JPS62266142A - Catalyst for treating exhaust gas - Google Patents

Catalyst for treating exhaust gas

Info

Publication number
JPS62266142A
JPS62266142A JP61107692A JP10769286A JPS62266142A JP S62266142 A JPS62266142 A JP S62266142A JP 61107692 A JP61107692 A JP 61107692A JP 10769286 A JP10769286 A JP 10769286A JP S62266142 A JPS62266142 A JP S62266142A
Authority
JP
Japan
Prior art keywords
catalyst
rhodium
platinum
rare earth
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61107692A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Eto
江渡 義行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP61107692A priority Critical patent/JPS62266142A/en
Publication of JPS62266142A publication Critical patent/JPS62266142A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance the purifying capacity of exhaust gas, by supporting a catalytic metal such as platinum by a mixture of activated alumina supporting a rare earth metal and rare earth metal oxide to prepare a slurry and applying said slurry to a support. CONSTITUTION:One or more kind of a catalytic metal selected from a group consisting of platinum, rhodium and palladium by a powder mixture of activated alumina supporting a rare earth metal and rare earth metal oxide and an alumina sol containing a reductive solution is subsequently added to the resulting powder to prepare a slurry. After this slurry is applied to a catalyst carrier, the coated one is dried and baked to obtain an exhaust gas treatment catalyst removing hydrocarbon, carbon monoxide and nitrogen oxide in the exhaust gas of an internal combustion engine. The total amount of the noble metals being catalytic metals is pref. about 0.05-0.35wt%.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、自動車等の内燃機関からの排ガス中の炭化
水素01C)、一酸化炭素(Co)および窒素酸化物(
NO,)を同時に除去するための排ガス処理用触媒に関
するものである。
Detailed Description of the Invention (Field of Industrial Application) This invention is directed to the treatment of hydrocarbons (01C), carbon monoxide (Co), and nitrogen oxides (01C), carbon monoxide (Co), and nitrogen oxides (
This invention relates to an exhaust gas treatment catalyst for simultaneously removing NO, ).

(従来の技術) 従来の排ガス処理用触媒としては、例えば米国特許第3
,565,830号明細書に開示されているように、コ
ーディエライト質一体型担体に、活性アルミナをコーテ
ィングして得られた担体に、含浸法を用いて白金、ロジ
ウム等の触媒金属を担持して得られる触媒、あるいはあ
らかじめセリウムを含有させた活性アルミナをコーティ
ングして得られた担体に含浸法を用いて白金、ロジウム
等を担持させた触媒等が提案されている。
(Prior art) As a conventional exhaust gas treatment catalyst, for example, U.S. Pat.
, 565,830, catalyst metals such as platinum and rhodium are supported on a support obtained by coating a cordierite monolithic support with activated alumina using an impregnation method. There have been proposed catalysts obtained by using an impregnation method to support platinum, rhodium, etc. on a carrier obtained by coating activated alumina containing cerium in advance.

(発明が解決しようとする問題点) しかしながら、このような従来の排ガス処理用触媒にあ
っては、一体型担体上に被覆された活性アルミナ表面上
に白金、ロジウム等を分散担持させたものであるため、
アルミナ自身の熱劣化により、白金、ロジウム等のシン
タリングが助長され、この結果、触媒活性点の減少を引
き起し、耐久性を持つことができず、また白金、ロジウ
ム等の担持法に含浸法を用いているために、アルミナ層
の変化に対応し、白金、ロジウム等の分布が均一化しな
いことから、特に初期活性を含む、十分な触媒活性を引
き出すことができないという問題点があった。
(Problems to be Solved by the Invention) However, in such conventional exhaust gas treatment catalysts, platinum, rhodium, etc. are dispersed and supported on the surface of activated alumina coated on an integrated carrier. Because there is
Thermal deterioration of alumina itself promotes sintering of platinum, rhodium, etc., resulting in a decrease in catalyst active sites, making it impossible to maintain durability, and impregnating platinum, rhodium, etc. Because this method uses a method, the distribution of platinum, rhodium, etc. does not become uniform in response to changes in the alumina layer, so there was a problem that sufficient catalytic activity, especially initial activity, could not be brought out. .

