JPS63256134A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPS63256134A
JPS63256134A JP62089476A JP8947687A JPS63256134A JP S63256134 A JPS63256134 A JP S63256134A JP 62089476 A JP62089476 A JP 62089476A JP 8947687 A JP8947687 A JP 8947687A JP S63256134 A JPS63256134 A JP S63256134A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
average particle
calcium aluminate
lime aluminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62089476A
Other languages
Japanese (ja)
Other versions
JPH0811181B2 (en
Inventor
Kunio Ito
伊藤 邦夫
Nobuyuki Yanagihara
伸行 柳原
Mieko Tanabe
田辺 美恵子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62089476A priority Critical patent/JPH0811181B2/en
Publication of JPS63256134A publication Critical patent/JPS63256134A/en
Publication of JPH0811181B2 publication Critical patent/JPH0811181B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the deterioration of activity small by regulating the average particle diameter of calcium aluminate to 0.5-5mum by means of atomization. CONSTITUTION:In a catalyst consisting of both a heat resistant inorganic oxide carrier contg. calcium aluminate as a binder and fused silica as an aggregate, and catalytic components carried thereon, the average particle diameter of calcium aluminate is regulated to 0.5-5mum by atomization. Thereby the surface area of calcium aluminate occupied in unit area is made large and the catalytic component of palladium is uniformly dispersed and carried. By such a way, when using it for the catalyst for purifying exhaust gas, the deterioration of activity can be remarkably made small.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は天然ガス、プロパン等の気体燃料および石油等
の液体燃料を用いる燃焼装置の排ガス浄化用触媒体に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a catalyst body for purifying exhaust gas of a combustion apparatus using gaseous fuel such as natural gas or propane, and liquid fuel such as petroleum.

従来の技術 従来、アルミン酸石灰を結合剤とし、骨材として溶融シ
リカ、二酸化チタンを成分とする無機酸化物に成形助剤
などを加えて混合し、水を加えて混練したものを多孔体
に加圧成形し、その後、固化、養生、乾燥を施して触媒
用担体を得ていた。
Conventional technology Traditionally, a porous body was made by mixing lime aluminate as a binder, fused silica as an aggregate, and an inorganic oxide consisting of titanium dioxide, adding molding aids, etc., and kneading with water. The catalyst carrier was obtained by pressure molding, followed by solidification, curing, and drying.

その後、排ガス浄化用としてはさらにパラジウム塩酸性
水溶液中に浸漬して触媒を担持した後、空気中900℃
で1時間熱処理することによシ触媒体を得ていた。
After that, for exhaust gas purification, the catalyst was further immersed in an acidic aqueous solution of palladium salt to support the catalyst, and then heated to 900°C in air.
A catalyst body was obtained by heat treatment for 1 hour.

発明が解決しようとする問題点 このような従来方法で得られた触媒体は、排ガス浄化用
として使用した場合、初期性能は比較的硬れているが、
時間の経過と共に触媒活性が低下してくるという問題が
あった。
Problems to be Solved by the Invention When the catalyst body obtained by such a conventional method is used for exhaust gas purification, its initial performance is relatively hard;
There was a problem in that the catalytic activity decreased over time.

本発明はこのような問題点を解決するもので、担体の組
成を改良し、浄化能の向上を図ることを目的とするもの
である。
The present invention is intended to solve these problems, and aims to improve the composition of the carrier and improve its purification ability.

問題点を解決するための手段 本発明はアルミン酸石灰を結合剤とし、少なくとも溶融
シリカを骨剤として含む耐熱性無機酸化物損体と、これ
に担持された触媒とからなる触媒体において、上記アル
ミン酸石灰の平均粒径を従来の5〜10μmより0.5
〜6μmと微粒子化したものである。
Means for Solving the Problems The present invention provides a catalyst body comprising a heat-resistant inorganic oxide loss body containing lime aluminate as a binder and at least fused silica as an aggregate, and a catalyst supported on the same. The average particle size of lime aluminate has been increased by 0.5 μm compared to the conventional 5 to 10 μm.
It is made into fine particles of ~6 μm.

