JPS63261612A - Anisotropic conducting sheet - Google Patents

Anisotropic conducting sheet

Info

Publication number
JPS63261612A
JPS63261612A JP9605287A JP9605287A JPS63261612A JP S63261612 A JPS63261612 A JP S63261612A JP 9605287 A JP9605287 A JP 9605287A JP 9605287 A JP9605287 A JP 9605287A JP S63261612 A JPS63261612 A JP S63261612A
Authority
JP
Japan
Prior art keywords
electrically insulating
sheet
layer
insulating resin
conductive sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9605287A
Other languages
Japanese (ja)
Inventor
柿本 渉
佳之 鈴木
両徳 光信
山口 章夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP9605287A priority Critical patent/JPS63261612A/en
Publication of JPS63261612A publication Critical patent/JPS63261612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (a)産業上の利用分野 本発明は精密電子回路用の積層型コネクターに用いる異
方導電性シート、特に、精密電子回路の電極間ピッチが
0.4+*+s以下の7フインピツチ電極の接合用コネ
クターに供するものであって、接合加工時に絶縁性樹脂
の流れをコントロールして、隣接する電極間の短絡を防
止すると共に、接続特性を良好にした異方導電性シート
に関するものである。
Detailed Description of the Invention (a) Industrial Application Field The present invention is an anisotropic conductive sheet used in a laminated connector for precision electronic circuits, particularly for use in precision electronic circuits with an interelectrode pitch of 0.4 + * + s or less. This anisotropic conductive sheet is used as a connector for joining 7-fin pitch electrodes, and controls the flow of insulating resin during the joining process to prevent short circuits between adjacent electrodes and improve connection characteristics. It is related to.

(b)従来の技術 従来、精密電子機器回路用の異方導電性シートとして、
以下のものが知られている。
(b) Conventional technology Conventionally, as an anisotropic conductive sheet for precision electronic equipment circuits,
The following are known:

第一の異方導電性シートは、電気絶縁体を貫通し゛て多
数個の導電性ゴム接点を配列して成る塙状のものである
The first anisotropically conductive sheet is a wall-shaped sheet formed by penetrating an electrical insulator and arranging a large number of conductive rubber contacts.

第二の異方導電性シーシは、電気絶縁性シート(電気絶
縁体)の厚さ方向に金属線やカーボン繊維の如き導電部
材を埋設した構造のものである(特開昭59−9332
−3号公報、特開昭57−141880号公報)。
The second anisotropically conductive sheath has a structure in which a conductive member such as a metal wire or carbon fiber is embedded in the thickness direction of an electrically insulating sheet (electrical insulator) (Japanese Patent Laid-Open No. 59-9332
-3 Publication, JP-A-57-141880).

第三の異方導電性シートは、電気絶縁体に適当量の導電
部材を投入して混合し、この混合物を押出し磯又はロー
ルを用いてシート状に成形加工して得られるものであり
、電気絶縁性シート中に導電部材が分散された構造のも
のである。
The third anisotropically conductive sheet is obtained by mixing an appropriate amount of conductive material with an electrical insulator, extruding the mixture into a sheet shape using a rock or roll, and producing an electrically conductive sheet. It has a structure in which conductive members are dispersed in an insulating sheet.

(c)発明が解決しようとする問題点 しかしながら、上記第一の異方導電性シートは、生産性
が低く、従って、高価になる上、接点部が線状であるた
めに精密電子機器回路用の端子が導電部材と平行になる
様に設置する必要があり、仮、に平行に設置されない場
合には、端子間の絶縁性が保持できず短絡や故障の原因
となる結果、極めて上記端子と異方導電性シートとの接
続作業性が悪(、製品の信頼性に問題が生ずる場合があ
った。
(c) Problems to be Solved by the Invention However, the first anisotropic conductive sheet described above has low productivity and is therefore expensive, and since the contact portion is linear, it is not suitable for precision electronic equipment circuits. It is necessary to install the terminals so that they are parallel to the conductive member, and if they are not installed parallel to the conductive member, the insulation between the terminals cannot be maintained, resulting in short circuits and failures. The connection workability with the anisotropic conductive sheet was poor (sometimes problems occurred with product reliability).

又、上記第二の異方導電性シートは、導電部材が線状に
形成されでいるから当該導電部材の配合量を多くすると
、導電部材同士が接触して面方向の絶縁性が損なわれた
り、逆に導電部材の配合量を少なくすると、゛接触抵抗
や厚さ方向の電気抵抗にバラツキが生じたり或いはミス
タッチの問題が生じて精密電子機器回路用の端子と異方
導電性シートとの電気的導通が失われる場合もあった。
In addition, since the conductive members in the second anisotropic conductive sheet are formed in a linear shape, if the amount of the conductive members is increased, the conductive members may come into contact with each other and the insulating properties in the plane direction may be impaired. On the other hand, if the amount of the conductive material is reduced, variations in contact resistance and electrical resistance in the thickness direction may occur, or the problem of mistouching may occur, causing electrical problems between terminals for precision electronic equipment circuits and the anisotropic conductive sheet. In some cases, communication was lost.