(問題点を解決するための手段) この発明は、このような従来の問題点に着目してなされ
たもので、希土類金属の硝酸塩を用い、あらかじめ希土
類金属を担持したT−またはδ−アルミナを主成分とす
る活性アルミナと希土類酸化物粉末を混合して得られる
粉末に、白金、ロジウムおよびパラジウムから成る群か
ら選ばれた1種以上の貴金属を分散担持させた後、還元
性溶液を添加して得た粉末状触媒と、還元性溶液を含む
アルミナゾルとを混合粉砕して得られるスラリーを一体
型担体にコーティングし、乾燥、焼成して成る触媒によ
り、上記問題点を解決したものである。
(Means for Solving the Problems) This invention was made by focusing on such conventional problems, and uses rare earth metal nitrates to form T- or δ-alumina that has previously supported rare earth metals. One or more noble metals selected from the group consisting of platinum, rhodium, and palladium are dispersed and supported on the powder obtained by mixing activated alumina and rare earth oxide powder, which are the main components, and then a reducing solution is added. The above-mentioned problems have been solved by a catalyst obtained by coating an integrated carrier with a slurry obtained by mixing and pulverizing the powdered catalyst obtained by the process and an alumina sol containing a reducing solution, and then drying and calcining the slurry.

従ってこの発明は希土類金属で担持した活性アルミナと
希土類金属酸化物とを有する混合物粉末に白金、ロジウ
ムおよびパラジウムから成る群から選ばれた1種または
2種以上の触媒金属を担持させた後還元性溶液を添加し
て得た粉末に、還元性溶液を含むアルミナゾルを添加し
て得られたスラリーを触媒担体にコーティングした後乾
燥、焼成してなることを特徴とする内燃機関の排ガス中
の炭化水素、一酸化炭素および窒素酸化物を除去する排
ガス処理用触媒に関するものである。
Therefore, this invention provides a reduction property after supporting one or more catalytic metals selected from the group consisting of platinum, rhodium, and palladium on a powder mixture containing activated alumina supported on a rare earth metal and a rare earth metal oxide. Hydrocarbons in the exhaust gas of an internal combustion engine, which is obtained by coating a catalyst carrier with a slurry obtained by adding an alumina sol containing a reducing solution to a powder obtained by adding a solution, followed by drying and firing. , relates to an exhaust gas treatment catalyst that removes carbon monoxide and nitrogen oxides.