作   用 アルミン酸石灰、溶融シリカ、二酸化チタンを主体とし
た担体にパラジウム触媒を担持する場合、塩化パラジウ
ムや硝酸パラジウムなどの酸性水溶液中に担体を浸漬す
る方法が一般的に用いられる。
Function When a palladium catalyst is supported on a support mainly composed of lime aluminate, fused silica, or titanium dioxide, a method of immersing the support in an acidic aqueous solution such as palladium chloride or palladium nitrate is generally used.

溶融シリカや二酸化チタンに比ベアルミン酸石灰の表面
は、より塩基性を示すために触媒溶液に浸漬した時、酸
−塩基反応により主としてアルミン酸石灰の表面にパラ
ジウムが担持され易い。従って、アルミン酸石灰の粒子
を細かくして単位面積に占めるアルミン酸石灰の表面積
を大きくすることにより、パラジウム触媒が均一に分散
担持される。この結果排ガス浄化用触媒体に用いた時、
活性の低下が著しく小さくなることとなる。
Compared to fused silica and titanium dioxide, the surface of lime aluminate is more basic, so when immersed in a catalyst solution, palladium is likely to be supported mainly on the surface of lime aluminate due to an acid-base reaction. Therefore, by making the particles of lime aluminate finer and increasing the surface area of lime aluminate per unit area, the palladium catalyst can be uniformly dispersed and supported. As a result, when used in a catalyst body for exhaust gas purification,
This results in a significantly smaller decrease in activity.

実施例 以下、本発明の実施例を詳細に説明する。Example Examples of the present invention will be described in detail below.

担体は結合剤であるアルミン酸石灰40部(重量部、以
下同じ)、骨材である溶融シリカ46部、二酸化チタン
10部、および成形助剤であるカルボキシメチルセルロ
ース5部を良く混合し、適量の水を加えて混練した。こ
の混線物をダイスを用いてハニカム状に押し出し成形し
、固化、養生を経て100℃で乾燥した。空気中9oo
℃で熱処理を行なって成形助剤を完全に除去し、表1に
示すようなアルミン酸石灰の粒径が異なる4種の担体を
得た。このうち担体Cは従来例である。次にこれら4種
の担体を硝酸パラジウム水溶液中に浸漬し、担体の見か
け体積当たりパラジウムを0,19/を担持させ、90
0℃で1時間還元処理を施した。
The carrier is made by thoroughly mixing 40 parts of lime aluminate (by weight, same hereinafter) as a binder, 46 parts of fused silica as an aggregate, 10 parts of titanium dioxide, and 5 parts of carboxymethyl cellulose as a molding aid. Water was added and kneaded. This mixed wire material was extruded into a honeycomb shape using a die, solidified, cured, and dried at 100°C. 9oo in the air
The molding aid was completely removed by heat treatment at .degree. C. to obtain four types of carriers having different particle sizes of lime aluminate as shown in Table 1. Among these, carrier C is a conventional example. Next, these four types of carriers were immersed in a palladium nitrate aqueous solution to support 0.19% of palladium per apparent volume of the carrier.
Reduction treatment was performed at 0°C for 1 hour.

表1 触媒体中のアルミン酸石灰の平均粒径上記4種の
触媒体について灯油燃焼排ガス下と同じ条件のもとで、
9oo℃の温度で連続曝露テストを行ない、−酸化炭素
の浄化能を測定して触媒体の寿命特性を求めた。−酸化
炭素浄化能の測定条件を表2に、触媒体の一酸化炭素浄
化能の経時変化を図に示す。
Table 1 Average particle size of lime aluminate in the catalyst body Under the same conditions as under kerosene combustion exhaust gas for the above four types of catalyst bodies,
A continuous exposure test was conducted at a temperature of 90° C., and the ability to purify carbon oxide was measured to determine the life characteristics of the catalyst. - The measurement conditions for the carbon oxide purification ability are shown in Table 2, and the changes over time in the carbon monoxide purification ability of the catalyst are shown in the figure.