更に、上記第三の異方導電性シートでは、導電部材が電
気絶縁性シートに埋まっている場合があり、該異方導電
性シートと接続する回路端子の凹凸形状や加圧条件等に
よって接触抵抗にバラツキが生じたり、ときには導通不
良の問題が生ずる結果、コネクターとしての信頼性に乏
しいものであった。
Furthermore, in the third anisotropically conductive sheet, the conductive member may be buried in the electrically insulating sheet, and the contact resistance may vary depending on the uneven shape of the circuit terminal connected to the anisotropically conductive sheet, pressurizing conditions, etc. As a result, the reliability as a connector was poor as a result of variations in the conductivity and sometimes problems of poor conduction.

文、上記第一から第三の異方導電性シートの最大の欠点
は電極ピッチが0.4mm以下のいわゆるファインピッ
チの電気回路基板の接合に供する場゛合顕著に現れる。
The biggest disadvantage of the first to third anisotropic conductive sheets mentioned above becomes noticeable when they are used for bonding so-called fine-pitch electrical circuit boards with an electrode pitch of 0.4 mm or less.

具体的には、電気絶縁体(シート)が加熱加圧接着性の
樹脂で構成されている場合、たとえ異方導電性シートの
製造工程で所定の構造、即ち、導電部材同士が電気絶縁
体で完全に独立されており、シートの厚さ方向は導通性
、面方向には絶縁性を有していても、実際の使用時に加
熱加圧されることにより、該電気絶縁体(シート)の流
れ現象が生じ、その結果、該導電部材が、電気絶縁体(
シート)の流れと共に移動し、本末の導電部材同士の独
立形態が阻害され、導電部材の集合現象が生じ易くなり
、被接合電極の隣接する電極同士が電気的に接続される
結果となり、いわゆるリーク現象が生じていた・ 更に導電部材の移動を生じると、本末電気的接合に必要
な導電部材が、被接合電極に接触するべきであるにもか
かわらず、その接触が得られないという欠点、即ちコネ
クターとして最も大きな問題であるミスタッチ現象が生
じていた。
Specifically, when the electrical insulator (sheet) is made of heat-press adhesive resin, even if the manufacturing process of the anisotropically conductive sheet has a predetermined structure, that is, the electrically conductive members are electrically insulating. Even though the sheet is completely independent and has conductivity in the thickness direction and insulation in the plane direction, the flow of the electrical insulator (sheet) is reduced by heating and pressurizing it during actual use. phenomenon occurs, as a result of which the conductive member becomes an electrical insulator (
This moves with the flow of the sheet), inhibits the independent form of the conductive members at the end, and makes it easy for the conductive members to aggregate, resulting in electrical connection between adjacent electrodes to be joined, resulting in so-called leakage.・Furthermore, if the conductive member moves, the conductive member necessary for the final electrical connection should be in contact with the electrode to be joined, but this contact cannot be achieved. The mistouch phenomenon, which is the biggest problem for connectors, was occurring.

(d)問題点を解決するための手段 本発明者らは、加熱加圧しても異方導電性シートが有し
ているファインピッチ構造を阻害することがないうえ、
被接合電極に対してミスタッチ現象、リーク現象を生じ
させず、しかも接続特性を長期間良好にする異方導電性
シートについて多年に亙り鋭意検討を重ねてきた。
(d) Means for Solving the Problems The present inventors have discovered that the fine pitch structure of the anisotropically conductive sheet is not inhibited even when heated and pressurized, and
For many years, we have been conducting intensive studies on anisotropically conductive sheets that do not cause mistouch or leak phenomena on the electrodes to be bonded, and also provide good connection characteristics over a long period of time.

その結果、異方導電性シートにおいて導電部材を囲繞す
る電気絶縁性樹脂層を組成の異なる二種の電気絶縁性樹
脂層で形成し、その一方に他方の樹脂の流動性を抑制す
ると共に初期接着力の大きい樹脂を用い、他方に経時に
より接着力が大きくなる樹脂を用いると、加熱加圧接合
後、長期に亘って良好な接続特性を有することを見い出
し、本発明を完成するに至ったものである。
As a result, the electrically insulating resin layer that surrounds the conductive member in the anisotropic conductive sheet is formed of two types of electrically insulating resin layers with different compositions, and one of them suppresses the fluidity of the other resin while also providing initial adhesion. It was discovered that by using a resin with high strength and a resin whose adhesive strength increases over time, it has good connection characteristics for a long time after heat and pressure bonding, and this led to the completion of the present invention. It is.

