JPS63260009A - Manufacture of resin magnet - Google Patents

Manufacture of resin magnet

Info

Publication number
JPS63260009A
JPS63260009A JP9202487A JP9202487A JPS63260009A JP S63260009 A JPS63260009 A JP S63260009A JP 9202487 A JP9202487 A JP 9202487A JP 9202487 A JP9202487 A JP 9202487A JP S63260009 A JPS63260009 A JP S63260009A
Authority
JP
Japan
Prior art keywords
resin
magnet
molded
fine
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9202487A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP9202487A priority Critical patent/JPS63260009A/en
Publication of JPS63260009A publication Critical patent/JPS63260009A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a precision resin magnet with large density, mechanical strength and maximum energy product easily by a method wherein magnetic alloy which is pulverized into fine powder is sintered and molded at a specific low temperature range and in the air or under a simple atmosphere control while a specific high pressure is applied and the magnetic alloy is impregnated with resin during or after the pressurized molding. CONSTITUTION:Magnetic alloy is pulverized into fine powder whose particles are approximately unit magnetic domains. The fine alloy powder is sintered and molded at a low temperature range not less than 250 deg.C and not higher than 400 deg.C under the air or a simple atmosphere control while a high pressure not less than 3000kg/cm<2> is applied. Then the fine alloy powder is impregnated with resin during or after the pressurized sintering and molding process. A resin magnet obtained with this constitution is composed of unit magnetic domains by fine pulverization and is molded at a higher temperature than the magnet molded by a conventional resin molding so that high density, high accuracy and high strength can be provided and high maximum energy product can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、樹脂磁石製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a resin magnet manufacturing method.

〔従来の技術〕[Conventional technology]

従来の樹脂磁石製造方法は、粉末化された磁石合金を樹
脂中に分散し、これを金型により高温、高圧下に於いて
成形し、成形体を得るものであった。
A conventional resin magnet manufacturing method involves dispersing a powdered magnet alloy in a resin, and molding the resultant in a mold at high temperature and pressure to obtain a molded body.

然しなから、この種の製造方法では、磁気合金粒子を充
分高密度で充虜、固形化することができないため、機械
的強度及び磁力が十分でないと云う問題点があった。
However, this type of manufacturing method has the problem that the magnetic alloy particles cannot be filled and solidified with a sufficiently high density, resulting in insufficient mechanical strength and magnetic force.

又、高温での焼結のため、磁石を構成する金属、例えば
稀土類金属の酸化損耗、変質等を防止するために、不活
性雰囲気等を造る必要があり、製造工程、操作が面倒で
、他方高価なる欠点があった。
In addition, due to high temperature sintering, it is necessary to create an inert atmosphere to prevent oxidation loss and deterioration of the metals that make up the magnet, such as rare earth metals, making the manufacturing process and operations cumbersome. On the other hand, it had the disadvantage of being expensive.

又、一般の磁石は焼結、鋳造等の方法で製造されるが、
これら方法では加工精度が不充分であり、精密部品とす
るためには仕上加工を必要とするが、多くの磁石合金は
機械加工が困難である。
Also, general magnets are manufactured using methods such as sintering and casting, but
These methods have insufficient machining accuracy and require finishing to produce precision parts, but many magnetic alloys are difficult to machine.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は、叙上の観点に立ってなされたものであって、
その目的とするところは、従来の上記樹脂磁石に比して
密度、機械的強度及び最大エネルギa (MGO)を大
幅に向上させることができ、気中で製作可能で製作工程
が簡単となり安価で精密な成形品が得られる樹脂磁石製
造方法を提供することにある。
The present invention has been made based on the above-mentioned viewpoints, and
The purpose is to significantly improve density, mechanical strength, and maximum energy a (MGO) compared to the conventional resin magnets mentioned above, and because it can be manufactured in air, the manufacturing process is simple and inexpensive. The object of the present invention is to provide a method for manufacturing resin magnets that allows precision molded products to be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

而して、上記の目的は、 磁石合金を微粉末化する工程と、 微粉末化された磁石合金に、250 ℃以上400 ℃
以下の低い温度範囲で、気中乃至は例えばCo2やN2
ガスを吹き付ける程度の簡単な雰囲気制御で3000k
g/cff12以上の高圧をかけて焼結成形体を得る工
程と、 上記の加圧成形工程中又は加圧成形後に樹脂を浸透させ
る工程とから成る樹脂磁石製造方法によって達成される
Therefore, the above purpose is to provide a process of pulverizing the magnetic alloy, and heating the pulverized magnetic alloy at a temperature of 250°C or higher to 400°C.
In the low temperature range below, air or e.g. Co2 or N2
3000k with simple atmosphere control such as blowing gas
This is achieved by a resin magnet manufacturing method comprising a step of applying a high pressure of 12 g/cff or more to obtain a sintered compact, and a step of infiltrating the resin during or after the pressure molding step.