この発明の触媒は、活性アルミナを主成分とする無機担
体に希土類金属が対アルミナ比1〜5重量%となる量の
希土類金属の硝酸塩を含浸担持することで得られる、あ
らかじめ希土類金属を含有する活性アルミナ担体と、希
土類酸化物を、希土類金属として全固形分に対して、5
〜50重景%重量るように混合して得られた粉末に、白
金、ロジウムおよびパラジウムから成る群から選ばれた
1種以上、好ましくは2種以上または3種の貴金属を、
任意の製造方法により粉末担体に担持させることにより
得られるが、特に好ましくは上記貴金属の硝酸溶液又は
塩酸溶液に水素イオン濃度(Pl+)が1.0以下とな
る量の硝酸又は塩酸水溶液を加えた溶液を用い、含浸法
により貴金属の硝酸塩又は塩酸塩を含浸さセた後、酢酸
またはギ酸のごとき還元性溶液を添加し、乾燥後、空気
気流中で、好ましくは350℃以上、600℃以下の温
度で2時間焼成することにより、粉末触媒をつくる。こ
の粉末触媒の調製方法において、あらかじめ希土類金属
を含有する活性アルミナと希土類酸化物混合粉末に上記
含浸法で貴金属を硝酸塩又は塩酸塩でかつフリー硝酸又
は塩酸の存在下PHを1.0以下とすることで、担体上
の触媒有効活性点を付与する活性アルミナ上に、特に高
度に分散させることができ、次いで貴金属のアルミナ上
でのメタル化を低温度で促進させるために酢酸またはギ
酸を添加する。この際酢酸は、 CH+C00II    ’ 2C1lOII  (分
解)2CHOH+ 20□−す2CO2+21120 
(熱焼)の2段階の反応が起ると考えられる。ギ酸も同
様である。同反応において分解生成物であるアルデヒド
(この場合ホルムアルデヒド)が、酸素を取り、燃焼す
ることから、還元剤として働き、貴金属塩分解物が酸化
物になるのを防ぎ、メタル化を促進させるものと考えら
れる。面この事は、酢酸を添加したサンプルの熱分析(
空気中)結果からも推定できる。この後、前記のように
乾燥後、空気気流中350℃〜600℃で焼成し、添加
した酢酸またはギ酸を分解し、生成するアルデヒドによ
り、貴金属塩の分解、メタル化を促進することにより得
られた粉末触媒中には、貴金属の粒子が高度に分散され
て担持されている。このようにして得られた粉末触媒と
、前記酢酸またはギ酸の如き還元性溶液を含む、アルミ
ナゾルとを、ポットミル等を用い、粉砕混練してスラリ
ーを得る。
The catalyst of the present invention contains a rare earth metal in advance, which is obtained by impregnating and supporting an inorganic carrier mainly composed of activated alumina with a rare earth metal nitrate in an amount such that the ratio of the rare earth metal to the alumina is 1 to 5% by weight. Activated alumina support and rare earth oxide are added as rare earth metal to total solid content of 5
One or more, preferably two or more or three noble metals selected from the group consisting of platinum, rhodium and palladium are added to the powder obtained by mixing the powder to a weight of ~50% by weight.
It can be obtained by supporting it on a powder carrier by any production method, but it is particularly preferable to add an aqueous nitric acid or hydrochloric acid solution to the nitric acid or hydrochloric acid solution of the noble metal in an amount such that the hydrogen ion concentration (Pl+) is 1.0 or less. After impregnating the nitrate or hydrochloride of a noble metal by an impregnation method using a solution, a reducing solution such as acetic acid or formic acid is added, and after drying, the temperature is preferably 350°C or higher and 600°C or lower in an air stream. A powdered catalyst is made by calcination at a temperature of 2 hours. In this powder catalyst preparation method, the above-mentioned impregnation method is used in advance to prepare the rare earth metal-containing activated alumina and rare earth oxide mixed powder in the form of a nitrate or hydrochloride of the noble metal and in the presence of free nitric acid or hydrochloric acid, the pH is set to 1.0 or less. This allows a particularly high degree of dispersion on activated alumina, which provides catalytic active sites on the support, and then the addition of acetic acid or formic acid to accelerate the metalation of the precious metal on the alumina at low temperatures. . At this time, acetic acid is CH+C00II ' 2C1lOII (decomposition) 2CHOH+ 20□-su2CO2+21120
It is thought that a two-step reaction (heat sintering) occurs. The same applies to formic acid. In this reaction, aldehyde (formaldehyde in this case), which is a decomposition product, removes oxygen and burns, so it acts as a reducing agent, prevents noble metal salt decomposition products from becoming oxides, and promotes metallization. Conceivable. This fact can be seen in the thermal analysis of samples to which acetic acid was added (
(in the air) can also be estimated from the results. Thereafter, after drying as described above, the acetic acid or formic acid added is decomposed by drying at 350°C to 600°C in an air stream, and the resulting aldehyde promotes the decomposition and metalization of the noble metal salt. Precious metal particles are supported in a highly dispersed manner in the powdered catalyst. The powdered catalyst thus obtained and the alumina sol containing the reducing solution such as acetic acid or formic acid are pulverized and kneaded using a pot mill or the like to obtain a slurry.

