JPS63257180A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPS63257180A
JPS63257180A JP62091522A JP9152287A JPS63257180A JP S63257180 A JPS63257180 A JP S63257180A JP 62091522 A JP62091522 A JP 62091522A JP 9152287 A JP9152287 A JP 9152287A JP S63257180 A JPS63257180 A JP S63257180A
Authority
JP
Japan
Prior art keywords
secondary battery
separator
polypropylene
nonwoven fabric
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62091522A
Other languages
Japanese (ja)
Inventor
Masao Ogawa
雅男 小川
Takahiro Kawagoe
隆博 川越
Isamu Shinoda
勇 篠田
Toyoro Harada
原田 豊郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP62091522A priority Critical patent/JPS63257180A/en
Priority to US07/158,590 priority patent/US4824745A/en
Priority to DE3805795A priority patent/DE3805795A1/en
Priority to FR8802316A priority patent/FR2611405A1/en
Publication of JPS63257180A publication Critical patent/JPS63257180A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To lengthen a life of charge and discharge cycles by using, as a separator, a combined material of polypropylene porous film and a polypropylene nonwoven fabric sheet containing glass fibers. CONSTITUTION:In the secondary battery provided with a positive electrode 3 and a negative electrode 5 made of a conductive high molecular material, nonaqueous electrolytic solution which lies between the positive electrode and the negative electrode, and a separator 7 which partitions off the positive and the negative electrodes, the separator 7 shall have a multilayered structure of polypropylene porous films A and polypropylene nonwoven fabric sheets B containing glass fibers. The separator 7 which is a combined material of polypropylene porous films A and polypropylene nonwoven fabric sheets B containing glass fibers is suited to a battery for which a positive electrode 3 of conductive high molecular material and nonaqueous electrolytic solution are used, and a battery with excellent characteristics in discharge capacity and cycle life length can be obtained. Thus this invention can be effectively utilized for small sized secondary batteries such as coin type or cylinder type secondary batteries.

Description

【発明の詳細な説明】 ・・上の 本発明は、ドーピング、脱ドーピングやインターカレー
ション、ディインターカレーション機構により充放電作
用を示すポリアニリン等の有機導電性高分子物質を正極
に用いた非水二次電池に関し、更に詳述すれば、電池性
能、とりわけ放電容量、エネルギー密度及び充放電サイ
クル寿命に優れた二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a non-conductive material using an organic conductive polymer material such as polyaniline, which exhibits charging and discharging effects through doping, dedoping, intercalation, and deintercalation mechanisms, as a positive electrode. The present invention relates to a water secondary battery, and more specifically, to a secondary battery that is excellent in battery performance, particularly discharge capacity, energy density, and charge/discharge cycle life.

灸來立投監 近年、ドーピング、脱ドーピングやインターカレーショ
ン、ディインターカレーション機構により充放電作用を
示す材料を電極に用いた二次電池の研究が盛んであり、
また、こうした性質を示す材料としてはポリアニリン等
の有機導電性高分子物質が採り上げられ、小型軽量化や
フレキシビリティの向上の点からも有機導電性高分子物
質を二次電池の電極、特に正極に応用する試みが種々検
討されている。これらの有機導電性高分子物質の中でも
、ポリアニリンは、二次電池の電極材料として特に充放
電容量に優れ、サイクル寿命に優れた二盗電池を構成し
得ることが知られている。
In recent years, there has been active research into secondary batteries that use materials that exhibit charging and discharging effects through doping, dedoping, intercalation, and deintercalation mechanisms as electrodes.
In addition, organic conductive polymer substances such as polyaniline are used as materials that exhibit these properties, and organic conductive polymer substances are used as electrodes of secondary batteries, especially positive electrodes, from the standpoint of reducing size and weight and improving flexibility. Various attempts to apply it are being considered. Among these organic conductive polymer substances, polyaniline is known to be particularly excellent in charge and discharge capacity as an electrode material for secondary batteries, and can constitute a secondary battery with excellent cycle life.

一方、二次電池の負極材料としては、繰返し充放電可能
であり、しかも高エネルギー密度で放電電位が高い等の
優れた電池性能を有する上、小型軽量化が可能であると
いう点からリチウム合金が注目され、ポリアニリン等の
導電性高分子物質を正極とし、リチウム合金を負極とす
る二次電池の実用化が志向されている。
On the other hand, lithium alloys are used as negative electrode materials for secondary batteries because they can be repeatedly charged and discharged, have excellent battery performance such as high energy density and high discharge potential, and can be made smaller and lighter. This has attracted much attention, and efforts are being made to put a secondary battery into practical use that uses a conductive polymer material such as polyaniline as a positive electrode and a lithium alloy as a negative electrode.