即ち、本発明は、平面視格子状の電気絶縁性シートで、
その格子間に導電部材を当該シートの厚さ方向に貫通さ
せてなる異方導電性シートであって、該導電部材間が組
成の異なる二種の電気絶縁性樹脂層で囲繞されているこ
とを特徴とするものである。
That is, the present invention is an electrically insulating sheet having a lattice shape in plan view,
It is an anisotropically conductive sheet in which a conductive member is passed through the lattice in the thickness direction of the sheet, and the space between the conductive members is surrounded by two types of electrically insulating resin layers having different compositions. This is a characteristic feature.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明が適用される異方導電性シートは、平面視格子状
の電気絶縁性シートとその格子間に導電部材を当該シー
トの厚さ方向に貫通させてなるものであれば特に限定さ
れるものではない。
The anisotropically conductive sheet to which the present invention is applied is particularly limited as long as it is formed by an electrically insulating sheet having a lattice shape in plan view and a conductive member passing through the lattice in the thickness direction of the sheet. isn't it.

本発明に用いられる導電部材としては、特に限定される
ものではないが、亜鉛、錫、鉄、ニッケル、フバル)、
m、鉛、インジウム、ml、1%の金属粉やこれらを主
成分とする合金の粉末や繊維、鉛−錫合金、ビスマス−
錫−鉛−インノツム合金、ビスマス−錫−鉛一カドミウ
ム合金、錫−鉛一インジウム合金、ビスマス−錫合金の
粉末や繊維、或いは炭素粉末やa維等が挙げられるが、
これらのうち切削加工性に優れるものが好ましい。
The conductive members used in the present invention are not particularly limited, but include zinc, tin, iron, nickel,
m, lead, indium, ml, 1% metal powder, alloy powders and fibers containing these as main components, lead-tin alloy, bismuth-
Examples include powders and fibers of tin-lead-innotum alloy, bismuth-tin-lead-cadmium alloy, tin-lead-indium alloy, bismuth-tin alloy, carbon powder and a-fiber, etc.
Among these, those having excellent machinability are preferred.

又、上記導電部材としては、導電材とバインダとの混合
物を用いてもよいのである。
Further, as the conductive member, a mixture of a conductive material and a binder may be used.

導電材としては、上記の金属粉末や金属繊維、或いは、
炭素の粉末やa維が使用でき、一方、バインダとしては
、熱可塑性樹脂、或いは熱硬化性樹脂が用いられる。
As the conductive material, the above-mentioned metal powder or metal fiber, or
Carbon powder or a-fiber can be used, while thermoplastic resin or thermosetting resin can be used as the binder.

又、本発明に用いられる電気絶縁性シートを形成するた
めの素材としては、電気Ja緑性の合成樹脂やゴムが挙
げられる。
Further, examples of materials for forming the electrically insulating sheet used in the present invention include electrically green synthetic resins and rubber.

上記合成樹脂には熱可塑性樹脂、反応型熱可塑性樹脂及
び熱硬化性8(脂のいずれも含まれるが、熱可塑性樹脂
としては、特に加熱、加圧によって接着性が発現する、
ホットメルト系樹上が挙げられる。
The above-mentioned synthetic resins include thermoplastic resins, reactive thermoplastic resins, and thermosetting 8 (fats);
Examples include hot melt arboreal.

上記ホットメルト系口(脂としては、例えば、ポリオレ
フィン系、ポリアミド系、ポリエステル系、アイオノマ
ー1fJIllt系等のいわゆるホットメルト接着剤系
の樹脂が有用である。
As the hot melt resin, for example, so-called hot melt adhesive resins such as polyolefin, polyamide, polyester, and ionomer 1fJIllt resins are useful.

又、本発明に用いられる反応型熱可塑性樹脂としては、
上記のa?脂にインシアネート基を持つウレタン化合物
を添加したものやエポキシ/ナイロン系樹下等を挙げる
ことができる。
In addition, the reactive thermoplastic resin used in the present invention includes:
A above? Examples include those in which a urethane compound having an incyanate group is added to a resin, and epoxy/nylon based resins.

そして、本発明の特徴は、異方導電性シートにおいてそ
の各々の導電部材間が組成の異なる二種の電気絶縁性樹
脂層で囲繞されている点にある。
A feature of the present invention is that in the anisotropic conductive sheet, each conductive member is surrounded by two types of electrically insulating resin layers having different compositions.