表2−酸化炭素浄化能測定条件 図に示すように従来例の触媒体Cは、曝露時間と共に一
酸化炭素浄化能の低下が比較的大きい。
As shown in Table 2 - Carbon oxide purification performance measurement conditions diagram, the conventional catalyst C has a relatively large decrease in carbon monoxide purification performance as the exposure time increases.

アルミン酸石灰の平均粒径が17μmと従来例より大き
い触媒体りは、さらに低下が著しい。一方平均粒径1お
よび5μmのアルミン酸石灰を用いた触媒体AおよびB
は、従来例Cに比べて初期特性も高く、時間経過による
浄化能の低下も著しく小さい。
The catalyst body, in which the average particle diameter of lime aluminate is 17 μm, which is larger than that of the conventional example, shows an even more significant decrease. On the other hand, catalyst bodies A and B using lime aluminate with average particle diameters of 1 and 5 μm
Compared with Conventional Example C, the initial characteristics are also higher, and the deterioration of the purification ability over time is significantly smaller.

表3に触媒担持前の担体表面に露出している元素の量を
、X線マイクロアナライザーの点分析法による簡易定量
法で求めた結果を示す。
Table 3 shows the results of determining the amount of elements exposed on the surface of the carrier before supporting the catalyst using a simple quantitative method using a point analysis method using an X-ray microanalyzer.

表3 担体露出表面の点分析 (単位:wt%)アルミ
ン酸石灰の平均粒径が小さい担体はど表面に存在するT
i  O量が減少し、Ca、At量が増大する傾向がう
かがわれる。これはアルミン酸石灰の平均粒径が大きく
なるほど、押し出し成形時に微粒子の二酸化チタン(平
均粒径0.2μm)が、表面に出やすくなるためと考え
られる。
Table 3 Point analysis of exposed surface of carrier (unit: wt%) T present on the surface of carrier with small average particle size of lime aluminate
It can be seen that the amount of iO decreases and the amounts of Ca and At increase. This is thought to be because the larger the average particle size of lime aluminate, the more fine particles of titanium dioxide (average particle size 0.2 μm) come out to the surface during extrusion molding.

担体AやBは表3に示すように表面に塩基性Caが多く
存在する。このため硝酸パラジウム酸性水溶液に担体を
浸漬した時、パラジウム触媒が他のCやDに比べ均一に
分散担持されることになり、図に示すように初期性能お
よび耐熱寿命特性共にすぐれているものと考えられる。
As shown in Table 3, carriers A and B have a large amount of basic Ca on their surfaces. Therefore, when the carrier is immersed in an acidic aqueous solution of palladium nitrate, the palladium catalyst is more uniformly dispersed and supported than other C and D catalysts, and as shown in the figure, it has excellent initial performance and heat-resistant life characteristics. Conceivable.

上記の実施例の結果から、アルミン酸石灰の粒径をさら
に小さくすることも考えられるが、平均粒径を0.6μ
m以下に粉砕することは、材料コストの大幅な上昇につ
ながり実用上問題となる。
From the results of the above examples, it is possible to further reduce the particle size of lime aluminate, but the average particle size is 0.6 μm.
Grinding to a size smaller than m leads to a significant increase in material cost and poses a practical problem.

本実施例では担体の構成材料としてアルミン酸石灰、溶
融シリカ、および二酸化チタンの場合について述べたが
、二酸化チタンの代わりに水硬性アルミナや活性アルミ
ナなどのアルミナを用いても、はぼ同様の結果が認めら
れた。
In this example, the case where lime aluminate, fused silica, and titanium dioxide were used as the constituent materials of the carrier was described, but even if alumina such as hydraulic alumina or activated alumina is used instead of titanium dioxide, the same results will be obtained. was recognized.