このような二次電池は、円筒型、ボタン型1箱型、小判
型等の種々の形状に構成され得るが、かかる二次電池を
製作する場合、正負極間に非水電−液を介在させると共
に、これら正負極間にセパレータ(隔膜)を配設するこ
とが行なわれている。
Such secondary batteries can be configured in various shapes such as cylindrical, button-shaped, box-shaped, oval, etc., but when manufacturing such secondary batteries, it is necessary to interpose a non-aqueous electrolyte between the positive and negative electrodes. At the same time, a separator (diaphragm) is provided between these positive and negative electrodes.

このセパレータとしては、従来、 ■ポリプロピレン製不織布のみを1枚もしくは複数枚用
いるタイプ、 ■ポリプロピレン製不織布1枚とポリプロピレン製細孔
性膜1枚とを重ねて用いるタイプ、■ポリプロピレン製
細孔性膜のみを1枚もしくは複数用いるタイプ、 ■ポリプロピレン製細孔性膜1枚をポリプロピレン製不
織布2枚の間に介在したものを用いるタイプ のものが知られており、特に゛耐薬品性、コストの面か
らポリプロピレン製不織布がセパレータの材質として汎
用されている。
Conventionally, this separator has three types: (1) a type that uses only one or more sheets of polypropylene nonwoven fabric, (2) a type that uses one layer of polypropylene nonwoven fabric and one polypropylene porous membrane, and (2) a type that uses a polypropylene porous membrane. Types that use one or more polypropylene porous membranes interposed between two polypropylene nonwoven fabrics are known. Polypropylene nonwoven fabric is widely used as a material for separators.

11が解゛1しようとする司ドベ しかしながら、ポリプロピレン製不織布やポリプロピレ
ン製細孔性膜をそれぞれ単独で使用したり、これらを組
合せた従来のセパレータを用い。
However, conventional separators that use a polypropylene nonwoven fabric or a polypropylene porous membrane alone or a combination of these are used.

R電性高分子物質を正極とする非水二次電池を構成した
場合、そのサイクル寿命は必ずしも十分なものではなく
、二次電池のサイクル寿命を伸ばすことが望まれた。
When constructing a non-aqueous secondary battery using an R-electrolytic polymer material as a positive electrode, its cycle life is not necessarily sufficient, and it has been desired to extend the cycle life of the secondary battery.

本発明は、上記事情に鑑みなされたもので、ドーピング
、脱ドーピングやインターカレーション。
The present invention was made in view of the above circumstances, and is intended to prevent doping, dedoping, and intercalation.

ディインターカレーション機構により充放電作用を示す
電極材料としてポリアニリン等の有機導電性高分子物質
を正極に用い、コイン型や筒型二次電池等の小型の二次
電池を形成する場合においても、十分な放電容量やエネ
ルギー密度を有し、かつ充放電サイクル寿命に優れた非
水二次電池を提供することを目的とする。
Even when forming a small secondary battery such as a coin-shaped or cylindrical secondary battery by using an organic conductive polymer material such as polyaniline as an electrode material that exhibits charging and discharging effects through a deintercalation mechanism as a positive electrode, It is an object of the present invention to provide a non-aqueous secondary battery that has sufficient discharge capacity and energy density and has an excellent charge/discharge cycle life.

皿月々を解決するための  −び作 本発明者らは、正極にポリアニリン等の導電性高分子物
質を使用した非水二次電池の充放電サイクル寿命を改善
することについて鋭意検討を行なった結果、この種の二
次電池にあっては使用するセパレータがサイクル寿命に
大きな影響を与えることを見い出すと共に、セパレータ
としてポリプロピレン製細孔性膜とガラス繊維を含有し
たポリプロピレン製不織布とを組合せることにより、充
放電サイクル寿命が改善されることを知見した。
The present inventors have conducted intensive studies on improving the charge/discharge cycle life of non-aqueous secondary batteries using conductive polymer materials such as polyaniline for the positive electrode. discovered that the separator used in this type of secondary battery has a significant effect on the cycle life, and by combining a porous polypropylene membrane and a polypropylene nonwoven fabric containing glass fiber as the separator, It was found that the charge/discharge cycle life was improved.

即ち、後述する実施例と比較例に示したように、従来の
ポリプロピレン製不織布をセパレータに用いたり、或い
はガラス繊維含有ポリプロピレン製不織布やポリプロピ
レン製細孔性膜を単独で使用したり、更には単なるガラ
ス繊維膜をポリプロピレン製網孔性膜と組合せても十分
安定したサイクル寿命が達成されていないにもかかわら
ず、ガラス繊維含有ポリプロピレン製不織布とポリプロ
ピレン製細孔性膜とを複合化する場合は、電解液が非水
系であっても十分に保液し、電池容量が増大して、サイ
クル寿命が長くなることを知見し、本発明をなすに至っ
たものである。
That is, as shown in Examples and Comparative Examples to be described later, conventional polypropylene nonwoven fabrics are used as separators, glass fiber-containing polypropylene nonwoven fabrics or polypropylene porous membranes are used alone, and even simple Although a sufficiently stable cycle life has not been achieved even when a glass fiber membrane is combined with a porous polypropylene membrane, when combining a glass fiber-containing polypropylene nonwoven fabric with a porous polypropylene membrane, The inventors have discovered that even if the electrolyte is non-aqueous, the electrolyte can be sufficiently retained, the battery capacity can be increased, and the cycle life can be extended, and the present invention has been developed.

従って1本発明は、導電性高分子物質からなる正極と、
負極と、これら正負極間に介在される非水電解液と、こ
れら正負極間を仕切るセパレータとを具備する二次電池
において、前記セパレータがポリプロピレン製細孔性膜
とガラス繊維含有ポリプロピレン製不織布とが積層され
た構成を有するものであることを特徴とする二次電池を
提供するものである。
Therefore, one aspect of the present invention is to provide a positive electrode made of a conductive polymer material;
A secondary battery comprising a negative electrode, a non-aqueous electrolyte interposed between these positive and negative electrodes, and a separator that partitions between these positive and negative electrodes, wherein the separator includes a porous polypropylene membrane and a polypropylene nonwoven fabric containing glass fiber. The object of the present invention is to provide a secondary battery characterized in that it has a laminated structure.

以下1本発明を更に詳しく説明する。The present invention will be explained in more detail below.

本発明の二次電池の正極に用いられる有機導電性高分子
物質としては1例えばポリアセチレン。
An example of the organic conductive polymer material used in the positive electrode of the secondary battery of the present invention is polyacetylene.

ポリベンゼン、ポリパラフェニレン、ポリアニリン等の
ベンゼン及びその誘導体のポリマー、ポリピリジン、ポ
リチオフェン、ポリフラン、ポリピロール、アントラセ
ンやナフタリン等のへテロ又は多核芳香族化合物のポリ
マーなどが挙げられ、電極活物質として使用し得るもの
であればその種類に制限はない。中でも、ポリアニリン
、とりわけ電解酸化重合法により得られたポリアニリン
は。
Polymers of benzene and its derivatives such as polybenzene, polyparaphenylene, polyaniline, polypyridine, polythiophene, polyfuran, polypyrrole, and polymers of hetero or polynuclear aromatic compounds such as anthracene and naphthalene are used as electrode active materials. There is no limit to the type of things you can get. Among them, polyaniline, especially polyaniline obtained by electrolytic oxidation polymerization method.

電解酸化重合時に陽極基体に密着性よく析出形成し、し
かも陽極基体を電池電極の集電体や容器として利用する
ことができ、電池製造工程の簡略化が行なえるのみなら
ず、このポリアニリンを電極活物質として使用した二次
電池は内部抵抗を小さくすることができ、またクーロン
効率を向上し得るなどの特徴を有しているため1本発明
の二次電池の正極に好適に使用し得る。
During electrolytic oxidation polymerization, this polyaniline is deposited and formed with good adhesion to the anode substrate, and the anode substrate can be used as a current collector or container for battery electrodes.Not only can the battery manufacturing process be simplified, but this polyaniline can also be used as an electrode. The secondary battery used as the active material has characteristics such as being able to reduce internal resistance and improving Coulombic efficiency, and therefore can be suitably used as the positive electrode of the secondary battery of the present invention.

この場合、ポリアニリンとしては通常アニリン濃度0.
01〜5mol/n、とりわけ0.5〜3mol/Q及
び酸濃度0.02〜10 mol/ Q、とりわけ1〜
6mol/Qを含有する電解液を電解重合して得られた
ものが特に好適である。なお、上記電解重合の電解液に
用いる酸としては、特に限定されないが、フッ化水素酸
、塩酸、硫酸、硝酸、過塩素酸、ホウフッ化水素酸、リ
ン酸、酢酸等があり、中でも塩酸、過塩素酸、ホウフッ
化水素酸等が好ましく、また、電解液の温度は一5〜3
0’Cの範囲がポリアニリンの生成速度の点で好ましく
、中でも20℃以下とすることによりポリアニリンの成
膜性が良好となり、より一層本発明の二次電池の電極活
物質とし゛C好適に使用し得るポリアニリンが得られる
ものである。
In this case, the polyaniline usually has an aniline concentration of 0.
01-5 mol/n, especially 0.5-3 mol/Q and acid concentration 0.02-10 mol/Q, especially 1-
Particularly suitable is one obtained by electrolytically polymerizing an electrolytic solution containing 6 mol/Q. The acids used in the electrolytic solution for the electrolytic polymerization are not particularly limited, but include hydrofluoric acid, hydrochloric acid, sulfuric acid, nitric acid, perchloric acid, hydrofluoroboric acid, phosphoric acid, acetic acid, etc. Among them, hydrochloric acid, Perchloric acid, fluoroboric acid, etc. are preferred, and the temperature of the electrolyte is between 15 and 3
The range of 0'C is preferable in terms of the production rate of polyaniline, and in particular, the temperature of 20°C or less improves the film forming properties of polyaniline, making it even more suitable for use as the electrode active material of the secondary battery of the present invention. The polyaniline obtained is what is obtained.

また、本発明の二次電池の負極としては、特に制限はな
いが、リチウム合金が好ましく用いられる。リチウム合
金としては、リチウムと合金化し得るアルミニウム、銀
、鉛、錫、ビスマス、アンチモン、インジウム、カドミ
ウム等の金属の1種又は2種以上の合金にリチウムを真
空又は不活性ガス雰囲気下で加熱溶融して均質に混合し
た後に冷却固化して合金化する方法により製造したもの
Furthermore, although there is no particular restriction on the negative electrode of the secondary battery of the present invention, a lithium alloy is preferably used. The lithium alloy is made by heating and melting lithium in an alloy of one or more metals such as aluminum, silver, lead, tin, bismuth, antimony, indium, and cadmium that can be alloyed with lithium in a vacuum or an inert gas atmosphere. Manufactured by a method of homogeneously mixing, cooling and solidifying to form an alloy.

リチウムを電気化学的に導入する方法により製造したも
ののいずれをも使用することができる。リチウム合金の
合成組成、負極活物質量等に特に制限はないが、リチウ
ム合金の種類としては上述したLi−AQ合金、Li−
AM−In合金、LL−kQ−Bi金合金好適であり、
特にLi−Af1合金が好ましい。
Any material produced by a method of electrochemically introducing lithium can be used. There are no particular restrictions on the synthetic composition of the lithium alloy, the amount of negative electrode active material, etc., but the types of lithium alloys include the above-mentioned Li-AQ alloy, Li-
AM-In alloy, LL-kQ-Bi gold alloy are suitable;
Particularly preferred is Li-Af1 alloy.

なお、正極にポリアニリンを用いた場合には、正極活物
質としてのポリアニリン1g当りの二次電池の充電及び
放電の際に電気化学的な吸蔵及び放出の働きをする負極
活物質中の有効リチウム濃度は、4X10−3モル−1
フ0X10−”モルであるものが好ましい。
In addition, when polyaniline is used for the positive electrode, the effective lithium concentration in the negative electrode active material, which performs electrochemical intercalation and desorption during charging and discharging of the secondary battery, per 1 g of polyaniline as the positive electrode active material. is 4X10-3 mol-1
Preferably, the amount is 0.times.10" moles.

更に、本発明の二次電池を構成する非水電解液の電解質
、即ち前記正負極にそれぞれ吸蔵され得るイオンを生成
する化合物は、アニオンとカチオンの組合せよりなる化
合物であって、アニオンの例としてはPFG−、SbF
、″y A S F g −x S b CQs−の如
きVAM元索のハロゲン化物アニオン、 BF4−、A
ΩCQ4□の如きI[[A族元素のハロゲン化物アニオ
ン、■″″(I3つ。
Furthermore, the electrolyte of the non-aqueous electrolyte constituting the secondary battery of the present invention, that is, the compound that generates ions that can be occluded in the positive and negative electrodes, is a compound consisting of a combination of an anion and a cation, and examples of the anion include: is PFG-, SbF
, ``y A S F g -x S b CQs-, the halide anion of the VAM source, BF4-, A
I [[Halide anion of group A element, ■'''' (3 I) such as ΩCQ4□.

B(、CQ−の如きハロゲンアニオン、CQo4の如き
過塩素酸アニオン、HF、=、cF3so3−.5cN
−、oニー。
B(, halogen anion such as CQ-, perchlorate anion such as CQo4, HF, =, cF3so3-.5cN
-, o knee.

HS O4’″等を挙げることができる。また、カチオ
ンとしてはLi◆、Na◆、に◆の如きアルカリ金属イ
オン等を挙げることができる。具体的には、LiP F
、。
Examples of cations include HS O4''', etc. Examples of cations include alkali metal ions such as Li◆, Na◆, and ◆.Specifically, LiP F
,.

L I S b F 6 g L I A S F 6
 p L I CQ O4g L I I + L I
 B r HL I CQ ■ NaPF@vNaSbF@gNaAsF@INaCQO
4gNaIgKPF@yK S b F G # K 
A 8 F @ g K CQ O4HL I B F
 4 g L I A Q CQ4 gLiHF、、L
i5CN、KSCN、Li5O,CF3等を挙げること
ができ、これらに限定されるものではないが、二次電池
の軽量化、安定化の点からはリチウム塩、特に LiC
Qo、、LiBF、、LiPF5が好適である。
L I S b F 6 g L I A S F 6
p L I CQ O4g L I I + L I
B r HL I CQ ■ NaPF@vNaSbF@gNaAsF@INaCQO
4gNaIgKPF@yK S b FG # K
A 8 F @ g K CQ O4HL I B F
4 g L I A Q CQ4 gLiHF,,L
Examples include i5CN, KSCN, Li5O, CF3, etc., but are not limited to these, but from the viewpoint of weight reduction and stabilization of secondary batteries, lithium salts, especially LiC
Qo, , LiBF, , LiPF5 are suitable.

上記電解質は通常溶媒により溶解された状態で使用され
、この場合溶媒は特に限定はされないが、比較的極性の
大きい溶媒が好適に用いられる。具体的には、プロピレ
ンカーボネート、エチレンカーボネート、ベンゾニトリ
ル、アセトニトリル。
The above-mentioned electrolyte is usually used in a state dissolved in a solvent, and in this case, the solvent is not particularly limited, but a relatively polar solvent is preferably used. Specifically, propylene carbonate, ethylene carbonate, benzonitrile, and acetonitrile.

テトラヒドロフラン、2−メチルテトラヒドロフラン、
γ−ブチロラクトン、ジオキソラン、塩化メチレン、ト
リエチルフォスフェート、トリエチルフォスファイト、
硫酸ジメチル、ジメチルホルムアミド、ジメチルアセト
アミド、ジメチルスルフオキシド、ジオキサン、ジメト
キシエタン、ポリエチレングリコール、スルフオラン、
ジクロロエタン、クロルベンゼン、ニトロベンゼンなど
の1種又は2種以上の混合物を挙げることができる。
Tetrahydrofuran, 2-methyltetrahydrofuran,
γ-butyrolactone, dioxolane, methylene chloride, triethyl phosphate, triethyl phosphite,
Dimethyl sulfate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, dimethoxyethane, polyethylene glycol, sulfolane,
One or a mixture of two or more of dichloroethane, chlorobenzene, nitrobenzene and the like can be mentioned.

これらのうちでは、特にエチレンカーボネート。Among these, especially ethylene carbonate.

プロピレンカーボネート、ジメトキシエタン、テトラヒ
ドロフラン及びγ−ブチロラクトンから選ばれた1種の
溶媒又は2種以上の溶媒を混合してなる混合溶媒が好適
である。
One type of solvent selected from propylene carbonate, dimethoxyethane, tetrahydrofuran, and γ-butyrolactone, or a mixed solvent formed by mixing two or more types of solvents is suitable.

而して9本発明の二次電池は、上述した正負極と、これ
ら正負極間に介在される非水電解液と、更にこれら正負
極間を仕切るセパレータとを有す志ものであるが、この
場合本発明は、セパレータを2層以上の積層構造を有し
、少なくとも1層をポリプロピレン製細孔性膜により構
成すると共に。
Therefore, the secondary battery of the present invention has the above-mentioned positive and negative electrodes, a non-aqueous electrolyte interposed between these positive and negative electrodes, and a separator that partitions between these positive and negative electrodes, In this case, in the present invention, the separator has a laminated structure of two or more layers, and at least one layer is composed of a porous polypropylene membrane.

残りの層の少なくとも1層をガラス繊維含有ポリプロピ
レン製不織布にて構成するものである。
At least one of the remaining layers is composed of a nonwoven fabric made of polypropylene containing glass fibers.

ここで、ポリプロピレン製細孔性膜は、リチウムイオン
の移動をコントロールするためのもので。
Here, the polypropylene porous membrane is used to control the movement of lithium ions.

細孔径が50m以下のものが好ましく、より好ましくは
207a以下のものである。このように径が小さいこと
によりリチウム合金上へのリチウムの析出、溶解がスム
ーズに行なわれ、二次電池のサイクル寿命が改善できる
。なお、この細孔性膜の厚さは必ずしも制限されないが
、25〜100pの範囲が好ましい。
The pore diameter is preferably 50 m or less, more preferably 207 a or less. Due to such a small diameter, lithium can be smoothly deposited and dissolved on the lithium alloy, and the cycle life of the secondary battery can be improved. Note that the thickness of this porous membrane is not necessarily limited, but is preferably in the range of 25 to 100p.