このように°構成することにより、組成の異なる電気絶
縁性樹脂層においでその一方の電気絶縁性!!脂層(樹
脂)が加熱、加圧の際の他方の樹脂の流れ性を制御し、
これによって、実際の使用時の加熱、加圧による接着工
程および異方導電性シートの製造の際の異方性構造を保
持しうるのである。
By configuring it in this way, electrically insulating resin layers with different compositions can have one electrically insulating property! ! The fat layer (resin) controls the flowability of the other resin when heated and pressurized,
This makes it possible to maintain the anisotropic structure during the bonding process by heating and pressurizing during actual use and during the production of the anisotropically conductive sheet.

そして、本発明の好ましい実施態様としては、二種の電
気絶縁性樹脂層において、その一方の電気絶縁性樹脂層
(PIS1層)のゲル分率が10〜60重量%の範囲の
ものを用いたものである。
In a preferred embodiment of the present invention, one of the two electrically insulating resin layers (PIS 1 layer) has a gel fraction in the range of 10 to 60% by weight. It is something.

本発明において、ゲル分率は以下の方法で測定した。In the present invention, the gel fraction was measured by the following method.

即ち、温度80〜90℃の200m1)ルエン中に2〜
3gの樹脂を90分間浸漬し、その後溶けずに残ったゲ
ル分を取り出し、トルエンを充分蒸発させた後のゲル分
の重量を測定し、初期の重量に対するで比率で求めた。
That is, in 200 ml of toluene at a temperature of 80 to 90 °C
3 g of resin was immersed for 90 minutes, and then the remaining undissolved gel was taken out. After sufficient toluene had been evaporated, the weight of the gel was measured and calculated as a ratio to the initial weight.

一方の電気絶縁性樹脂層(ttS1層)のゲル分率が1
0重量%未満では、樹脂の流れが生じやすく、これに伴
って、導電部材が移動することにより、導電部材の偏り
や間隔の乱れが生じ、ミスタッチ現象やリーク現象が生
じ実用時の信頼性が低下する場合があるから好ましくな
い。
The gel fraction of one electrically insulating resin layer (ttS1 layer) is 1
If it is less than 0% by weight, the resin tends to flow, and as a result, the conductive members move, causing unevenness and irregular spacing of the conductive members, leading to mistouching and leakage phenomena, and reducing reliability in practical use. This is not preferable because it may cause a decrease in the temperature.

又、ゲル分率が60重1%を超えると、電気絶縁性樹脂
層が本末、保有している接着性が損なわれる。
Furthermore, if the gel fraction exceeds 60% by weight, the adhesive properties of the electrically insulating resin layer will be impaired.

従って、特に、実際の使用時の加熱加圧条件(均一性)
を考慮すれば20〜40重景%が好ましい。
Therefore, in particular, the heating and pressing conditions (uniformity) during actual use
Taking this into consideration, 20 to 40 percent heavy view is preferable.

ゲル分率をコントロールする方法としては常用されてい
るあらゆる方法を採用することができ、化学架橋、電子
線架橋のいずれも有用であるが化学架橋では架橋するた
めに添加する架橋剤の残留が電極等に与える影響もしく
は経時変化等による品質のバラツキ等が生じる場合があ
り、電子線架橋が最も有用である。
Any commonly used method can be used to control the gel fraction, and both chemical crosslinking and electron beam crosslinking are useful, but with chemical crosslinking, the residual crosslinking agent added for crosslinking is In some cases, variations in quality may occur due to the influence on the material or changes over time, etc., so electron beam crosslinking is the most useful.

そして、電子線架橋の場合には、照射線量を1〜20 
Mradとするのが上記のゲル分率を得る上で有効であ
る。
In the case of electron beam crosslinking, the irradiation dose is 1 to 20
Mrad is effective in obtaining the above gel fraction.

そして、本発明においては、組成の異なる二種の電気絶
縁性樹脂層において、その一方の電気絶縁性樹脂層(第
1層)が他方の電気絶縁性樹脂層(第2層)よりゲル分
率が高くなるように調整してもよいのである。
In the present invention, in two types of electrically insulating resin layers having different compositions, one electrically insulating resin layer (first layer) has a higher gel fraction than the other electrically insulating resin layer (second layer). It may be adjusted so that it becomes high.

又、本発明においでは、組成の異なる二種の電気絶縁性
樹脂層において、その他方の電気絶縁性樹脂層(tj4
2層I)が反応型熱可塑性樹脂で形成されたものが被接
合電極との接続特性が長期に亘り安定するから好ましい
のである。
Further, in the present invention, in two types of electrically insulating resin layers having different compositions, the other electrically insulating resin layer (tj4
It is preferable that the second layer I) is formed of a reactive thermoplastic resin because the connection characteristics with the electrode to be joined are stable over a long period of time.