活性アルミナを主成分とする無機担体に希土類金属を添
加する目的は、添加された希土類金属硝酸塩は、焼成に
より耐熱性に優れた希土類金属酸化物に分解するが、こ
の際、アルミナとの固溶体を作り、アルミナの耐熱性を
向上させる。この希土類金属硝酸塩の添加量は、焼成に
より得られる希土類金属酸化物が、金属として対アルミ
ナ比1〜5重量%とするが、この理由は希土類金属が、
1重量%未満ではその効果が少なく、また5重量%を越
えると耐熱性は向上するが、相対的にアルミナの比表面
積を低下させるためである。
The purpose of adding rare earth metals to an inorganic support mainly composed of activated alumina is that the added rare earth metal nitrates are decomposed into rare earth metal oxides with excellent heat resistance by calcination, but at this time, the solid solution with alumina is making and improving the heat resistance of alumina. The amount of the rare earth metal nitrate added is such that the rare earth metal oxide obtained by firing is 1 to 5% by weight of the alumina as a metal.
If it is less than 1% by weight, the effect will be small, and if it exceeds 5% by weight, the heat resistance will improve, but the specific surface area of alumina will be relatively reduced.

次に混合される希土類酸化物は、この発明の触媒が使用
される雰囲気の変化、即ち酸素過剰時には、酸素を吸着
し、酸素不足時には酸素を脱離するいわゆる酸素(0□
)ストレージ効果と、同時に助触媒効果を得るために添
加するもので、その添加量は、希土類金属酸化物で加え
る希土類金属が、金属として、スラリー中の全固形分に
対して5〜50重量%であり、5重量%未満では十分な
効果が期待できず、一方50重量%を越えるとコーティ
ング層中のアルミナ量の相対的低下による比表面積の低
下をまねくため好ましくない。
The rare earth oxide that is mixed next adsorbs oxygen when the atmosphere in which the catalyst of the present invention is used changes, that is, when there is an excess of oxygen, and desorbs oxygen when there is a lack of oxygen.
) It is added to obtain a storage effect and a promoter effect at the same time, and the amount of rare earth metal added as a rare earth metal oxide is 5 to 50% by weight as a metal based on the total solid content in the slurry. If it is less than 5% by weight, no sufficient effect can be expected, while if it exceeds 50% by weight, the specific surface area will decrease due to a relative decrease in the amount of alumina in the coating layer, which is not preferable.

次に前述のようにして得られたスラリーを、シリカ、ア
ルミナ、マグネシアを主成分とするコーティング質一体
型担体にコーティングし、乾燥後、燃焼ガス雰囲気中で
焼成し、触媒とする。この際の焼成温度は350℃〜6
00℃とし、当該温度域を0.5〜2時間保持し、かつ
昇温、徐冷パターンで焼成することが望ましい。尚この
発明の触媒の貴金属の担持量は白金、ロジウムおよびパ
ラジウムの内の1種以上の貴金属の合計が、0.05〜
0.35重量%で、ロジウムを含む場合には、他の貴金
属とロジウムの比をl:l〜20:1の範囲とすること
が望ましい。貴金属量は0.05重量%未満では浄化率
が低下し、0.35重量%を越えても浄化率の向上がほ
とんど期待されないからである。金属の比については、
ロジウムが他の貴金属より多くなると炭化水素の浄化率
が低下し、1720未満になるとNoXの浄化率が低下
するからである。
Next, the slurry obtained as described above is coated on a coated integral carrier mainly composed of silica, alumina, and magnesia, dried, and then calcined in a combustion gas atmosphere to form a catalyst. The firing temperature at this time is 350℃~6
It is desirable to set the temperature to 00°C, maintain this temperature range for 0.5 to 2 hours, and perform firing in a temperature rising and slow cooling pattern. The amount of noble metal supported in the catalyst of this invention is such that the total amount of one or more noble metals among platinum, rhodium, and palladium is 0.05 to
When rhodium is included at 0.35% by weight, the ratio of rhodium to other noble metals is preferably in the range of 1:1 to 20:1. This is because if the noble metal amount is less than 0.05% by weight, the purification rate will decrease, and if it exceeds 0.35% by weight, little improvement in the purification rate is expected. Regarding the ratio of metals,
This is because when the rhodium content exceeds other noble metals, the hydrocarbon purification rate decreases, and when it becomes less than 1720, the NoX purification rate decreases.