一方、ガラス繊維含有ポリプロピレン製不織布は、導電
性高分子物質を用いた電池において、必要な電解液の保
持能力が優れているので、高容址及びサイクル寿命の向
上に効果的であり、このガラス繊維含有ポリプロピレン
製不織布を前記ポリプロピレン製細孔性膜と組合せるこ
とにより、二次電池のサイクル寿命が顕著に改善される
ものである。これに対し、ガラス繊維が含有していない
ポリプロピレン製不織布を用いた場合、電解液の保液性
に劣るため性能面で劣るばかりでなく、製造面でも強度
が弱いため生産性が低下してしまうという問題があり、
二次電池のサイクル寿命を十分改善することができず、
本発明の目的を達成し得ない。
On the other hand, glass fiber-containing polypropylene nonwoven fabric has excellent ability to retain the necessary electrolyte in batteries using conductive polymer materials, so it is effective in increasing capacity and cycle life. By combining the fiber-containing polypropylene nonwoven fabric with the polypropylene porous membrane, the cycle life of the secondary battery is significantly improved. On the other hand, when a polypropylene nonwoven fabric that does not contain glass fiber is used, it not only has poor performance due to its poor electrolyte retention ability, but also has low manufacturing strength, which reduces productivity. There is a problem that
It is not possible to sufficiently improve the cycle life of secondary batteries,
The purpose of the present invention cannot be achieved.

このガラス繊維含有ポリプロピレン製不織布において、
ガラス繊維含有量は5〜60重量%とすることか性能上
及び製造面から好適である。ガラス繊維が5%未満の場
合、保液性の面で劣り、逆に60%以上の場合、保液性
の面では問題ないが。
In this glass fiber-containing polypropylene nonwoven fabric,
From the standpoint of performance and manufacturing, it is preferable that the glass fiber content be 5 to 60% by weight. If the glass fiber content is less than 5%, the liquid retention property will be poor, whereas if it is 60% or more, there will be no problem in terms of the liquid retention property.

強度が低下し、また含水量が増し、非水電解液電池とし
て不適となる場合が生じる。なお、ガラス繊維含有ポリ
プロピレン製不織布の厚さは50〜200Iaの範囲が
好ましい。
There are cases where the strength decreases and the water content increases, making it unsuitable as a non-aqueous electrolyte battery. In addition, the thickness of the glass fiber-containing polypropylene nonwoven fabric is preferably in the range of 50 to 200 Ia.

ポリプロピレン製細孔性膜とガラス繊維含有ポリプロピ
レン製不織布の積層態様は特に限定されず、種々の態様
が可能である。例えば、第1図に示したように細孔性膜
Aと不織布Bとを単に重ね合せたもの、第2図に示した
ように2枚の不織布8層B間に細孔性膜Aを介装したサ
ンドイッチ構造のものなどが挙げられる。
The lamination mode of the polypropylene porous membrane and the glass fiber-containing polypropylene nonwoven fabric is not particularly limited, and various modes are possible. For example, as shown in Fig. 1, a porous membrane A and a nonwoven fabric B are simply layered together, or as shown in Fig. 2, a porous membrane A is interposed between 8 layers B of two nonwoven fabrics. Examples include those with a sandwich structure.

又班立羞困 以上のように、ポリプロピレン製細孔性膜とガラス繊維
含有ポリプロピレン製不織布を組合せたセパレータは、
導電性高分子物質を正極に使用し。
As mentioned above, a separator that combines a porous polypropylene membrane and a nonwoven polypropylene fabric containing glass fibers is
A conductive polymer material is used for the positive electrode.

非水電解液を用いた電池に適し、放電容量が高くかつサ
イクル寿命に優れた特性を示す。従って。
Suitable for batteries using non-aqueous electrolytes, it has high discharge capacity and excellent cycle life. Therefore.

本発明の電池は、特にコイン型や筒型二次電池等の小型
二次電池として有効に用いられる。
The battery of the present invention is particularly effectively used as a small secondary battery such as a coin type or cylindrical secondary battery.

以下、実施例と比較例を示し1本発明を具体的に説明す
るが1本発明はこれらの実施例に制限されるものではな
い。
EXAMPLES Hereinafter, the present invention will be specifically explained by showing Examples and Comparative Examples, but the present invention is not limited to these Examples.

塞m−之■ アニリンを電解重合して得たポリアニリンを脱水真空乾
燥したもの4.omgを正極に用い、リチウム−アルミ
ニウム合金を負極に用い、電解液としてはLiBF4を
プロピレンカーボネートとジメトキシエタンとの等容量
混合溶媒に溶解した電屏質濃度3mol/42の電解液
を用いて第3図に示すコイン型二次電池を湿度管理され
たグローブボックス中で組立てて構成した。ここで、第
3図に示すコイン型二次電池において1図中1a、lb
が容器、2がガスケット、3が正極、4が正極集電体。
4. Dehydrated and vacuum-dried polyaniline obtained by electropolymerizing aniline. Omg was used as the positive electrode, a lithium-aluminum alloy was used as the negative electrode, and the electrolytic solution was an electrolytic solution containing LiBF4 dissolved in an equal volume mixed solvent of propylene carbonate and dimethoxyethane with an electrolyte concentration of 3 mol/42. The coin-type secondary battery shown in the figure was assembled and constructed in a humidity-controlled glove box. Here, in the coin type secondary battery shown in FIG. 3, 1a and lb in FIG.
is a container, 2 is a gasket, 3 is a positive electrode, and 4 is a positive electrode current collector.

