 1987-04-21 1987-04-21 Blood pressure measurement device
US07/074,204 US4821734A (en) 1987-04-21 1987-07-16 Sphygmomanometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62098390A JP2753829B2 (en) 1987-04-21 1987-04-21 Blood pressure measurement device

Publications (2)

Publication Number Publication Date
JPS63262125A JPS63262125A (en) 1988-10-28
JP2753829B2 true JP2753829B2 (en) 1998-05-20

Family

ID=14218521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62098390A Expired - Fee Related JP2753829B2 (en) 1987-04-21 1987-04-21 Blood pressure measurement device

Country Status (1)

Country Link
JP (1) JP2753829B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151556A1 (en) * 2018-01-31 2019-08-08 (주)오비이랩 Method, system, and non-transitory computer-readable recording medium for controlling monitoring device including plurality of light emission units and plurality of light reception units

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6613555B2 (en) * 2014-02-13 2019-12-04 日本電気株式会社 Blood pressure estimation device, blood pressure estimation method, blood pressure estimation program, and blood pressure measurement device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586442A (en) * 1978-12-22 1980-06-30 Ueda Electronic Works Indirect yonometer
JPS61199832A (en) * 1985-03-04 1986-09-04 アイシン精機株式会社 Pulse signal detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151556A1 (en) * 2018-01-31 2019-08-08 (주)오비이랩 Method, system, and non-transitory computer-readable recording medium for controlling monitoring device including plurality of light emission units and plurality of light reception units

Also Published As

Publication number Publication date
JPS63262125A (en) 1988-10-28

Similar Documents

Publication Publication Date Title
US4821734A (en) Sphygmomanometer
US7544168B2 (en) Measuring systolic blood pressure by photoplethysmography
US3980075A (en) Photoelectric physiological measuring apparatus
US6022320A (en) Blood pressure monitor apparatus
US4263918A (en) Methods of and apparatus for the measurement of blood pressure
US6186954B1 (en) Blood-pressure monitoring apparatus
US5368026A (en) Oximeter with motion detection for alarm modification
KR100867283B1 (en) Arterial-pulse-wave detecting apparatus
RU2309668C1 (en) Method and device for non-invasive measurement of function of endothelium
KR20150068279A (en) Self-aligning sensor array and method for self-aligning the same
WO2010106994A1 (en) Device for measuring blood pressure information
US20140142434A1 (en) System and method of measurement of systolic blood pressure
US6893400B2 (en) Angiopathy diagnosing apparatus
KR20070113238A (en) Mobile diagnosis device
JPH0417651B2 (en)
CN112426141B (en) Blood pressure detection device and electronic device
WO2018217861A1 (en) Systolic pressure calibration
CN102715893B (en) Device and method for detecting blood pressure and oxyhemoglobin saturation simultaneously
US6338718B1 (en) Superior-and-inferior-limb blood-pressure index measuring apparatus
BEREKSI-REGUIG et al. A new system for measurement of the pulse transit time, the pulse wave velocity and its analysis
WO1985003211A1 (en) Measurement of physiological parameter
JP2753829B2 (en) Blood pressure measurement device
US20070239039A1 (en) Method and apparatus for measuring blood pressures by using blood oxygen concentration and electrocardiography
WO2016108056A1 (en) A ppg-based physiological sensing system with a spatio-temporal sampling approach towards identifying and removing motion artifacts from optical signals
WO2020176206A1 (en) Continuous non-invasive blood pressure measurement device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees