JP2019122552A - Biological signal processing device and control method of the same - Google Patents

Biological signal processing device and control method of the same Download PDF

Info

Publication number
JP2019122552A
JP2019122552A JP2018004885A JP2018004885A JP2019122552A JP 2019122552 A JP2019122552 A JP 2019122552A JP 2018004885 A JP2018004885 A JP 2018004885A JP 2018004885 A JP2018004885 A JP 2018004885A JP 2019122552 A JP2019122552 A JP 2019122552A
Authority
JP
Japan
Prior art keywords
signal processing
pulse rate
processing apparatus
reference value
pulse wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018004885A
Other languages
Japanese (ja)
Other versions
JP7171193B2 (en
Inventor
遼太朗 橋本
Ryotaro Hashimoto
遼太朗 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Denshi Co Ltd
Original Assignee
Fukuda Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Denshi Co Ltd filed Critical Fukuda Denshi Co Ltd
Priority to JP2018004885A priority Critical patent/JP7171193B2/en
Publication of JP2019122552A publication Critical patent/JP2019122552A/en
Priority to JP2022126569A priority patent/JP2022160608A/en
Application granted granted Critical
Publication of JP7171193B2 publication Critical patent/JP7171193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a biological signal processing device and its control method capable of determining a pulse rate from a pulse wave signal by a method hardly affected by noise while reducing an arithmetic amount.SOLUTION: A pulse rate is obtained on the basis of a frequency spectrum of a pulse wave signal. An arithmetic amount is reduced by calculating the frequency spectrum for a range of a frequency determined on the basis of a reference value when calculating the frequency spectrum. The reference value may be determined, for example, on the basis of the pulse rate obtained in the past.SELECTED DRAWING: Figure 2

Description

本発明は生体信号処理装置およびその制御方法に関し、特には脈波信号から脈拍数を求める技術に関する。   The present invention relates to a biological signal processing apparatus and a control method thereof, and more particularly to a technology for obtaining a pulse rate from a pulse wave signal.

脈波信号は心臓や血管に関する様々な情報を含む生体信号であり、計測が容易であることから、広く利用されている。脈波信号は様々な方法で計測することができるが、カフのエアバッグの内圧の変化を脈波信号として計測したり、人体組織の透過または反射光量の変化を脈波信号として計測したりする方法が知られている。   The pulse wave signal is a biological signal containing various information on the heart and blood vessels, and is widely used because it is easy to measure. The pulse wave signal can be measured by various methods, but the change in the internal pressure of the air bag in the cuff is measured as a pulse wave signal, or the change in the amount of transmitted or reflected human tissue is measured as a pulse wave signal. The method is known.

また、脈波信号から脈拍数を求める方法として、脈波信号の特徴点に基づく方法と、脈波信号の周波数スペクトルに基づく方法が知られている。前者は、脈波信号の特徴点(例えばピークやボトム)を検出し、隣接する特徴点間の時間tを求め、脈拍数=60/t(回/分(bpm)とする方法である。また、後者は、脈波信号を周波数解析して求めた周波数スペクトルから、脈動による周波数を選択し、1Hzを60bpmとして脈拍数に換算する方法である(特許文献1)。   Further, as a method of obtaining a pulse rate from a pulse wave signal, a method based on a feature point of the pulse wave signal and a method based on a frequency spectrum of the pulse wave signal are known. The former is a method in which feature points (for example, peak and bottom) of pulse wave signals are detected, time t between adjacent feature points is obtained, and pulse rate = 60 / t (times / minute (bpm). The latter method is a method of selecting a frequency due to pulsation from a frequency spectrum obtained by frequency analysis of a pulse wave signal, and converting it into a pulse rate with 1 Hz as 60 bpm (Patent Document 1).

特許第5655721号公報Patent No. 5655721 gazette

特徴点に基づく方法は簡便であるが、体動などによって脈波信号にノイズが混入した場合、特徴点の検出精度が低下しやすい。そのため、脈拍数の精度がノイズに影響を受けやすいという問題がある。一方、周波数スペクトルに基づく方法はノイズの影響を受けづらいが、周波数スペクトルを求めるための演算量が大きい。そのため、例えば脈拍数を毎秒更新する必要があるような用途では、処理能力の大きなプロセッサや容量の大きなメモリを用いる必要があり、消費電力や製造コストの増加、機器の大型化などの要因となる。   Although the method based on the feature point is simple, when noise is mixed in the pulse wave signal due to a body movement or the like, the detection accuracy of the feature point tends to decrease. Therefore, there is a problem that the accuracy of the pulse rate is susceptible to noise. On the other hand, although the method based on the frequency spectrum is less susceptible to noise, the amount of operation for obtaining the frequency spectrum is large. Therefore, for example, in applications where it is necessary to update the pulse rate every second, it is necessary to use a processor with a large processing capacity or a memory with a large capacity, which causes factors such as an increase in power consumption and manufacturing cost, and an increase in equipment size. .

本発明はこのような従来技術の課題に鑑みてなされたものである。本発明は、演算量を削減しつつ、ノイズの影響を受けづらい方法で脈波信号から脈拍数を求めることのできる生体信号処理装置およびその制御方法を提供することを目的とする。   The present invention has been made in view of such problems of the prior art. An object of the present invention is to provide a biological signal processing apparatus capable of obtaining a pulse rate from a pulse wave signal in a method less susceptible to noise while reducing the amount of calculation, and a control method thereof.

上述の目的は、脈波信号の周波数スペクトルを求める信号処理手段と、周波数スペクトルに基づいて脈拍数を求める第1の取得手段と、を有し、信号処理手段は、基準値に基づいて定まる周波数の範囲についての周波数スペクトルを求めることを特徴とする生体信号処理装置によって達成される。   The above object has signal processing means for obtaining a frequency spectrum of a pulse wave signal, and first obtaining means for obtaining a pulse rate based on the frequency spectrum, and the signal processing means has a frequency determined based on a reference value The present invention is achieved by a biological signal processing apparatus characterized by determining a frequency spectrum for the range of.

このような構成により、本発明によれば、演算量を削減しつつ、ノイズの影響を受けづらい方法で脈波信号から脈拍数を求めることのできる生体信号処理装置およびその制御方法を提供することができる。   With such a configuration, according to the present invention, there is provided a biological signal processing apparatus capable of obtaining a pulse rate from a pulse wave signal by a method less susceptible to noise while reducing the amount of calculation, and a control method thereof. Can.

本発明の実施形態に係る生体信号処理装置の一例としての動脈血酸素飽和度計測装置の機能構成例を示すブロック図である。It is a block diagram showing an example of functional composition of an arterial blood oxygen saturation measuring device as an example of a living body signal processing device concerning an embodiment of the present invention. 実施形態に係るノイズ混入有無の判定動作を説明するためのフローチャートである。It is a flowchart for demonstrating the determination operation | movement of the noise mixing presence or absence which concerns on embodiment. 安静時の脈波信号および周波数スペクトルの例を示す図である。It is a figure which shows the example of the pulse wave signal at the time of rest, and a frequency spectrum. 体動ノイズが混入した脈波信号および周波数スペクトルの例を示す図である。It is a figure which shows the example of the pulse-wave signal and the frequency spectrum which the body movement noise mixed.

以下、添付図面を参照して、本発明の例示的な実施形態について詳細な説明する。なお、ここでは本発明に係る生体信号処理装置の一例としての動脈血酸素飽和度(SpO)計測装置に関して説明する。しかし、本発明は、脈波信号を取得可能な任意の電子機器に適用可能である。このような電子機器には、生体情報モニタ、睡眠評価装置(ポリグラフィー)、血圧計、脈波計といった医療機器だけでなく、生体信号処理アプリケーションを実行可能な一般的なコンピュータ機器(スマートフォン、タブレット端末、メディアプレーヤ、スマートウォッチ、ゲーム機など)が含まれるが、これらに限定されない。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Here, an arterial blood oxygen saturation (SpO 2 ) measurement apparatus will be described as an example of the biological signal processing apparatus according to the present invention. However, the present invention is applicable to any electronic device capable of acquiring a pulse wave signal. Such electronic devices include not only medical devices such as a biological information monitor, a sleep evaluation device (polygraph), a sphygmomanometer, and a sphygmograph, but also general computer devices (smartphones and tablets) capable of executing biological signal processing applications Terminals, media players, smart watches, game consoles, etc.), but is not limited thereto.

図1は、本発明の一実施形態に係るSpO計測装置の機能構成例を示すブロック図である。
センサ部100は、第1の波長の光を発する第1発光部101と、第2の波長の光を発する第2発光部102と、受光量に応じた電気信号を出力する受光部103とを有する。受光部103は第1発光部101が発した光および第2発光部102が発した光の透過光または反射光を受光するように配置されている。
FIG. 1 is a block diagram showing an example of a functional configuration of an SpO 2 measurement apparatus according to an embodiment of the present invention.
The sensor unit 100 includes a first light emitting unit 101 that emits light of a first wavelength, a second light emitting unit 102 that emits light of a second wavelength, and a light receiving unit 103 that outputs an electrical signal according to the amount of light received. Have. The light receiving unit 103 is disposed to receive transmitted light or reflected light of the light emitted from the first light emitting unit 101 and the light emitted from the second light emitting unit 102.

第1および第2発光部101、102としては、SpO計測装置では一般的に赤色光と赤外光とを発するLEDが用いられる。ただし、波長や光源の種類についてはこれらに限定されず、波長λ1、λ2における酸化ヘモグロビンの吸光度をa1λ1、a1λ2、還元ヘモグロビンの吸光度をa2λ1、a2λ2とすると、a1λ1とa1λ2、a2λ1とa2λ2がそれぞれ有意に異なる任意の波長λ1、λ2の光を発生する任意の光源を用いることができる。本実施形態では一例として、第1発光部101に波長660nmの赤色光を発生するLEDを、第2発光部102に波長900nmの赤外光を発生するLEDを用いるものとする。 As the first and second light emitting units 101 and 102, an LED emitting red light and infrared light is generally used in the SpO 2 measuring device. However, the wavelengths and types of light sources are not limited to these, and assuming that the absorbance of oxygenated hemoglobin at wavelengths λ1 and λ2 is a1 λ1 and a1 λ2 , and the absorbance of reduced hemoglobin is a2 λ1 and a2 λ2 , a1 λ1 and a1 λ2 , Any light source can be used that generates light of any wavelength λ1 and λ2 where a2 λ1 and a2 λ2 are significantly different. In this embodiment, as an example, an LED that generates red light with a wavelength of 660 nm in the first light emitting unit 101 is used, and an LED that generates infrared light with a wavelength of 900 nm in the second light emitting unit 102 is used.

透過光量を検出する構成の場合、測定部位(耳朶や指尖など)を挟んで第1および第2発光部101、102と対向する位置に受光部103が配置される。また、反射光量を検出する構成の場合、第1発光部101、と受光部103、第2発光部102が近接して配置される。なお、透過光量を検出するか反射光量を検出するかによらず、第1および第2発光部101、102は近接して配置され、また受光部103は第1および第2発光部から同様の条件(例えば距離や角度)で透過光または反射光を受光するように配置される。   In the case of the configuration for detecting the amount of transmitted light, the light receiving unit 103 is disposed at a position facing the first and second light emitting units 101 and 102 with the measurement site (such as an earwax or a finger tip) interposed therebetween. Further, in the case of a configuration in which the amount of reflected light is detected, the first light emitting unit 101, the light receiving unit 103, and the second light emitting unit 102 are disposed in proximity to each other. The first and second light emitting units 101 and 102 are disposed close to each other regardless of whether the transmitted light amount is detected or the reflected light amount is detected, and the light receiving unit 103 is similar to that from the first and second light emitting units. It is arranged to receive transmitted light or reflected light under conditions (for example, distance or angle).

受光部103は、第1発光部101および第2発光部102が発した光の透過光または反射光を受光し、受光量に応じた電気信号を出力する。受光部103は、検出する透過光または反射光の波長を感度波長とする受光センサ、例えばフォトダイオードやフォトトランジスタであってよい。受光部103により、第1および第2の波長の光についての、計測部位による透過光量あるいは反射光量の変化として、第1および第2の脈波信号が検出される。   The light receiving unit 103 receives transmitted light or reflected light of the light emitted from the first light emitting unit 101 and the second light emitting unit 102, and outputs an electrical signal according to the amount of light received. The light receiving unit 103 may be a light receiving sensor, for example, a photodiode or a phototransistor, whose sensitivity is the wavelength of transmitted light or reflected light to be detected. The light receiving unit 103 detects the first and second pulse wave signals as a change in the amount of light transmitted or the amount of light reflected by the measurement site for the light of the first and second wavelengths.

制御部110は例えばプログラマブルプロセッサ、不揮発性メモリ(ROM)、および揮発性メモリ(RAM)を有し、ROMに記憶されたプログラムをRAMに読み込んで実行することによって各部を制御し、SpO計測装置の機能を実現する。なお、制御部110の動作のうち少なくとも一部はプログラマブルロジックアレイなどのハードウェア回路によって実現されてもよい。 Control unit 110, for example a programmable processor, a nonvolatile memory (ROM), and volatile a memory (RAM), a program stored in the ROM and controls each unit by executing read into RAM, SpO 2 measurement device To realize the function of Note that at least part of the operation of the control unit 110 may be realized by a hardware circuit such as a programmable logic array.

駆動部120は制御部110の指令による発光量および発光タイミングに従い、第1および第2発光部101、102を駆動する。制御部110は、1つの受光部103を用いて2つの波長についての透過光量または反射光量を検出するため、第1発光部101と第2発光部とを交互に所定時間ずつ発光させるように発光タイミングを制御する。   The driving unit 120 drives the first and second light emitting units 101 and 102 in accordance with the light emission amount and the light emission timing according to an instruction of the control unit 110. The control unit 110 emits light so that the first light emitting unit 101 and the second light emitting unit alternately emit light for a predetermined time, in order to detect the transmitted light amount or the reflected light amount for two wavelengths using one light receiving unit 103. Control the timing.

信号処理部130は、受光部103が出力する信号に増幅やA/D変換などの信号処理を適用し、脈波信号として制御部110に出力する。信号処理部130は、第1発光部101と第2発光部102の発光タイミングに従って、受光部130が出力信号を、第1発光部101が発した光の透過または反射光量を示す第1脈波信号と、第2発光部101が発した光の透過または反射光量を示す第2脈波信号として出力する。   The signal processing unit 130 applies signal processing such as amplification and A / D conversion to the signal output from the light receiving unit 103, and outputs the signal as a pulse wave signal to the control unit 110. The signal processing unit 130 outputs an output signal of the light receiving unit 130 according to the light emission timing of the first light emitting unit 101 and the second light emitting unit 102, and a first pulse wave indicating the transmitted or reflected light quantity of the light emitted by the first light emitting unit 101. It outputs as a 2nd pulse-wave signal which shows the permeation | transmission or reflected light quantity of the signal and the light which the 2nd light emission part 101 emitted.

なお、第1発光部101と第2発光部102とは同時に発光しないため、厳密には第1脈波信号と第2脈波信号の取得タイミングは異なる。しかし、発光部101と第2発光部102の発光周波数を脈波の周波数成分よりも十分高くすることで、第1脈波信号および第2脈波信号を同じタイミングでサンプリングされた計測値群として取り扱うことができる。従って、以下では第1脈波信号および第2脈波信号を同じタイミングで取得したものとして説明する。   In addition, since the first light emitting unit 101 and the second light emitting unit 102 do not simultaneously emit light, strictly, the acquisition timings of the first pulse wave signal and the second pulse wave signal are different. However, by making the light emission frequency of the light emitting unit 101 and the second light emitting unit 102 sufficiently higher than the frequency component of the pulse wave, the first pulse wave signal and the second pulse wave signal are sampled as measurement value groups sampled at the same timing. It can be handled. Therefore, in the following description, it is assumed that the first pulse wave signal and the second pulse wave signal are acquired at the same timing.

制御部110は第1および第2脈波信号を記録部140に記録する。記録部140は例えば不揮発性メモリであり、また、メモリカードのような着脱可能な記録媒体であってもよい。
表示部150は例えば液晶ディスプレイであり、制御部110の制御に従い、SpO計測値および、SpO計測装置の動作状態や設定メニュー画面などを表示する。
The control unit 110 records the first and second pulse wave signals in the recording unit 140. The recording unit 140 is, for example, a non-volatile memory, and may be a removable recording medium such as a memory card.
The display unit 150 is, for example, a liquid crystal display, and displays the SpO 2 measurement value, the operating state of the SpO 2 measurement apparatus, the setting menu screen, and the like under the control of the control unit 110.

操作部160はユーザがSpO計測装置に指示を入力するためのボタン、スイッチ、キーなどを含む。表示部150がタッチディスプレイの場合、タッチパネル部分は操作部160に含まれる。
外部インタフェース(I/F)170は外部機器と有線または無線によって通信するための通信インタフェースである。
The operation unit 160 includes a button, a switch, a key, and the like for the user to input an instruction to the SpO 2 measurement apparatus. When the display unit 150 is a touch display, the touch panel portion is included in the operation unit 160.
An external interface (I / F) 170 is a communication interface for communicating with an external device in a wired or wireless manner.

SpO計測装置は、例えばLambert−Beerの法則を用いて、血液中のヘモグロビン(酸化ヘモグロビンと還元ヘモグロビン)のモル吸光係数と、ヘモグロビンによる吸光度の異なる2波長の光の透過光量とからSpOを計測することができる。なお、これらのパラメータに基づくSpOの計測方法は公知であるため、その詳細についての説明は省略する。 SpO 2 measurement device using, for example, law Lambert-Beer, a molar extinction coefficient of hemoglobin in blood (reduced and oxidized hemoglobin hemoglobin), the SpO 2 from the amount of transmitted light of two wavelengths having different absorption by hemoglobin It can be measured. In addition, since the measuring method of SpO 2 based on these parameters is known, the description about the detail is abbreviate | omitted.

次に、本発明における脈拍数の計測方法に関して図2のフローチャートを用いて説明する。本発明は、第1脈波信号および第2脈波信号の少なくとも一方に対して実施することができる。   Next, the method of measuring the pulse rate according to the present invention will be described with reference to the flowchart of FIG. The present invention can be implemented for at least one of the first pulse wave signal and the second pulse wave signal.

S101で制御部110は脈波信号データを取得する。制御部110は、記録部140に記録された脈波信号データを取得してもよいし、外部装置から外部I/F170を通じて脈波信号データを取得してもよい。あるいは、信号処理部130から供給される脈波信号データを用いてもよい。脈波信号データの取得先に特に制限はない。制御部110は内部のRAMの一部を、直近の所定時間分の脈波信号データを蓄積するバッファとして用い、バッファ内の脈波信号データに対して脈拍数の計測処理を適用することができる。   At S101, the control unit 110 acquires pulse wave signal data. The control unit 110 may acquire pulse wave signal data recorded in the recording unit 140, or may acquire pulse wave signal data from an external device through the external I / F 170. Alternatively, pulse wave signal data supplied from the signal processing unit 130 may be used. There is no particular limitation on the acquisition source of pulse wave signal data. The control unit 110 can use a part of the internal RAM as a buffer for accumulating pulse wave signal data for the latest predetermined time, and apply the pulse rate measurement process to pulse wave signal data in the buffer. .

本実施形態では脈波の特徴点の距離に基づく脈拍数の計測も行うため、少なくとも2拍分の脈波信号データがバッファに含まれるようにする。また、周波数解析には周波数の逆数の倍の時間分の脈波信号データが必要である。本実施形態では一例として直近10秒分の脈波信号データをRAMに蓄積するものとする。なお、バッファに蓄積する脈波信号データの時間が長いほど分解能を高めることができるが、機器の仕様(計測可能な脈拍数の範囲)や、機器のメモリ容量などに応じて適切な時間を定めることができる。   In the present embodiment, measurement of the pulse rate based on the distance of the feature point of the pulse wave is also performed, so that pulse wave signal data for at least two beats is included in the buffer. In addition, frequency analysis requires pulse wave signal data for a time that is twice the reciprocal of the frequency. In this embodiment, as an example, pulse wave signal data for the last 10 seconds is stored in the RAM. The resolution can be increased as the pulse wave data stored in the buffer becomes longer, but the appropriate time is determined according to the device specifications (range of measurable pulse rate) and the memory capacity of the device. be able to.

なお、周波数解析を適用する脈波信号データのサンプリング周波数は、記録用の脈波信号データを生成するためのサンプリング周波数よりも低くてよい。例えば脈波の上限を300bpmまでとした場合、脈波の周波数帯域の上限は5Hzである。従って、20〜30Hz程度のサンプリング周波数があれば十分である。一方、記録用の脈波信号データについては、100〜300Hz程度のサンプリング周波数とする場合が多いため、制御部110は必要に応じて脈波信号データをダウンサンプリングしてRAMに蓄積する。   The sampling frequency of pulse wave signal data to which frequency analysis is applied may be lower than the sampling frequency for generating pulse wave signal data for recording. For example, when the upper limit of the pulse wave is up to 300 bpm, the upper limit of the frequency band of the pulse wave is 5 Hz. Therefore, a sampling frequency of about 20 to 30 Hz is sufficient. On the other hand, since pulse wave signal data for recording is often set to a sampling frequency of about 100 to 300 Hz, the control unit 110 downsamples pulse wave signal data as needed and accumulates it in the RAM.

S103で制御部110は、脈波信号の特徴点に基づいて脈拍数を計測する処理を開始する。制御部110は、脈波信号から予め定められた特徴点(例えばピークまたはボトム)を検出し、隣接する特徴点間の距離(サンプル数)とサンプリング周期とに基づいて、1拍の周期を求める。そして、制御部110は、60秒を1拍分の周期で除算することにより、脈拍数(回/分またはbpm)を求める。制御部110は、直近の2つの特徴点に基づいて、1拍ごとに脈拍数を求める。   At S103, the control unit 110 starts the process of measuring the pulse rate based on the feature points of the pulse wave signal. The control unit 110 detects a predetermined feature point (for example, peak or bottom) from the pulse wave signal, and obtains the cycle of one beat based on the distance (the number of samples) between adjacent feature points and the sampling cycle. . Then, the control unit 110 obtains a pulse rate (times / minute or bpm) by dividing 60 seconds by a cycle of one beat. The control unit 110 obtains the pulse rate for each beat based on the two most recent feature points.

S105で制御部110は、周波数解析によって周波数スペクトルを求める周波数の範囲を決定する。本実施形態では、周波数スペクトルを求める周波数の範囲を、脈拍数の基準値に基づく特定の範囲に限定することにより、周波数解析の演算負荷を軽減する。本実施形態では基準値の初期値を、S103で開始した、特徴点に基づいて計測した脈拍数とする。なお、脈波信号の特徴点に基づいて計測した脈拍数を、周波数スペクトルを求める周波数の範囲を決定する際の基準値として用いる場合、体動などによって発生するノイズの影響を受けていない、信頼性が高いと考えられる脈拍数を用いるようにする。   In step S105, the control unit 110 determines the range of frequencies for which a frequency spectrum is to be obtained by frequency analysis. In the present embodiment, the operation load of frequency analysis is reduced by limiting the range of the frequency for which the frequency spectrum is to be obtained to a specific range based on the pulse rate reference value. In the present embodiment, the initial value of the reference value is set to the pulse rate measured based on the feature point started in S103. In addition, when using the pulse rate measured based on the feature point of the pulse wave signal as a reference value at the time of determining the range of the frequency which calculates | requires a frequency spectrum, it has not received the influence of the noise generate | occur | produced by body movement etc. Use a pulse rate that is considered to be highly sexual.

例えば、制御部110は、特徴点に基づいて計測した脈拍数の直近の所定複数回におけるばらつきを算出し、ばらつきが予め定められた閾値未満である場合に、その平均値を基準値として用いることができる。なお、これは特徴点に基づいて計測した脈拍数の信頼性を評価するための手法の単なる一例であり、他の方法によって信頼性を評価してもよい。なお、特徴点に基づいて計測した脈拍数の信頼性が低く、初期値が定まらない場合には、予め定めた脈拍数を基準値の初期値として用いてもよい。また、周波数解析の分解能および基準値の有効桁数は脈拍数に要求される精度を満たすように定める。例えば、脈拍数を1bpm単位の精度で求める必要があれば、周波数解析の分解能を1bpm相当の周波数より細かくする。また、基準値の有効桁数も1bpm単位より細かくする。   For example, the control unit 110 calculates the variation of the pulse rate measured on the basis of the feature points in a predetermined number of the most recent times, and uses the average value as a reference value when the variation is less than a predetermined threshold. Can. In addition, this is only an example of the method for evaluating the reliability of the pulse rate measured based on the feature point, You may evaluate reliability by another method. If the reliability of the pulse rate measured based on the feature points is low and the initial value can not be determined, a predetermined pulse rate may be used as the initial value of the reference value. Also, the resolution of the frequency analysis and the number of significant digits of the reference value are determined to meet the accuracy required for the pulse rate. For example, if it is necessary to determine the pulse rate with an accuracy of 1 bpm, the resolution of frequency analysis is made finer than the frequency equivalent to 1 bpm. Also, the number of significant digits of the reference value should be smaller than 1 bpm.

周波数スペクトルを求める周波数の範囲を限定できれば、脈拍数の基準値に基づく周波数の範囲の決定方法には特に制限はない。ここでは一例として、脈拍数の基準値を中心とした所定範囲の脈拍数に対応する周波数の範囲を、周波数スペクトルを求める周波数の範囲として決定するものとする。例えば、基準値±8bpmに対応する周波数の範囲を、周波数スペクトルを求める周波数の範囲として決定することができる。   There is no particular limitation on the method of determining the frequency range based on the pulse rate reference value as long as the frequency range for which the frequency spectrum is to be obtained can be limited. Here, as an example, a range of frequencies corresponding to a pulse rate in a predetermined range centering on a reference value of pulse rates is determined as a range of frequencies for which a frequency spectrum is to be obtained. For example, the range of frequencies corresponding to the reference value ± 8 bpm can be determined as the range of frequencies for which the frequency spectrum is to be determined.

S107で制御部110は、RAMに蓄積されている脈波信号データに対し、S105で決定した周波数の範囲で周波数解析を行う。対象とする周波数の範囲を定めることが可能であれば、任意の方法で周波数解析を行うことができる。ここでは一例としてウェーブレット変換を用いるものとするが、フーリエ変換など、他の方法を用いてもよい。   At S107, the control unit 110 performs frequency analysis on the pulse wave signal data stored in the RAM in the frequency range determined at S105. As long as it is possible to define the range of the frequency of interest, frequency analysis can be performed by any method. Here, wavelet transformation is used as an example, but other methods such as Fourier transformation may be used.

S109で制御部110は、周波数解析によって得られた周波数スペクトルにピークが存在するか否か判定し、存在すると判定されればS111に、存在すると判定されなければS117に、それぞれ処理を進める。ピークの存在有無の判定は、公知の任意の方法で実行することができる。   In step S109, the control unit 110 determines whether a peak exists in the frequency spectrum obtained by the frequency analysis. If it is determined that the peak exists, the process proceeds to step S111. If not determined, the process proceeds to step S117. The determination of the presence or absence of the peak can be performed by any known method.

なお、周波数解析した周波数の範囲の上限または下限で周波数スペクトルのパワーが最大となった場合、ピークであるか否かを判定するために、周波数解析の範囲を拡大してもよい。例えば、周波数の範囲の上限で周波数スペクトルのパワーが最大となった場合、現在より一拍多い脈拍数の範囲まで周波数解析を行うようにしてもよい。実際には、制御部110は、周波数解析した周波数の範囲の上限または下限で周波数スペクトルのパワーが最大となった場合、S107に処理を戻し、より高い(または低い)周波数についての周波数解析を追加して実行する。そして、制御部110は、S109で再度ピーク有無の判定を実行する。   When the power of the frequency spectrum is maximized at the upper limit or the lower limit of the frequency range subjected to the frequency analysis, the range of the frequency analysis may be expanded to determine whether it is a peak. For example, when the power of the frequency spectrum is maximized at the upper end of the frequency range, the frequency analysis may be performed to the range of the pulse rate one pulse more than the present. In practice, when the power of the frequency spectrum is maximized at the upper limit or the lower limit of the frequency-analyzed frequency range, the control unit 110 returns the process to S107 and adds a frequency analysis for higher (or lower) frequencies And run. Then, the control unit 110 again determines the presence or absence of a peak in S109.

S111で制御部110は、周波数スペクトルのピークに基づいて脈拍数を決定する。具体的には、制御部110は、周波数スペクトルのピークに対応する脈拍数を、現在の脈拍数の計測値として決定する。   At S111, the control unit 110 determines the pulse rate based on the peak of the frequency spectrum. Specifically, control unit 110 determines the pulse rate corresponding to the peak of the frequency spectrum as the current pulse rate measurement value.

S113で制御部110は、S111で決定した脈拍数によって基準値を更新する。このように、最新の脈拍数を基準値として、次に周波数解析を適用する周波数の範囲を更新する。   At S113, the control unit 110 updates the reference value with the pulse rate determined at S111. Thus, with the latest pulse rate as a reference value, the frequency range to which the frequency analysis is applied next is updated.

S115で制御部110は、計測終了条件を満たしたか否か判定し、満たしたと判定されれば計測処理を終了し、満たしたと判定されなければ処理をS105に戻す。計測終了条件は例えば操作部160からの終了指示入力の検出や、脈波信号データの最後まで計測が終了したことなどであってよいが、これらに限定されない。   In S115, the control unit 110 determines whether the measurement termination condition is satisfied, and if it is determined that the measurement completion condition is satisfied, the measurement processing is ended, and if it is not determined that the measurement completion condition is satisfied, the process returns to S105. The measurement end condition may be, for example, detection of an end instruction input from the operation unit 160, completion of measurement up to the end of pulse wave signal data, and the like, but is not limited thereto.

一方、S109で周波数スペクトルでピークが検出されなかった場合、周波数スペクトルに基づいて脈拍数を求めることができない。この場合、S117で制御部110は、並行して実行している、特徴点に基づいて脈拍数を計測する処理において、信頼性の高い計測値が得られているか否かを判定する。例えば制御部110は、直近の複数の計測値のばらつきが予め定められた閾値未満であれば、特徴点に基づいて計測した脈拍数の信頼性が高いと判定することができる。ただし、他の方法で信頼性を評価してもよい。   On the other hand, if no peak is detected in the frequency spectrum at S109, the pulse rate can not be determined based on the frequency spectrum. In this case, in step S117, the control unit 110 determines whether a highly reliable measurement value is obtained in the process of measuring the pulse rate based on the feature points, which is being executed in parallel. For example, the control unit 110 can determine that the reliability of the pulse rate measured based on the feature point is high if the variation of the latest plurality of measurement values is less than a predetermined threshold. However, the reliability may be evaluated by other methods.

特徴点に基づいて計測した脈拍数の信頼性が高いと判定された場合、制御部110はS119で、特徴点に基づいて計測した脈拍数によって基準値を更新し、処理をS115に進める。一方、特徴点に基づいて計測した脈拍数の信頼性が高いと判定されなかった場合、制御部110は基準値を更新せずに処理をS115に進める。   If it is determined that the reliability of the pulse rate measured based on the feature point is high, the control unit 110 updates the reference value with the pulse rate measured based on the feature point in S119, and advances the process to S115. On the other hand, when it is not determined that the reliability of the pulse rate measured based on the feature point is high, the control unit 110 advances the process to S115 without updating the reference value.

周波数スペクトルにおいてピークが検出できないのは、周波数解析範囲に対応する脈拍数の範囲から実際の脈拍数が外れた場合だけではない。周波数解析では分解能に応じた離散的な周波数についての周波数スペクトルを求めているため、分解能が粗いとピークが見つからないことが起こりうる。また、ノイズの影響により、ノイズのピークと脈拍数のピークとの差が小さくなった場合にも明確なピークが見つからないことが起こりうる。   A peak can not be detected in the frequency spectrum not only when the actual pulse rate deviates from the pulse rate range corresponding to the frequency analysis range. In frequency analysis, since the frequency spectrum of discrete frequencies corresponding to the resolution is obtained, it may happen that the peak is not found if the resolution is coarse. Also, due to the influence of noise, a clear peak may not be found even when the difference between the noise peak and the pulse rate peak becomes smaller.

ノイズの影響でピークが見つからない場合、特徴点に基づいて計測した脈拍数のばらつきも大きくなり、信頼性が低下する。そのため、特徴点に基づいて計測した脈拍数の信頼性が高いとS117で判定されない場合には、周波数スペクトルにおいてピークが見つからない場合であっても基準値を更新しない。   If no peak is found due to the influence of noise, the variation in the pulse rate measured based on the feature points also increases, and the reliability decreases. Therefore, when it is not determined in S117 that the reliability of the pulse rate measured based on the feature point is high, the reference value is not updated even if no peak is found in the frequency spectrum.

一方、特徴点に基づいて計測した脈拍数の信頼性が高いとS117で判定された場合には、周波数解析範囲に対応する脈拍数の範囲から実際の脈拍数が外れた場合が考えられる。そのため、S119で制御部110は、特徴点に基づいて計測した脈拍数に基づいて基準値を設定し直す(基準値を見直す)。   On the other hand, when it is determined in S117 that the reliability of the pulse rate measured based on the feature points is high, there may be a case where the actual pulse rate deviates from the range of pulse rates corresponding to the frequency analysis range. Therefore, in step S119, the control unit 110 resets the reference value based on the pulse rate measured based on the feature point (re-evaluates the reference value).

なお、S109で見つかったピークは、ノイズのピークである可能性もあるが、周波数解析の範囲を基準値に基づく範囲に限定しているため、実際の脈拍数のピークも周波数解析の範囲に含まれている可能性が高い。仮にノイズのピークに基づいて脈拍数を決定しても、実際の脈拍数との差は小さい可能性が高いため、本実施形態ではS109で見つかったピークに基づいて脈拍数を決定している。   Although the peak found in S109 may be a noise peak, since the frequency analysis range is limited to the range based on the reference value, the actual pulse rate peak is also included in the frequency analysis range. It is likely to have been. Even if the pulse rate is determined based on the noise peak, the difference with the actual pulse rate is likely to be small, so in this embodiment, the pulse rate is determined based on the peak found in S109.

図3(a)は、安静時における脈波信号の例を示している。また、図3(b)および(c)は、図3(a)に示した脈波信号の周波数スペクトルを示している。なお、便宜上、図3(b)では生体信号処理装置が計測可能な脈拍数の範囲(20〜300bpmとする)の全体に対応する周波数の範囲についての周波数スペクトルを示している。また、図3(c)は、本実施形態の方法により、基準値(ここでは65bpm)±9bpmに対応する周波数の範囲に限定して求めた周波数スペクトルを示している。   FIG. 3A shows an example of a pulse wave signal at rest. Moreover, FIG.3 (b) and (c) have shown the frequency spectrum of the pulse wave signal shown to FIG. 3 (a). For the sake of convenience, FIG. 3B shows a frequency spectrum of a range of frequencies corresponding to the entire range of pulse rates (20 to 300 bpm) which can be measured by the biological signal processing apparatus. Further, FIG. 3C shows a frequency spectrum obtained by limiting the frequency range corresponding to the reference value (here, 65 bpm) ± 9 bpm by the method of the present embodiment.

図3(b)および(c)に示す例では、いずれも66bpm(に対応する周波数)が周波数スペクトルのピークとして検出されている。例えばウェーブレット変換によって周波数スペクトルを求める場合、周波数の範囲、分解能、および周波数の逆数に比例した量の演算が必要となる。したがって、20〜300bpmの範囲を対象とする場合に対し、65±9bpmの範囲を対象とすることで、演算量は約10分の1に削減できる。   In the examples shown in FIGS. 3 (b) and 3 (c), 66 bpm (a frequency corresponding to that) is detected as the peak of the frequency spectrum. For example, in the case of obtaining a frequency spectrum by wavelet transform, it is necessary to calculate the frequency range, the resolution, and an amount proportional to the reciprocal of the frequency. Therefore, the calculation amount can be reduced to about 1/10 by targeting the range of 65 ± 9 bpm, compared with the case of targeting the range of 20-300 bpm.

図4(a)は、体動によるノイズが重畳した脈波信号の例を示している。この脈波信号について、図3と同様に求めた周波数スペクトルを図4(b)および(c)に示す。図4(a)に示すような脈波信号の場合、特徴点に基づいて計測した脈拍数はノイズの影響によって値が大きくばらつき、信頼性が低くなる。一方で、周波数スペクトルでは63bpmにピークが現れており、脈拍数を正しく計測できる。   FIG. 4A shows an example of a pulse wave signal on which noise due to body movement is superimposed. About this pulse wave signal, the frequency spectrum calculated | required similarly to FIG. 3 is shown in FIG.4 (b) and (c). In the case of a pulse wave signal as shown in FIG. 4 (a), the pulse rate measured based on the feature points largely varies in value due to the influence of noise, and the reliability becomes low. On the other hand, a peak appears at 63 bpm in the frequency spectrum, and the pulse rate can be measured correctly.

なお、ノイズが重畳した場合、図4(b)に示すように、周波数スペクトルにもノイズのピークが現れる(100bpm付近のピーク)。そのため、ノイズのピークが大きい場合には、ピークの誤検出によって脈拍数の計測値が大きく変動することが起こりうる。一方、また、本実施形態では周波数スペクトルを求める範囲を限定しているため、図4(c)に示すように、周波数スペクトルにはノイズのピークが含まれない。つまり、周波数スペクトルを求める範囲を限定することにより、演算量を削減できるだけでなく、周波数解析の範囲外の周波数におけるノイズの影響を排除できるという効果もある。   When noise is superimposed, as shown in FIG. 4B, a noise peak also appears in the frequency spectrum (a peak near 100 bpm). Therefore, when the noise peak is large, it may happen that the measurement value of the pulse rate largely fluctuates due to the false detection of the peak. On the other hand, in the present embodiment, since the range for obtaining the frequency spectrum is limited, as shown in FIG. 4C, the frequency spectrum does not include the noise peak. In other words, by limiting the range for obtaining the frequency spectrum, not only the amount of computation can be reduced, but also the effect of noise at frequencies outside the range of frequency analysis can be eliminated.

以上説明したように、本実施形態によれば、脈波信号の周波数スペクトルに基づいて脈拍数を求める生体情報処理装置において、周波数スペクトルを求める周波数の範囲を、基準値に基づく範囲に限定するようにした。そのため、広範な周波数の範囲に対して周波数スペクトルを求める場合よりも大幅に演算負荷を軽減することができる。   As described above, according to the present embodiment, in the biological information processing apparatus for obtaining the pulse rate based on the frequency spectrum of the pulse wave signal, the frequency range for obtaining the frequency spectrum is limited to the range based on the reference value. I made it. Therefore, the calculation load can be significantly reduced compared to the case of obtaining the frequency spectrum for a wide range of frequencies.

(他の実施形態)
なお、上述の実施形態では、脈波信号の特徴点に基づいて計測した脈拍数を用いて、基準値の初期値(見直し処理後の初期値を含む)を決定する構成について説明した。しかし、他の方法で求めた脈拍数または心拍数を用いてもよい。
(Other embodiments)
In the above embodiment, the configuration has been described in which the initial value of the reference value (including the initial value after the review process) is determined using the pulse rate measured based on the feature points of the pulse wave signal. However, the pulse rate or heart rate determined by other methods may be used.

なお、本発明に係る生体信号処理装置は、一般的に入手可能な、パーソナルコンピュータのような汎用情報処理装置に、上述した動作を実行させるプログラム(アプリケーションソフトウェア)として実現することもできる。従って、このようなプログラムおよび、プログラムを格納した記録媒体(CD−ROM、DVD−ROM等の光学記録媒体や、磁気ディスクのような磁気記録媒体、半導体メモリカードなど)もまた本発明を構成する。   The biological signal processing apparatus according to the present invention can also be realized as a program (application software) that causes a general-purpose information processing apparatus, such as a personal computer, which is generally available, to execute the above-described operation. Therefore, such a program and a recording medium storing the program (an optical recording medium such as a CD-ROM or a DVD-ROM, a magnetic recording medium such as a magnetic disk, a semiconductor memory card, etc.) also constitute the present invention. .

100…センサ、101…第1発光部、102…第2発光部、103…第1受光部、110…制御部、120…駆動部、130…信号処理部 100 ... sensor, 101 ... first light emitting unit, 102 ... second light emitting unit, 103 ... first light receiving unit, 110 ... control unit, 120 ... driving unit, 130 ... signal processing unit

Claims (12)

脈波信号の周波数スペクトルを求める信号処理手段と、
前記周波数スペクトルに基づいて脈拍数を求める第1の取得手段と、を有し、
前記信号処理手段は、基準値に基づいて定まる周波数の範囲についての周波数スペクトルを求めることを特徴とする生体信号処理装置。
Signal processing means for determining the frequency spectrum of the pulse wave signal;
And d) first acquisition means for determining a pulse rate based on the frequency spectrum.
The biological signal processing apparatus, wherein the signal processing means determines a frequency spectrum for a range of frequencies determined based on a reference value.
前記周波数の範囲が、前記基準値を中心とした特定の大きさを有する範囲であることを特徴とする請求項1に記載の生体信号処理装置。   The biological signal processing apparatus according to claim 1, wherein the range of the frequency is a range having a specific magnitude centered on the reference value. 前記基準値が、過去に求められた脈拍数に基づくことを特徴とする請求項1または請求項2に記載の生体信号処理装置。   The biological signal processing apparatus according to claim 1, wherein the reference value is based on a pulse rate obtained in the past. 前記基準値が、前記第1の取得手段とは異なる手段によって求められた脈拍数に基づくことを特徴とする請求項3に記載の生体信号処理装置。   The biological signal processing apparatus according to claim 3, wherein the reference value is based on a pulse rate obtained by means different from the first acquisition means. 前記基準値を更新する更新手段をさらに有することを特徴とする請求項1から請求項4のいずれか1項に記載の生体信号処理装置。   The biological signal processing apparatus according to any one of claims 1 to 4, further comprising update means for updating the reference value. 前記更新手段は、前記第1の取得手段によって求められた脈拍数により、前記基準値を更新することを特徴とする請求項5に記載の生体信号処理装置。   The biological signal processing apparatus according to claim 5, wherein the updating unit updates the reference value by the pulse rate obtained by the first acquisition unit. 前記脈波信号の特徴点間距離に基づいて脈拍数を求める第2の取得手段をさらに有し、
前記更新手段は、前記第1の取得手段によって脈拍数が求められない場合に、前記第2の取得手段が求めた脈拍数に基づいて前記基準値を更新する、
ことを特徴とする請求項5または請求項6に記載の生体信号処理装置。
The image processing apparatus further includes a second acquisition unit that obtains a pulse rate based on a distance between feature points of the pulse wave signal.
The updating means updates the reference value based on the pulse rate obtained by the second obtaining means when the pulse rate is not obtained by the first obtaining means.
The biological signal processing apparatus according to claim 5 or 6, characterized in that
前記更新手段は、前記第2の取得手段が求めた脈拍数の信頼度が低いと判定される場合には、前記第1の取得手段によって脈拍数が求められない場合であっても前記基準値を更新しないことを特徴とする請求項7に記載の生体信号処理装置。   When it is determined that the reliability of the pulse rate obtained by the second acquisition unit is low, the update unit may perform the reference value even if the pulse rate is not calculated by the first acquisition unit. The biological signal processing apparatus according to claim 7, wherein: 前記脈波信号の計測と並行して前記脈拍数を順次求めることを特徴とする請求項1から請求項8のいずれか1項に記載の生体信号処理装置。   The biological signal processing apparatus according to any one of claims 1 to 8, wherein the pulse rate is sequentially obtained in parallel with the measurement of the pulse wave signal. 前記脈波信号が、血中酸素飽和度の計測のために計測された脈波信号であることを特徴とする請求項1から請求項9のいずれか1項に記載の生体信号処理装置。   The biological signal processing apparatus according to any one of claims 1 to 9, wherein the pulse wave signal is a pulse wave signal measured to measure blood oxygen saturation. 生体信号処理装置が実行する生体信号処理方法であって、
脈波信号の周波数スペクトルを求める信号処理工程と、
前記周波数スペクトルに基づいて脈拍数を求める第1の取得工程と、を有し、
前記信号処理工程では、基準値に基づいて定まる特定の周波数の範囲についての周波数スペクトルを求めることを特徴とする生体信号処理方法。
A biological signal processing method performed by a biological signal processing apparatus, comprising:
A signal processing step of obtaining a frequency spectrum of the pulse wave signal;
And d) obtaining a pulse rate based on the frequency spectrum.
In the signal processing step, a frequency spectrum for a specific frequency range determined based on a reference value is determined.
コンピュータを、請求項1から請求項10のいずれか1項に記載の生体信号処理装置の各手段として機能させるためのプログラム。   A program for causing a computer to function as each means of the biological signal processing apparatus according to any one of claims 1 to 10.
JP2018004885A 2018-01-16 2018-01-16 BIOLOGICAL SIGNAL PROCESSING DEVICE AND CONTROL METHOD THEREOF Active JP7171193B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018004885A JP7171193B2 (en) 2018-01-16 2018-01-16 BIOLOGICAL SIGNAL PROCESSING DEVICE AND CONTROL METHOD THEREOF
JP2022126569A JP2022160608A (en) 2018-01-16 2022-08-08 Biological signal processing device and control method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018004885A JP7171193B2 (en) 2018-01-16 2018-01-16 BIOLOGICAL SIGNAL PROCESSING DEVICE AND CONTROL METHOD THEREOF

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022126569A Division JP2022160608A (en) 2018-01-16 2022-08-08 Biological signal processing device and control method of the same

Publications (2)

Publication Number Publication Date
JP2019122552A true JP2019122552A (en) 2019-07-25
JP7171193B2 JP7171193B2 (en) 2022-11-15

Family

ID=67397497

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018004885A Active JP7171193B2 (en) 2018-01-16 2018-01-16 BIOLOGICAL SIGNAL PROCESSING DEVICE AND CONTROL METHOD THEREOF
JP2022126569A Withdrawn JP2022160608A (en) 2018-01-16 2022-08-08 Biological signal processing device and control method of the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022126569A Withdrawn JP2022160608A (en) 2018-01-16 2022-08-08 Biological signal processing device and control method of the same

Country Status (1)

Country Link
JP (2) JP7171193B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4062825A1 (en) 2021-03-10 2022-09-28 Nihon Kohden Corporation Monitoring device, physiological signal processing device, and computer program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172443A (en) * 1988-12-23 1990-07-04 Minolta Camera Co Ltd Photoelectric pulse wave type oxymeter
JPH09122090A (en) * 1995-11-01 1997-05-13 Omron Corp Non-restrictive pulsimeter
JP2003084019A (en) * 2001-09-12 2003-03-19 Inst Of Physical & Chemical Res Pseudo periodic signal estimating method and device
JP2004261366A (en) * 2003-02-28 2004-09-24 Denso Corp Biological state detecting device, sensor, and method of detecting biological state
JP2014054448A (en) * 2012-09-13 2014-03-27 Omron Healthcare Co Ltd Pulse measuring device, pulse measuring method and pulse measuring program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987578B2 (en) 2012-09-13 2016-09-07 オムロンヘルスケア株式会社 Pulse measuring device, pulse measuring method and pulse measuring program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172443A (en) * 1988-12-23 1990-07-04 Minolta Camera Co Ltd Photoelectric pulse wave type oxymeter
JPH09122090A (en) * 1995-11-01 1997-05-13 Omron Corp Non-restrictive pulsimeter
JP2003084019A (en) * 2001-09-12 2003-03-19 Inst Of Physical & Chemical Res Pseudo periodic signal estimating method and device
JP2004261366A (en) * 2003-02-28 2004-09-24 Denso Corp Biological state detecting device, sensor, and method of detecting biological state
JP2014054448A (en) * 2012-09-13 2014-03-27 Omron Healthcare Co Ltd Pulse measuring device, pulse measuring method and pulse measuring program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4062825A1 (en) 2021-03-10 2022-09-28 Nihon Kohden Corporation Monitoring device, physiological signal processing device, and computer program

Also Published As

Publication number Publication date
JP7171193B2 (en) 2022-11-15
JP2022160608A (en) 2022-10-19

Similar Documents

Publication Publication Date Title
CA2815643C (en) Devices and methods for photoplethysmographic measurements
JP4855721B2 (en) Blood pressure measurement device
US9504401B2 (en) Atrial fibrillation analyzer and program
JP2009219623A (en) Blood pressure measurement apparatus, blood pressure derivation program and method for deriving blood pressure
JP2016112277A (en) Blood pressure measurement device, electronic apparatus and blood pressure measurement method
JP5760876B2 (en) Atrial fibrillation determination device, atrial fibrillation determination method and program
JP2007020836A (en) Biomedical information measuring apparatus
WO2018168805A1 (en) Blood pressure measurement device, method, and program
JP2014171660A (en) Atrial fibrillation analyzation equipment, atrial fibrillation analysis system, atrial fibrillation analysis method and program
US10905381B2 (en) Blood pressure correction information generating device, blood pressure measurement device and blood pressure correction information generating method
JP6060563B2 (en) Atrial fibrillation determination device, atrial fibrillation determination method and program
CN114176546A (en) Blood pressure measuring method and device and electronic equipment
US11344208B2 (en) Blood pressure measuring apparatus, wrist watch type terminal having the same, and method of measuring blood pressure
JP2013111444A (en) Device for determination of hemostasis state, pulse wave measurement device and method for determination of hemostasis state
KR102562817B1 (en) Electronic device for measuring blood pressure and operating method thereof
JP6414981B2 (en) Biological information estimation apparatus, biological information estimation method, and computer program
JP2022160608A (en) Biological signal processing device and control method of the same
JP5582051B2 (en) Pulse wave measuring device and program
JP6103373B2 (en) Pulse wave measuring device
JP7363376B2 (en) Biological information measuring device and biological information measuring program
JP7390125B2 (en) Biological information processing device and its control method
JP6309659B1 (en) Biological signal analyzer and control method thereof
JP6098673B2 (en) Atrial fibrillation determination device, operation method and program for atrial fibrillation determination device
JP2009183608A (en) Health condition determination-supporting system using self-organizing map, and generating system of self-organizing map
JP2019069236A (en) Blood pressure measurement device, wristwatch terminal, and blood pressure measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220808

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220808

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220824

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221102

R150 Certificate of patent or registration of utility model

Ref document number: 7171193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150