上記反応型熱可塑性樹脂としてはインシアネート基を持
つウレタン化合物を添加したものやエポキシ/ナイロン
系樹脂、更にエチレン−酢酸ビニル共重合体やポリエチ
レンにシランカップリング剤を用い、シランをグラフト
させ、これをベースポリマーにして、粘着付与樹脂、ワ
ックス等を混合したもの等を挙げることができる。
The above-mentioned reactive thermoplastic resins include those to which a urethane compound having an incyanate group is added, epoxy/nylon resins, and ethylene-vinyl acetate copolymers and polyethylenes that are grafted with silane using a silane coupling agent. Examples include those in which a base polymer is mixed with a tackifier resin, wax, etc.

(e)作用 本発明は、異方導電性シートにおける導電部材を囲繞す
る電気絶縁体が組成の異なる二種の電気絶縁性樹脂層か
らなり、そめ一方の電気絶縁性樹脂層(m1層)として
他方の電気絶縁性樹脂層(第2層)の流動性を抑制する
と共に初期接着力の大きいものを用い、他方の電気絶縁
性樹脂層(第2層)に経時により接着力が大きくなるも
のを用いることにより、当該異方導電性シートの製造の
際やこれを被接合電極に加熱、加圧して接着する際の電
気絶縁性樹脂層の流動を阻止し、特に、この異方導電性
シートと被接合電極とを接合した後においても、導電部
材が電気絶縁性シートに独立状態で貫通している、本末
の異方性構造を保持する作用を有するのである。
(e) Function In the present invention, the electrical insulator surrounding the conductive member in the anisotropic conductive sheet is composed of two types of electrically insulating resin layers having different compositions, and one electrically insulating resin layer (m1 layer). The fluidity of the other electrically insulating resin layer (second layer) is suppressed and a material with high initial adhesive strength is used, and the other electrically insulating resin layer (second layer) is made of a material whose adhesive strength increases over time. By using the anisotropically conductive sheet, it is possible to prevent the electrically insulating resin layer from flowing when manufacturing the anisotropically conductive sheet or when adhering it to the electrode to be joined by applying heat and pressure. Even after bonding to the electrode to be bonded, the conductive member has the effect of maintaining the anisotropic structure of the present invention in which the conductive member independently penetrates the electrically insulating sheet.

(f)実施例 以下、本発明を実施例に基づき詳細に説明するが、本発
明はこれに限定されるものではない。
(f) Examples Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited thereto.

実施例1〜4 明の  °   シートの ゛ 本発明の異方導電性シートの構造例を第1図及びfjS
2図により説明すると、(1)は異方導電性シートであ
り、該異方導電性シート(1)は平面視格子状の電気絶
縁性シート(2)で、その格子間に導電部材(3)を当
該シートの厚さ方向に貫通させてなるものであって、該
導電部材(3)、(3)間が組成の異なる二種の電気絶
縁性樹脂層(4)、(5)で囲繞されてなる。
Examples 1 to 4 Examples of the structure of the anisotropically conductive sheet of the present invention are shown in Fig. 1 and fjS.
To explain with reference to Figure 2, (1) is an anisotropically conductive sheet, and the anisotropically conductive sheet (1) is an electrically insulating sheet (2) that has a lattice shape in plan view, and conductive members (3) are arranged between the lattices. ) is passed through the sheet in the thickness direction, and the conductive members (3) and (3) are surrounded by two types of electrically insulating resin layers (4) and (5) having different compositions. It will be done.

上記異方導電性シート(1)は例えば以下に述べる方法
で製造される。
The anisotropic conductive sheet (1) is manufactured, for example, by the method described below.

一方の電気絶縁性樹脂層(第1層)(4)としては、厚
さ25μ籠のホットメルト系変成ポリエチレンのフィル
ムに、あらかじめ、3 M rad(51j施例1)。
As one electrically insulating resin layer (first layer) (4), 3 M rad (Example 51j) was applied in advance to a film of hot melt modified polyethylene having a thickness of 25 μm.