発明の効果 以上のように本発明によれば、アルミン酸石灰の平均粒
径を0.6〜6μmに微粒子化することにより、排ガス
中の一酸化炭素浄化能の初期特性および寿命にすぐれた
触媒体を提供できるという効果が得られる。
Effects of the Invention As described above, according to the present invention, by micronizing the average particle size of lime aluminate to 0.6 to 6 μm, a catalyst with excellent initial characteristics and longevity of carbon monoxide purification ability in exhaust gas can be obtained. The effect of being able to provide a medium can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図は900℃で長時間曝露した時の一酸化炭素浄化能の
寿命特性を示す図である。
The figure shows the life characteristics of carbon monoxide purification ability when exposed at 900° C. for a long time.

Claims (1)

【特許請求の範囲】[Claims] アルミン酸石灰を結合剤とし、少なくとも溶融シリカを
骨剤として含む耐熱性無機酸化物担体と、これに担持さ
れた触媒とからなる触媒体において、上記アルミン酸石
灰は平均粒径が、0.5〜5μmの微粒子であることを
特徴とする排ガス浄化用触媒体。
In a catalyst body consisting of a heat-resistant inorganic oxide support containing lime aluminate as a binder and at least fused silica as an aggregate, and a catalyst supported on this, the lime aluminate has an average particle size of 0.5 A catalyst body for exhaust gas purification characterized by having fine particles of ~5 μm.
JP62089476A 1987-04-10 1987-04-10 Exhaust gas purification catalyst Expired - Lifetime JPH0811181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62089476A JPH0811181B2 (en) 1987-04-10 1987-04-10 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62089476A JPH0811181B2 (en) 1987-04-10 1987-04-10 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPS63256134A true JPS63256134A (en) 1988-10-24
JPH0811181B2 JPH0811181B2 (en) 1996-02-07

Family

ID=13971782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62089476A Expired - Lifetime JPH0811181B2 (en) 1987-04-10 1987-04-10 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JPH0811181B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468374B1 (en) * 1999-02-18 2002-10-22 Corning Incorporated Method of making silica glass honeycomb structure from silica soot extrusion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468374B1 (en) * 1999-02-18 2002-10-22 Corning Incorporated Method of making silica glass honeycomb structure from silica soot extrusion

Also Published As

Publication number Publication date
JPH0811181B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
KR20020070363A (en) Catalytic devices
EP0260826A1 (en) Catalysts
JPS6193832A (en) Catalyst and method for treating exhaust gas form internal combustion engine
JPS61242644A (en) Production of catalyst for purifying exhaust gas
JPS63256134A (en) Catalyst for purifying exhaust gas
JP4540785B2 (en) Exhaust gas purification catalyst molding
JPH0244580B2 (en)
JPH0194945A (en) Catalyst of carrying superfine gold particles fixed on metal oxide and manufacture therefor
JPH11123330A (en) Exhaust gas cleaning catalyst and manufacture thereof
RU2135279C1 (en) Catalyst for cleaning gases to remove hydrocarbons, nitrogen oxides, carbon monoxide and method of preparation thereof
JP2558758B2 (en) Exhaust gas purification catalyst manufacturing method
JP3104717B2 (en) Production method of iron oxide catalyst for gas treatment
JPS59196740A (en) Formation of porous alumina coating film on inorganic carrier
JPS6316048A (en) Catalyst body
JP3343961B2 (en) Exhaust gas purification catalyst
JPS6260937B2 (en)
JP3316565B2 (en) Method for catalytic reduction and removal of nitrogen oxides
JP3107109B2 (en) Production method of iron oxide catalyst for gas treatment
JPS62140646A (en) Catalytic body for purifying exhaust gas
JPS6377548A (en) Catalyst and precursor thereof and manufacture thereof
JP3316566B2 (en) Reduction and purification method of exhaust gas containing nitrogen oxides
JPS63134060A (en) Production of catalyst carrier
JPS62266142A (en) Catalyst for treating exhaust gas
JP2023136664A (en) Production method of gas mixture, catalyst for dry reforming reaction, and production method thereof
JP2004105787A (en) Manufacturing method for catalyst for cleaning exhaust gas

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 12