この発明の触媒は、前述のように構成されたことを特徴
とするものであり、これにより低温活性ならびに耐久性
が著しく改善されたことにより、貴金属の担持量が少く
て、高効率で、内燃機関、とりわけ自動車からの排ガス
中の有害成分であるIIc、 Co、 NOXを同時に
除去することを可能としたものである。このことは、従
来の上記有害三成分の同時除去用触媒が高度の処理性能
とりわけ優れた耐久性能を要求されており、一方では排
ガス処理用に使われる白金、ロジウム等の貴金属が高価
であり、おのずから使用量に制限があり、低貴金属量、
高性能触媒の開発が持たれている現況下では、画期的な
ことである。
The catalyst of the present invention is characterized by having the structure described above, and has significantly improved low-temperature activity and durability, so it has a small amount of precious metals supported, high efficiency, and is suitable for internal combustion. This system makes it possible to simultaneously remove IIc, Co, and NOX, which are harmful components in exhaust gas from engines, especially automobiles. This means that conventional catalysts for the simultaneous removal of the three harmful components listed above are required to have a high level of processing performance, especially excellent durability, while on the other hand, precious metals such as platinum and rhodium used for exhaust gas treatment are expensive. Naturally, there are restrictions on the amount used, and the amount of precious metals is low.
This is an epoch-making development in the current climate of developing high-performance catalysts.

(実施例) この発明を次の実施例、比較例および試験例により詳細
に説明する。
(Example) The present invention will be explained in detail using the following Examples, Comparative Examples, and Test Examples.

大隻拠上 B、E、T法による比表面積が200m”/gであり、
最大細孔頻度径が100Å以下であるガンマまたはデル
タアルミナを主成分とする活性アルミナ粉末1000 
gに対し、硝酸セリウム96.34gをイオン交換水1
000 gに溶解した溶液を加え、良く攪拌した後、オ
ープン中150℃で約3時間乾燥した後、空気気流中6
00℃で2時間焼成して、セリウム含有活性アルミナ粉
末を得た。この活性アルミナ粉末1000gに対し、酸
化セリウム443.34 gを乾式粉砕混合して、アル
ミナ・セリア混合粉末を得た。この混合粉末3000 
gを、白金として18.5gを含むジニトロジアンミン
白金硝酸溶液と、ロジウムヲ1.85gを含む硝酸1」
ジウム溶液を混合し、イオン交換水を加えて1800m
 Aとした後、10重量%硝酸溶液を水素イオン濃度(
Pl+) 1.0以下となるまで添加し、得た溶液に、
攪拌しながら加えた。60分後、10重量%酢酸溶液1
80+nj!を加え、さらに10分間攪拌し、全量を乾
燥容器に移し、マイクロ波乾燥器を用いて乾燥を行なっ
た。次いで、空気気流中400℃で2時間焼成して白金
・ロジウム担持触媒粉末を得た。この触媒は、金属換算
で白金0.616重量%、ロジウム0.0616重量%
を含有していた。
The specific surface area according to the B, E, and T methods on large ships is 200 m"/g,
Activated alumina powder 1000 whose main component is gamma or delta alumina with a maximum pore frequency diameter of 100 Å or less
96.34g of cerium nitrate to 11g of ion-exchanged water
000 g of the solution was added, stirred well, dried at 150°C for about 3 hours in an open air stream, and dried in an air stream for 6 hours.
After firing at 00° C. for 2 hours, a cerium-containing activated alumina powder was obtained. 443.34 g of cerium oxide was dry-pulverized and mixed with 1000 g of this activated alumina powder to obtain an alumina-ceria mixed powder. This mixed powder 3000
g, dinitrodiammine platinum nitric acid solution containing 18.5 g of platinum, and nitric acid containing 1.85 g of rhodium.
Mix the dium solution and add ion-exchanged water to 1800 m
After A, the hydrogen ion concentration (
Pl+) was added until it became 1.0 or less, and to the obtained solution,
Added with stirring. After 60 minutes, 10% by weight acetic acid solution 1
80+nj! was added, stirred for another 10 minutes, the entire amount was transferred to a drying container, and dried using a microwave dryer. Next, the mixture was calcined in an air stream at 400° C. for 2 hours to obtain platinum/rhodium supported catalyst powder. This catalyst contains 0.616% by weight of platinum and 0.0616% by weight of rhodium in terms of metals.
It contained.

上記で得られた粉末触媒1608 gと酢酸酸性アルミ
ナゾル(ベーマイトアルミナ10重量%懸濁液に、10
重量%CH3CO0Hを添加することによって得られた
ゾル) 2392gを磁製ボットミルに充填し、粉砕混
合してスラリー液を得た。このスラリー液を用い、アル
ミナ・シリカ・マグネシアを主成分とするコーディエラ
イト質一体型担体(1,i、400セル)にコーティン
グを行ない、乾燥、焼成して触媒1を得た。この時のコ
ーテイング量は340g/1個に設定した。得られた触
媒1は一体型担体1個当り、111.5 gのセリアと
白金1.91 g 1 ロジウム0.191 gを含有
していた。
1608 g of the powdered catalyst obtained above and acetic acid acidic alumina sol (10% by weight suspension of boehmite alumina) were added.
A porcelain bot mill was filled with 2,392 g of the sol obtained by adding % by weight of CH3CO0H, and pulverized and mixed to obtain a slurry liquid. Using this slurry liquid, a cordierite monolithic support (1, i, 400 cell) containing alumina, silica, and magnesia as main components was coated, dried, and fired to obtain catalyst 1. The amount of coating at this time was set at 340 g/piece. The resulting catalyst 1 contained 111.5 g of ceria and 1.91 g of platinum and 0.191 g of rhodium per monolithic support.

実施■1 実施例1において、セリウム含有活性アルミナとセリア
の混合粉末3000 gを、白金として7.46 gを
含むジニトロジアンミン白金硝酸溶液と、ロジウムとし
て1.24gを含む硝酸ロジウム溶液を混合し、イオン
交換水を加え1800m 12とした後、10重量%硝
酸溶液を水素イオン濃度(PH) 1.0以下となるま
で添加し、得た溶液に攪拌しながら加えた。
Implementation ■1 In Example 1, 3000 g of mixed powder of cerium-containing activated alumina and ceria were mixed with a dinitrodiammine platinum nitrate solution containing 7.46 g of platinum and a rhodium nitrate solution containing 1.24 g of rhodium. After adding ion-exchanged water to make the volume 1800 m 12 , a 10% by weight nitric acid solution was added until the hydrogen ion concentration (PH) became 1.0 or less, and the mixture was added to the resulting solution with stirring.

60分後、10重量%酢酸溶液180m lを加え、以
下同様にして触媒2を得た。この触媒2は、一体型担体
1個当りl11.5gのセリアと白金0.772 g、
ロジウム0.129gを含有していた。
After 60 minutes, 180 ml of a 10% by weight acetic acid solution was added, and the same procedure was repeated to obtain catalyst 2. This catalyst 2 contained 11.5 g of ceria and 0.772 g of platinum per integral carrier;
It contained 0.129g of rhodium.

失巖炎■ 実施例1においてセリウム含有活性アルミナ粉末100
0 gに対し酸化セリウム296.33gを乾式混合し
て得たアルミナ、セリア混合粉末3000 gを、白金
として18.5 gを含むジニトロジアンミン白金硝酸
溶液と、ロジウムを1.85g含む硝酸ロジウム溶液を
混合し、イオン交換水を加えて1800n+ j!とし
1ま た後、10重量%硝酸溶液を水素イオン濃度(PI()
1.0以下となるまで添加し、得た溶液に、攪拌しなが
ら加えた。60分後、10重量%酢酸溶液180m j
+を加え、以下同様にして触媒3を得た。この触媒3は
、一体型担体1個当り78.1gのセリアと、白金1.
91g、ロジウム0.191 gを含有していた。
Cerium-containing activated alumina powder 100 in Example 1
3000 g of alumina and ceria mixed powder obtained by dry mixing 296.33 g of cerium oxide per 0 g of dinitrodiammine platinum nitric acid solution containing 18.5 g of platinum and a rhodium nitrate solution containing 1.85 g of rhodium. Mix and add ion exchange water to 1800n+j! After 1 hour, the 10 wt% nitric acid solution was adjusted to hydrogen ion concentration (PI()
It was added to the resulting solution while stirring. After 60 minutes, 180 m j of 10 wt% acetic acid solution
+ was added, and Catalyst 3 was obtained in the same manner. This catalyst 3 contained 78.1 g of ceria per integral carrier and 1.0 g of platinum.
It contained 91 g and 0.191 g of rhodium.

実施例4 実施例3において、セリウム含有活性アルミナとセリア
の混合粉末3000 gを、白金として7.46gを含
むジニトロジアンミン白金硝酸溶液と、ロジウムとして
1.24gを含む硝酸ロジウム溶液を混合し、イオン交
換水を加え1800m Ilとした後、10重量%硝酸
溶液を水素イオン濃度(PH) 1.0以下となるまで
添加し、得た溶液に攪拌しながら加えた。
Example 4 In Example 3, 3000 g of mixed powder of cerium-containing activated alumina and ceria was mixed with a dinitrodiammine platinum nitric acid solution containing 7.46 g of platinum and a rhodium nitrate solution containing 1.24 g of rhodium, and ions were prepared. After adding exchanged water to bring the volume to 1800ml, a 10% by weight nitric acid solution was added until the hydrogen ion concentration (PH) became 1.0 or less, and the mixture was added to the resulting solution with stirring.

60分後、10重量%酢酸溶液1BOn+ 1を加え、
以下同様にして触媒4を得た。この触媒4は、一体型担
体1個当り78.1gのセリアと、白金0.772 g
 、ロジウム0.129gを含有していた。
After 60 minutes, add 1BOn+ 10% acetic acid solution,
Catalyst 4 was obtained in the same manner. This catalyst 4 contained 78.1 g of ceria and 0.772 g of platinum per integral carrier.
, contained 0.129 g of rhodium.

1000 gに対し、酸化セリウム329.2g、酸化
ランタン110.8gを乾式混合して得たアルミナ・セ
リア・ランタナ混合粉末3000 gを、白金として1
8.5gを含むジニトロジアンミン白金硝酸溶液と、ロ
ジウムを1.85g含む硝酸ロジウム溶液を混合し、イ
オン交換水を加えて1800m lとした後、10重量
%硝酸溶液を水素イオン濃度(PH) 1.0以下とな
るまで添加し、得た溶液に攪拌しながら加えた。60分
後、10重量%酢酸溶液18011IIlを加え、以下
同様にして触媒5を得た。この触媒5は、一体型担体1
個当り78.1gのセリアおよび23.9 gのランタ
ナと、白金1.91 g 、ロジウム0.191 gを
含有していた。
3000 g of alumina/ceria/lantana mixed powder obtained by dry mixing 329.2 g of cerium oxide and 110.8 g of lanthanum oxide per 1000 g of platinum.
A dinitrodiammine platinum nitric acid solution containing 8.5 g and a rhodium nitrate solution containing 1.85 g of rhodium were mixed, ion-exchanged water was added to make a total volume of 1800 ml, and the 10% by weight nitric acid solution was mixed with a hydrogen ion concentration (PH) of 1. .0 or less, and added to the resulting solution with stirring. After 60 minutes, 18011IIl of a 10% by weight acetic acid solution was added, and catalyst 5 was obtained in the same manner. This catalyst 5 is formed on an integral carrier 1
Each piece contained 78.1 g of ceria, 23.9 g of lantana, 1.91 g of platinum, and 0.191 g of rhodium.