5Mrad(実施例2 )s 10 Mrad(%施例
3)、20Mrad(実施例4)の吸収線量を電子線照
射で付与したものをそれぞれ用い、又、他方の電気絶縁
性樹脂層(第2層)(5)としては、エチレン−酢酸ビ
ニル共重合体と粘着性付与剤からなる組成物に、グリシ
ジルメタクリレートと有機過酸化物を含有した反応型ホ
ットノルド接着剤(反応型熱可塑性樹脂)のフィルム(
厚さ12μ論)を用い、上記一方の電気絶縁性樹脂層(
ffi 175)(4)の両側に、上記他方の電気絶縁
性樹脂層(tlS2層)(5)、(5)をそれぞれ重ね
合わせて複合フィルムを得、該複合フィルムと、ポリウ
レタン樹脂100重量部中にニッケル粉230重量部を
分散させてなる導電性フィルム(厚さ30μ論)とを所
望の大きさの長方形に切断し、これらを交互に積層後、
加熱加圧することにより一体化し塊状物を形成する。
Absorbed doses of 5 Mrad (Example 2), s 10 Mrad (%Example 3), and 20 Mrad (Example 4) were applied by electron beam irradiation, and the other electrically insulating resin layer (second layer )(5) is a film of a reactive hotnold adhesive (reactive thermoplastic resin) containing glycidyl methacrylate and an organic peroxide in a composition consisting of an ethylene-vinyl acetate copolymer and a tackifier. (
One of the electrically insulating resin layers (12 μm thickness theory) was used.
On both sides of ffi 175) (4), the other electrically insulating resin layer (TLS2 layer) (5) and (5) are superposed, respectively, to obtain a composite film, and the composite film and 100 parts by weight of polyurethane resin are A conductive film (thickness: 30μ) made by dispersing 230 parts by weight of nickel powder into a rectangle of the desired size, and after laminating these alternately,
By applying heat and pressure, they are integrated to form a lump.

上記塊状物を積層方向に切削することにより、厚さ30
μ輪のゼブラ状フィルムを得る。
By cutting the above lump in the stacking direction, a thickness of 30
A zebra-like film of μ-rings is obtained.

上記ゼブラ状フィルムと上記複合フィルムを所望の大き
さの長方形に切断し、交互に積層後、加熱、加圧するこ
とにより一体化して直方体の塊状物を得、当該塊状物を
積層方向に厚さ50μ輪に切削することにより平面視格
子状の異方導電性シート(実施例1〜4)を得た。
The above zebra-like film and the above composite film are cut into rectangles of desired size, laminated alternately, and then integrated by heating and pressurizing to obtain a rectangular block, which has a thickness of 50 μm in the stacking direction. By cutting into rings, anisotropic conductive sheets (Examples 1 to 4) having a lattice shape in plan view were obtained.

比較例1 厚さ50μ輪のホットメルト系変成ポリエチレンのフィ
ルムに、予め、5Mradの吸収線量を電子線照射で付
与したものを、上記実施例の複合フィルムの代わりに用
いる以外は上記実施例と同様にして平面視格子状の異方
導電性シートを得た。
Comparative Example 1 Same as the above example except that a film of hot melt modified polyethylene with a thickness of 50 μm, which had been given an absorbed dose of 5 Mrad by electron beam irradiation, was used instead of the composite film of the above example. An anisotropic conductive sheet having a lattice shape in plan view was obtained.

比較例2 上記実施例において、電子線未照射のホットメルト系変
成ポリエチレンのフィルム(厚さ25μ輪)を使用する
以外は実施例と同様の方法にて平面視格子状の九万導電
性ン−)を得た。
Comparative Example 2 In the above example, a 90,000 conductive film with a lattice shape in plan view was prepared in the same manner as in the example except that a film (thickness: 25 μm) of hot-melt modified polyethylene that had not been irradiated with electron beams was used. ) was obtained.

比較例3 上記実施例において、ホットメルト系変成ポリエチレン
のフィルム(厚さ25μm)に、予め、25Mradの
吸収線量の電子線を照射したものを用いる以外は、実施
例と同様の方法にて、平面視格子状の異方導電性シート
を得た。
Comparative Example 3 In the above example, a flat surface was prepared in the same manner as in the example except that a hot melt modified polyethylene film (thickness 25 μm) was irradiated with an electron beam at an absorbed dose of 25 Mrad. An anisotropically conductive sheet with a visual lattice shape was obtained.

上記の各実施例及び各比較例で得た平面視格子状の異方
導電性シートを幅5纏鋤、長さ20ssに切断し、これ
の各々の上下に0.4鵠協ピツチの7レキシプルプリン
ト基I!(FPC)の電極が相対峙するように配置し、
温度180℃、圧力Gkg/am’、加圧時間30秒の
条件で加熱加圧し一体化した。
The anisotropic conductive sheet having a lattice shape in plan view obtained in each of the Examples and Comparative Examples described above was cut into pieces with a width of 5 mm and a length of 20 ss. Pull print base I! (FPC) electrodes are arranged so as to face each other,
They were integrated by heating and pressurizing them at a temperature of 180° C., a pressure of Gkg/am', and a pressurizing time of 30 seconds.

上記各実施例及び各比較例の諸ネ)性を第1表に示す。Table 1 shows the properties of each of the above examples and comparative examples.

(以下余白) 注目111力 温度70℃、相対湿度95%の条件下、500時間保存
後の!&着力(g/ 10 am)をいう。
(Left below) Attention 111 After storage for 500 hours under conditions of temperature 70℃ and relative humidity 95%! & Wear force (g/10 am).

注2)JIIIlt抵抗 温度70℃、相対湿度95%の条件下、500時間保存
後の接続抵抗(Ω/−勺をいう。
Note 2) JIIIt resistance Connection resistance (Ω/-Ω) after storage for 500 hours under conditions of temperature 70°C and relative humidity 95%.

第1表より、各′X施例品は7レキン1ルプリント基板
の接続の際に導m部材の移動は認められず、しかも保存
後の接着力が初期の接着力より向上する上、保存後でも
接続抵抗が安定することがUめられる。
From Table 1, it can be seen that for each 'X example product, no movement of the guide member was observed when connecting the printed circuit board, and the adhesive strength after storage was better than the initial adhesive strength. It can be seen that the connection resistance remains stable even after this.

これに対して比較例1〜3は保存により接続抵抗のばら
つきが大きくなり、又、比較例1では保存により接着力
が低下し、又、比較M2では7し畔シプルプリント基板
との接続の際に導電部材の移動が認められる。
On the other hand, in Comparative Examples 1 to 3, the variation in connection resistance increases due to storage, and in Comparative Example 1, the adhesive strength decreases due to storage, and in Comparative M2, the connection with the 7-sided cable printed circuit board decreases. Movement of the conductive member is observed.

更に、比較例3のものは初期接着力が極めて低く、Nf
iの問題が生じると八に、初期抵抗のばらつきが大きい
ことが認められる。
Furthermore, the initial adhesive strength of Comparative Example 3 was extremely low, and Nf
When the problem i occurs, it is recognized that the initial resistance varies widely.

(1)発明の効果 本発明は、上記構成を有し、異方導電性シートにおける
導電部材をBlmする電気絶縁性用1lIt都が組成の
異なる二種の電気絶縁性樹脂層からなり、その一方の電
気絶縁性樹NMとして他方の電気絶縁性樹脂層の流動性
を押開すると共に初期接着力の大きいものを用い、他方
の電気絶縁性樹脂層に経時により接着力が大きくなるも
のを用いることにより、当該馬方導電性シートのSt道
の際やこれを被接合電極に加熱、加圧して接着する際の
電気絶縁性樹脂層(樹ffff)の流動を阻止し、特に
、この異方導電性シートと被接合電極とを接合した後に
おいても、導電部材が電気絶縁性シー)+2独立状態で
貫通しており、電気的接合及び接着一体化を可能にさせ
るとともに接着力の低下を押さえ、長期に亘り安定した
接緒特性をm持する効果を有するのである。
(1) Effects of the Invention The present invention has the above-mentioned structure, and the electrically insulating layer for forming the conductive member in the anisotropic conductive sheet is composed of two types of electrically insulating resin layers having different compositions, one of which As the electrically insulating resin NM, use one that can push the fluidity of the other electrically insulating resin layer and have a large initial adhesive strength, and use a material that increases the adhesive strength over time for the other electrically insulating resin layer. This prevents the flow of the electrically insulating resin layer (treeffff) when the electrically conductive sheet is attached to the electrode to be bonded by heating and pressurizing, and in particular, this anisotropically conductive Even after the electrically insulating sheet and the electrode to be bonded are bonded, the conductive member passes through the electrically insulating sheet in an independent state, making it possible to integrate electrical bonding and adhesion, and to prevent a decrease in adhesive strength. This has the effect of maintaining stable welding characteristics over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の異方導電性シートの平面図、第2図は
本発明の異方導電性シートの斜視図である。 1・・・異方導電性シート、2・・・電気絶縁性シーF
。 3・・・導電部材、4・・・一方の電気絶縁性樹脂層、
5・・・他方の電気絶縁性樹脂層。
FIG. 1 is a plan view of the anisotropic conductive sheet of the present invention, and FIG. 2 is a perspective view of the anisotropic conductive sheet of the present invention. 1... Anisotropic conductive sheet, 2... Electrical insulation sheet F
. 3... Conductive member, 4... One electrically insulating resin layer,
5...The other electrically insulating resin layer.