又、本発明は上記焼結成形体を得る工程に於て、磁束磁
石材を、例えば特公昭45−39,325号公報に記載
の如く、モータのケースとが電磁クラッチの本体等の基
板の所定の位置に、所定の寸法に焼結成形すると共に同
時に溶着固定又は結合固定させるようにすることが望ま
しいものである。
Further, in the process of obtaining the above-mentioned sintered compact, the present invention applies a magnetic flux magnet material to a predetermined position of a substrate such as the main body of an electromagnetic clutch where the case of the motor is It is desirable to sinter and form it to a predetermined size at the location and simultaneously fix it by welding or bonding.

〔作  用〕 叙上の如く構成することにより、本発明方法による樹脂
磁石は、従来のものに比して密度、機械的強度及び最大
エネルギ積(MGO)が大きく、精密な磁石を簡単な製
作操作で得ることができる。
[Function] By configuring as described above, the resin magnet produced by the method of the present invention has greater density, mechanical strength, and maximum energy product (MGO) than conventional magnets, and allows easy production of precise magnets. It can be obtained through operation.

〔実 施 例〕〔Example〕

以下、本発明方法の詳細を具体的に説明する。 The details of the method of the present invention will be specifically explained below.

本発明方法では、先ず第一工程で磁石合金を略単磁区に
粉砕して微粉末化する。然る後、第二工程では微粉末化
された磁石合金に、250℃以上400℃以下の低温度
の温度範囲で、気中乃至は簡単な雰囲気制御の下に30
00kg / cm 2以上の高圧をかけて焼結成形体
を作製する。次いで、第三工程では上記の加圧焼結成形
工程中又は加圧焼結成形後に樹脂を浸透させる。
In the method of the present invention, first, in the first step, the magnetic alloy is pulverized into a substantially single magnetic domain and pulverized. After that, in the second step, the finely powdered magnetic alloy is heated in the air or under simple atmospheric control at a low temperature range of 250°C to 400°C.
A sintered compact is produced by applying a high pressure of 00 kg/cm2 or more. Next, in the third step, the resin is infiltrated during or after the pressure sintering and forming step.

この樹脂磁石は、通常、異方性樹脂磁石成形物であり、
磁場配向圧縮成形により樹脂磁石材料を用いて成形され
る。この場合必要に応じ、加圧方向、又は加圧方向と直
角方向の磁場中焼結成形が為されるものである。
This resin magnet is usually an anisotropic resin magnet molded product,
Molded using a resin magnet material by magnetic field orientation compression molding. In this case, sintering is performed in a magnetic field in the pressing direction or in a direction perpendicular to the pressing direction, if necessary.

磁石合金としては、代表的なものとして、バリウム・フ
ェライト、ストロンチウム・フェライト、又はサマリウ
ム・コバルト等の稀土類磁石が使用される。
As the magnet alloy, rare earth magnets such as barium ferrite, strontium ferrite, or samarium cobalt are typically used.

又、樹脂としては、代表的なものとして、ポリアミド樹
脂、ポリプロピレン、ポリ塩化ビニール、塩化ポリエチ
レンの他、合成ゴム等の熱可塑性樹脂又はエポキシ樹脂
等の熱硬化性樹脂が使用される。
Further, as the resin, typically used are polyamide resin, polypropylene, polyvinyl chloride, polyethylene chloride, thermoplastic resin such as synthetic rubber, or thermosetting resin such as epoxy resin.

これによって得られた樹脂磁石は、微粉末化によって単
磁区サイズとされ、且つ従来の樹脂成形法に比して高温
度で成形され、高密度、高精度、高強度となり、高い最
大エネルギ積(MGO)が得られるものである。
The resin magnet obtained by this method is made into a single magnetic domain size by pulverization, and is molded at a higher temperature than conventional resin molding methods, resulting in high density, high precision, high strength, and a high maximum energy product ( MGO) is obtained.

実施例−1 実施例−1では、常法により5lTIIco5材の磁石
合金を粉砕加工を行ない中心径が約5μφの微粉末とす
る。
Example 1 In Example 1, a magnet alloy of 5lTIIco5 material is pulverized into fine powder having a center diameter of approximately 5 μΦ by a conventional method.

得られた上記磁石合金の微粉末を金型内に緻密に平均的
に分布するように充填させ、IKOeの磁界中に於いて
タッピング(余剰の微粉末を取り除き1回毎の充填量に
)する。
The resulting fine powder of the above magnetic alloy is filled into a mold so that it is densely and evenly distributed, and tapped in the magnetic field of IKOe (excess fine powder is removed to reduce the amount filled each time). .