5が負極、6が負極集電体、7がセパレータであり、電
解質はこのセパレータ7に含浸されている。
5 is a negative electrode, 6 is a negative electrode current collector, and 7 is a separator, and this separator 7 is impregnated with an electrolyte.

セパレータは、細孔径20声を有するポリプロピレン製
細孔性膜(50p厚)と、ガラス繊維40重量%含有ポ
リプロピレン製不織布(120声厚)から構成される二
層を用いた。
The separator used was a two-layer structure consisting of a porous polypropylene membrane (50p thick) having a pore diameter of 20 mm and a polypropylene nonwoven fabric (120 mm thick) containing 40% by weight of glass fibers.

比較のため、第1表に示すポリプロピレン製細孔性膜、
不織布を組合せてセパレータを構成し、同様の電池を製
造した。
For comparison, the polypropylene porous membrane shown in Table 1,
A similar battery was manufactured by combining nonwoven fabrics to form a separator.

次に、この′電池を1mAの電流で1時間充電し。Next, this 'battery was charged with a current of 1 mA for 1 hour.

その後1mAで1時間放電して、そのサイクル特性を調
べた。結果を第1表に示す。なお、第1表の結果は各3
個の電池について行なったサイクル数の結果とその平均
値である。
Thereafter, the battery was discharged at 1 mA for 1 hour, and its cycle characteristics were examined. The results are shown in Table 1. The results in Table 1 are for each 3
These are the results of the number of cycles performed on each battery and their average value.

第1表の結果より、ポリプロピレン製網孔性膜とガラス
繊維不織布とを組合せたセパレータを使用することによ
ってサイクルの命に優れた二次電池が得られることが認
められる。
From the results in Table 1, it is recognized that a secondary battery with excellent cycle life can be obtained by using a separator made of a combination of a polypropylene reticulated membrane and a glass fiber nonwoven fabric.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明に用いるセパレータ
の一例を示す断面図、第3図は本発明の一実施例を示す
概略断面図である。 1 a、1 b・・・容器、2・・・ガスケット、3・
・・正極、4・・・正極集電体、5・・・負極。 6・・・負極集電体、7・・・セパレータ、A・・・ポ
リプロピレン製細孔性膜、 B・・・ガラス繊維含有ポリプロピレン製不織布。 出願人  株式会社 ブリデストン 代理人  弁理士  小 島 隆 司 」1  糸、°J  ネ市  sE   甲ト(自 発
)昭和62年6月30日 昭和62年特許願第91522号 2、発明の名称 二次電池 3、補正をする者 事件との関係    特許出願人 住  所  東京都中央区京橋−丁目10番1号氏  
名  (527)株式会社  ブリデストン代表者  
家 入  昭 4、代理人 〒104 住  所  東京都中央区銀座3丁目11番14号ダパ
クリエートビル5階 電話(545)6454明細7F
の「発明の詳細な説明」の欄。 6、補正の内容 (1)明細書第14頁第8行目に「4.0■」とあるの
をr40■」と訂正する。 以上
FIGS. 1 and 2 are sectional views showing one example of a separator used in the present invention, and FIG. 3 is a schematic sectional view showing one embodiment of the present invention. 1 a, 1 b...container, 2... gasket, 3...
... Positive electrode, 4... Positive electrode current collector, 5... Negative electrode. 6... Negative electrode current collector, 7... Separator, A... Polypropylene porous membrane, B... Glass fiber-containing polypropylene nonwoven fabric. Applicant Brideston Co., Ltd. Agent Patent Attorney Takashi Kojima 1 Ito, °J Neichi sE Koto (spontaneous) June 30, 1985 Patent Application No. 91522 of 1988 2 Title of the invention Secondary Battery 3: Relationship with the case of the person making the amendment Patent applicant address: Mr. 10-1 Kyobashi-chome, Chuo-ku, Tokyo
Name (527) Representative of Brideston Co., Ltd.
House: 4th year of Showa, Agent: 104 Address: 5th floor, Dapa Create Building, 3-11-14 Ginza, Chuo-ku, Tokyo Phone: (545) 6454 7F
``Detailed Description of the Invention'' column. 6. Contents of amendment (1) In the 8th line of page 14 of the specification, "4.0■" is corrected to "r40■". that's all

Claims (1)