Claims (5)

【特許請求の範囲】[Claims] (1)平面視格子状の電気絶縁性シートで、その格子間
に導電部材を当該シートの厚さ方向に貫通させてなる異
方導電性シートであって、該導電部材間が組成の異なる
二種の電気絶縁性樹脂層で囲繞されていることを特徴と
する異方導電性シート。
(1) An anisotropically conductive sheet consisting of an electrically insulating sheet having a lattice shape in plan view, with a conductive member passing through the sheet in the thickness direction between the lattices, where the conductive members have two different compositions. An anisotropically conductive sheet characterized by being surrounded by an electrically insulating resin layer.
(2)二種の電気絶縁性樹脂層において、その一方(第
1層)に、他方(第2層)の樹脂の流動性を抑制すると
共に初期接着力の大きい樹脂を用い、他方(第2層)に
経時により接着力が大きくなる樹脂を用いる特許請求の
範囲第1項に記載の異方導電性シート。
(2) In two types of electrically insulating resin layers, one of them (the first layer) is made of a resin that suppresses the fluidity of the resin of the other (the second layer) and has a large initial adhesive strength, and the other (the second layer) The anisotropic conductive sheet according to claim 1, in which the layer) is made of a resin whose adhesive strength increases over time.
(3)二種の電気絶縁性樹脂層において、その一方(第
1層)のゲル分率が10〜60重量%である特許請求の
範囲第1項又は第2項に記載の異方導電性シート。
(3) Anisotropic conductivity according to claim 1 or 2, wherein one of the two electrically insulating resin layers (the first layer) has a gel fraction of 10 to 60% by weight. sheet.
(4)二種の電気絶縁性樹脂層において、その一方(第
1層)のゲル分率が20〜40重量%である特許請求の
範囲第3項に記載の異方導電性シート。
(4) The anisotropically conductive sheet according to claim 3, wherein one of the two electrically insulating resin layers (the first layer) has a gel fraction of 20 to 40% by weight.
(5)二種の電気絶縁性樹脂層において、他方(第2層
)が反応型熱可塑性樹脂で形成されている特許請求の範
囲第1項乃至第4項のいずれかに記載の異方導電性シー
ト。
(5) The anisotropic conductivity according to any one of claims 1 to 4, wherein the other (second layer) of the two types of electrically insulating resin layers is formed of a reactive thermoplastic resin. sex sheet.
JP9605287A 1987-04-17 1987-04-17 Anisotropic conducting sheet Pending JPS63261612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9605287A JPS63261612A (en) 1987-04-17 1987-04-17 Anisotropic conducting sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9605287A JPS63261612A (en) 1987-04-17 1987-04-17 Anisotropic conducting sheet

Publications (1)

Publication Number Publication Date
JPS63261612A true JPS63261612A (en) 1988-10-28

Family

ID=14154688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9605287A Pending JPS63261612A (en) 1987-04-17 1987-04-17 Anisotropic conducting sheet

Country Status (1)

Country Link
JP (1) JPS63261612A (en)

Similar Documents

Publication Publication Date Title
DE69830623T2 (en) ADHESIVE FOR CONNECTING SWITCH ELEMENTS, PCB AND METHOD FOR MANUFACTURING THE SAME
US5302456A (en) Anisotropic conductive material and method for connecting integrated circuit element by using the anisotropic conductive material
US4113981A (en) Electrically conductive adhesive connecting arrays of conductors
US5041183A (en) Method for the preparation of a hot-melt adhesive interconnector
TWI655266B (en) Conductor connecting member, connection structure and solar battery module
US20120240992A1 (en) Connecting solar cell tabs to a solar cell busbar and a solar cell so produced
KR102161430B1 (en) Anisotropic conductive film, connecting method, and joined structure
US20100321916A1 (en) Method of connection of flexible printed circuit board and electronic device obtained thereby
TW200525004A (en) Adhesive films and method for manufacturing adhesive film
CN106068059A (en) The attachment structure of circuit block, method of attachment and connecting material
DE10118816A1 (en) Production process for an anisotropic conductive film and anisotropic conductive film produced by this process
KR930004858B1 (en) Electrically conductive adhesive sheet circuit board and electrical connection structure
JP5956362B2 (en) Anisotropic conductive film, connection method, and joined body
JPS63261612A (en) Anisotropic conducting sheet
DE102011075680A1 (en) connecting structure
JP6271048B2 (en) Anisotropic conductive film, connection method, and joined body
JPS60120772A (en) Anisotropically conductive adhesive
JPS58115779A (en) Electrically connecting structure and method of electrically connecting same
JPS6215979Y2 (en)
JPH08273441A (en) Anisotropic electric conduction film and its preparation
JPS63237310A (en) Anisotropic conducting sheet
JPS6396812A (en) Anisotropic conducting sheet
JPS63237309A (en) Anisotropic conducting sheet
JPS63308880A (en) Anisotropic conductive adhesive
DE69833895T2 (en) Adhesive for connecting switching elements, printed circuit boards and methods of making the same