然る後、大気中に於て上記金型内の磁石合金の微粉末に
280℃の温度で5000kg / cm ”の圧力を
加え1分間保持する。これによりSm1CO5材が密度
85%となった焼結成形品を作製できた。次いでこの焼
結成形に於て磁石材Sm、及びCoの酸化等変質や損耗
は少なく目的の性能を有する磁石を作業性良く得られた
。この加圧成形金型内にポリアミド樹脂を1000に+
r / cm 2で加圧して注入含浸させる。
After that, a pressure of 5000 kg/cm'' was applied to the fine powder of the magnetic alloy in the mold in the atmosphere at a temperature of 280°C and held for 1 minute. As a result, the Sm1CO5 material was sintered to a density of 85%. A molded product was produced.Next, in this sintering molding, a magnet with the desired performance was obtained with good workability, with little deterioration or wear and tear such as oxidation of the magnet materials Sm and Co.This pressure molding mold 1000+ polyamide resin inside
Injection impregnation under pressure at r/cm2.

又、この充填成形時に、適宜の超音波振動や衝撃を与え
ることが望ましい。
Further, during this filling molding, it is desirable to apply appropriate ultrasonic vibration or impact.

得られた樹脂磁石は、耐熱性が約120 ℃となり、最
大エネルギ債が17M G O1引張り強さが23°c
で7kg/mm2であった。又、水中にこれを浸漬した
ときの耐蝕性は、無樹脂の焼結磁石等に比べて約100
倍に高められた。
The resulting resin magnet has a heat resistance of approximately 120°C, a maximum energy bond of 17M G O1, and a tensile strength of 23°C.
It was 7 kg/mm2. In addition, the corrosion resistance when immersed in water is about 100% higher than that of non-resin sintered magnets.
doubled.

実施例−2 実施例−2では、先ず実施例−1と同様に常法によりS
ml CO5材の磁石合金を粉砕加工を行ない中心径が
約5μφの微粉末とする。
Example-2 In Example-2, S
A magnetic alloy of ml CO5 material is pulverized into a fine powder with a center diameter of about 5μφ.

更に実施例−■と同様に得られた上記磁石合金の微粉末
を金型内に緻密に平均的に分布するように充填させ、I
KOeの磁界中に於いてタソピングする。
Furthermore, the fine powder of the above magnetic alloy obtained in the same manner as in Example-■ was filled into a mold so as to be densely and evenly distributed, and
Tasoping in the magnetic field of KOe.

然る後、実施例−1と同様に大気中で、かつ上記金型の
一方の開放端にモータケースのステータ磁石を取付ける
内壁面部位を対接させ、上記金型内の磁石合金の微粉末
に280℃の温度で5000kg/cm2の圧力を加え
1分間保持する。これにより5IIlIC05材が密度
85%となった焼結成形品をモータケースの内壁面ステ
ータ磁石を取付配置する部位に一体に接合固着した状態
として作製できた。磁石材の損耗、変質は前記と同様低
温での焼結成形のため少ないものであった。
Thereafter, in the same manner as in Example 1, in the atmosphere, the inner wall surface portion of the motor case where the stator magnet is attached is brought into contact with one open end of the mold, and the fine powder of the magnet alloy in the mold is heated. A pressure of 5000 kg/cm2 was applied at a temperature of 280°C and held for 1 minute. As a result, a sintered molded product made of the 5IIIIC05 material with a density of 85% could be produced in a state where it was integrally bonded and fixed to the inner wall surface of the motor case at the portion where the stator magnet was to be attached. Wear and deterioration of the magnet material were small because the magnet material was sintered and formed at a low temperature, as described above.

次いで、この加圧成形工程後、180℃の温度に保たれ
た金型内の成形体に300℃に加熱したLCP樹脂を1
000kg / am ”で加圧注入する。
Next, after this pressure molding process, 1 portion of LCP resin heated to 300°C was poured into the molded body in the mold kept at a temperature of 180°C.
Inject under pressure at 1,000 kg/am.

得られた樹脂磁石は、耐熱性が約300℃となり、最大
エネルギ積が18M G Oであり、引張り強さが23
℃で16kg / mm 2であった。又、実施例−1
と同様に高い耐蝕性を示した。
The obtained resin magnet has a heat resistance of approximately 300°C, a maximum energy product of 18 M GO, and a tensile strength of 23
It was 16 kg/mm2 at °C. Also, Example-1
It also showed high corrosion resistance.

尚、本発明の構成は叙上の実施例に限定されるものでは
なく、例えば、磁石合金にSml CO5材を用いたが
、その他公知の磁石合金を用いても良く、又、樹脂材料
にポリアミド樹脂及びLCPを用いたが、その他公知の
樹脂磁石を用いても良い。又、本発明は軟樹脂磁石及び
セミハード樹脂磁石等に任意に利用することができ、本
発明はその目的の範囲内に於いて前記の説明から当業者
が容易に想到し得る総ての変更実施例を包摂するもので
ある。
The structure of the present invention is not limited to the above-mentioned embodiments. For example, although Sml CO5 material is used as the magnet alloy, other known magnet alloys may be used, and polyamide material may be used as the resin material. Although resin and LCP are used, other known resin magnets may also be used. Further, the present invention can be used arbitrarily for soft resin magnets, semi-hard resin magnets, etc., and the present invention includes all modifications that can be easily conceived by a person skilled in the art from the above description within the scope of its purpose. Examples are inclusive.

〔発明の効果〕〔Effect of the invention〕

本発明は叙上の如く構成されるから、本発明によるとき
は、低温で、かつ高圧で、焼結成形するようにしたもの
であるから、大気中の製作操作が可能で従来の樹脂磁石
に比して精度、磁気特性及び機械的強度を高めることが
でき、且つ最大エネルギ積CMGO)を大幅に向上せし
め得るものである。
The present invention is constructed as described above, and since the present invention is sintered and formed at low temperature and high pressure, it can be manufactured in the atmosphere and is different from conventional resin magnets. In comparison, accuracy, magnetic properties, and mechanical strength can be improved, and the maximum energy product (CMGO) can be greatly improved.

Claims (1)

【特許請求の範囲】  磁石合金を微粉末化する工程と、 微粉末化された磁石合金に、250℃以上400℃以下
の温度範囲で、3000kg/cm^2以上の高圧をか
けて成形体を得る工程と、 上記の加圧成形工程中又は加圧成形後に樹脂を浸透させ
る工程とから成る樹脂磁石製造方法。
[Claims] A step of pulverizing a magnetic alloy, and forming a compact by applying a high pressure of 3000 kg/cm^2 or more to the pulverized magnetic alloy at a temperature range of 250°C to 400°C. A method for manufacturing a resin magnet, comprising: a step of obtaining the resin, and a step of infiltrating the resin during or after the pressure molding step.
JP9202487A 1987-04-16 1987-04-16 Manufacture of resin magnet Pending JPS63260009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9202487A JPS63260009A (en) 1987-04-16 1987-04-16 Manufacture of resin magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9202487A JPS63260009A (en) 1987-04-16 1987-04-16 Manufacture of resin magnet

Publications (1)

Publication Number Publication Date
JPS63260009A true JPS63260009A (en) 1988-10-27

Family

ID=14042966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9202487A Pending JPS63260009A (en) 1987-04-16 1987-04-16 Manufacture of resin magnet

Country Status (1)

Country Link
JP (1) JPS63260009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136132A1 (en) * 2007-05-01 2008-11-13 Kazufumi Ogawa Magnetic fine particles and production method therefor, and magnet using the same and production method therefore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136132A1 (en) * 2007-05-01 2008-11-13 Kazufumi Ogawa Magnetic fine particles and production method therefor, and magnet using the same and production method therefore

Similar Documents

Publication Publication Date Title
US7230514B2 (en) Inductive component and method for producing same
JP2003534656A (en) Induction components and their manufacturing method
JP2004529508A (en) Inductive element and its manufacturing method
JP2007180368A (en) Method for manufacturing magnetic circuit part
JP3060104B2 (en) Radially-oriented magnetic anisotropic resin-bonded magnet and method for producing the same
JP2001355006A (en) Composite structural body, manufacturing method thereof, and motor
JPS63260009A (en) Manufacture of resin magnet
JPH11176682A (en) Manufacturing bond (trade mark) magnet
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
JP3883138B2 (en) Manufacturing method of resin bonded magnet
JPS588571B2 (en) Simultaneous orientation magnetization method in injection molding
JP6513623B2 (en) Method of manufacturing isotropic bulk magnet
JPH0774012A (en) Manufacture of bonded permanent magnet and raw material powder therefor
JPH104023A (en) Manufacture of bond type permanent magnet
JP2724740B2 (en) Manufacturing method of radial anisotropic bonded magnet
JPH03235311A (en) Manufacture of anisotropic plastic magnet
JPH1167567A (en) Manufacture for bond magnet
JPH09306767A (en) Manufacturing anisotropic permanent magnet
JPH06120060A (en) Manufacture of iron-rare earth nitride magnet
JPH0256904A (en) Manufacture of resin-bound rare-earth magnet
JPH0473908A (en) Manufacture of r-fe-b-based anisotropic compression molding bonded magnet
JPH11150033A (en) Preparation for rare-earth magnet and magnetic circuit unit for loudspeaker
JPH09232122A (en) Rare earth permanent magnet with high electric resistance and manufacture thereof
JPH09115754A (en) Method and device for forming magnetic field for anisotropic polarity rare-earth bond magnet
JPH01300508A (en) Manufacture of magnetic component