【特許請求の範囲】 1、導電性高分子物質からなる正極と、負極と、これら
正負極間に介在される非水電解液と、これら正負極間を
仕切るセパレータとを具備する二次電池において、前記
セパレータがポリプロピレン製細孔性膜とガラス繊維含
有ポリプロピレン製本織布とが積層された構成を有する
ものであることを特徴とする二次電池。 2、導電性高分子物質がポリアニリンである特許請求の
範囲第1項記載の二次電池。 3、負極がリチウム合金である特許請求の範囲第1項又
は第2項記載の二次電池。 4、ガラス繊維含有ポリプロピレン製不織布中のガラス
繊維含有量が5〜60重量%である特許請求の範囲第1
項乃至第3項のいずれか1項に記載の二次電池。
[Claims] 1. In a secondary battery comprising a positive electrode made of a conductive polymer material, a negative electrode, a non-aqueous electrolyte interposed between these positive and negative electrodes, and a separator that partitions between these positive and negative electrodes. . A secondary battery, wherein the separator has a structure in which a porous polypropylene membrane and a glass fiber-containing polypropylene book-bound woven fabric are laminated. 2. The secondary battery according to claim 1, wherein the conductive polymer material is polyaniline. 3. The secondary battery according to claim 1 or 2, wherein the negative electrode is a lithium alloy. 4. Claim 1, wherein the glass fiber content in the glass fiber-containing polypropylene nonwoven fabric is 5 to 60% by weight.
The secondary battery according to any one of Items 3 to 3.
JP62091522A 1987-02-25 1987-04-13 Secondary battery Pending JPS63257180A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62091522A JPS63257180A (en) 1987-04-13 1987-04-13 Secondary battery
US07/158,590 US4824745A (en) 1987-02-25 1988-02-22 Electric cell comprising a polymeric material film electrode having a collection integrated therewith
DE3805795A DE3805795A1 (en) 1987-02-25 1988-02-24 Electrical cell
FR8802316A FR2611405A1 (en) 1987-02-25 1988-02-25 ELECTRICAL BATTERY WITH COLLECTOR ENROBE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62091522A JPS63257180A (en) 1987-04-13 1987-04-13 Secondary battery

Publications (1)

Publication Number Publication Date
JPS63257180A true JPS63257180A (en) 1988-10-25

Family

ID=14028747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62091522A Pending JPS63257180A (en) 1987-02-25 1987-04-13 Secondary battery

Country Status (1)

Country Link
JP (1) JPS63257180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032184A1 (en) * 1997-01-16 1998-07-23 Mitsubishi Paper Mills Limited Separator for nonaqueous electrolyte batteries, nonaqueous electrolyte battery using it, and method for manufacturing separator for nonaqueous electrolyte batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032184A1 (en) * 1997-01-16 1998-07-23 Mitsubishi Paper Mills Limited Separator for nonaqueous electrolyte batteries, nonaqueous electrolyte battery using it, and method for manufacturing separator for nonaqueous electrolyte batteries
US6511774B1 (en) 1997-01-16 2003-01-28 Mitsubishi Paper Mills Limited Separator for nonaqueous electrolyte batteries, nonaqueous electrolyte battery using it, and method for manufacturing separator for nonaqueous electrolyte batteries

Similar Documents

Publication Publication Date Title
US7026075B2 (en) Nonaqueous electrolyte battery and nonaqueous electrolytic solution
EP2169756B1 (en) Lithium secondary battery
EP0848435B1 (en) Lithium battery and production method thereof
JP5804557B2 (en) Alkali metal-sulfur secondary battery
KR101994877B1 (en) Lithium sulfur battery and method for manufacturaing the same
AU2020227212B2 (en) Rechargeable battery cell with active electrode depolarizer
US20190363396A1 (en) Lithium secondary battery
JPH09213338A (en) Battery and lithium ion secondary battery
US4824745A (en) Electric cell comprising a polymeric material film electrode having a collection integrated therewith
WO2017206063A1 (en) Magnesium ion battery and preparation method therefor
JP4052810B2 (en) Lithium secondary battery
KR20210043434A (en) Lithium secondary battery and manufacturing method thereof
WO2019117669A1 (en) Continuous manufacturing method for lithium secondary battery having passivation film formed on surface of lithium metal electrode and lithium ion battery produced by same manufacturing method
JPH05226002A (en) Lithium secondary cell gel-like electrolyte
JPH08185851A (en) Electrode for battery and secondary battery using this electrode
JP2688502B2 (en) Thin battery manufacturing method
JP2003017058A (en) Non-aqueous electrolyte battery
JPS63257180A (en) Secondary battery
JP2002015739A (en) Positive electrode material for lithium secondary cell
JP2003100348A (en) Composite polymer electrolyte and electrochemical device using the same
JP7466112B2 (en) Non-aqueous electrolyte secondary battery
JP6832474B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
US20240014392A1 (en) Positive electrode and lithium secondary battery including the same
JP7462165B2 (en) Non-aqueous electrolyte secondary battery
JP3409093B2 (en) Electrode for secondary battery and battery using the same