ス11井i 実施例5において、セリウム含有活性アルミナとセリア
、ランタナ混合粉末3000 gを、白金としテア、4
6gを含むジニトロジアンミン白金硝酸溶液と、ロジウ
ムとして1.24gを含む硝酸ロジウム溶液を混合し、
イオン交換水を加えて1800+m Itとした後、1
0重量%硝酸溶液を水素イオン濃度(PH)1.0とな
るまで添加し、得た溶液に攪拌しながら加えた。60分
後、10重量%酢酸溶液180m j+を加え、以下同
様にして触媒6を得た。この触媒6は、一体型担体1個
当り78.1gのセリアおよび23.9gのランタナと
白金0.772 g 、ロジウム0.129gを含有し
ていた。
In Example 5, 3000 g of mixed powder of cerium-containing activated alumina, ceria, and lantana was mixed with platinum, tare, 4
Mixing a dinitrodiammine platinum nitrate solution containing 6 g and a rhodium nitrate solution containing 1.24 g as rhodium,
After adding ion exchange water to make it 1800+m It, 1
A 0% by weight nitric acid solution was added until the hydrogen ion concentration (PH) was 1.0, and added to the resulting solution with stirring. After 60 minutes, 180mj+ of a 10% by weight acetic acid solution was added, and catalyst 6 was obtained in the same manner. This catalyst 6 contained 78.1 g of ceria and 23.9 g of lantana, 0.772 g of platinum, and 0.129 g of rhodium per monolithic support.

尖旌桝1 実施例5において、セリウム含有活性アルミナとセリア
、ランタナ混合粉末3000 gを、パラジウムとして
18.5gを含むジニトロジアンミンパラジウム硝酸溶
液と、ロジウムを1.85g含む硝酸ロジウム溶液を混
合し、イオン交換水を加えて1800m lとした後、
10重量%硝酸溶液を水素イオン濃度(pH)1.0と
なるまで添加し、得た溶液に攪拌しながら加えた。60
分後、10重量%酢酸溶液1B(In 1を加え、以下
同様にして触媒7を得た。この触媒7は、一体型担体1
個当り78.1gのセリアおよび23.9gのランタナ
とパラジウム1.91 g、ロジウム0.191 gを
含有していた。
In Example 5, 3000 g of cerium-containing activated alumina, ceria, and lantana mixed powder were mixed with a dinitrodiammine palladium nitric acid solution containing 18.5 g of palladium and a rhodium nitrate solution containing 1.85 g of rhodium. After adding ion exchange water to make 1800ml,
A 10% by weight nitric acid solution was added until the hydrogen ion concentration (pH) was 1.0, and added to the resulting solution while stirring. 60
After a few minutes, a 10% by weight acetic acid solution 1B (In 1) was added, and the same procedure was repeated to obtain a catalyst 7.
Each piece contained 78.1 g of ceria, 23.9 g of lantana, 1.91 g of palladium, and 0.191 g of rhodium.

去11汁影 実施例5において、セリウム含有活性アルミナとセリア
、ランタナ混合粉末3000 gを、白金として9.2
24gを含むジニトロジアンミン白金硝酸溶液と、パラ
ジウムとして9.224gを含むジニトロジアンミンパ
ラジウム硝酸溶液と、ロジウムを1.85g含む、硝酸
ロジウム溶液を混合し、イオン交換水を加えて1800
m gとした後、10重量%硝酸溶液を水素イオン濃度
(PH)1.0となるまで添加し、得た溶液に攪拌しな
がら加えた。60分後、10重量%酢酸溶液180m 
lを加え、以下同様にして触媒8を得た。この触媒8は
、一体型担体1個当り78.1gのセリアおよび23.
9gのランタナと白金0.955g、パラジウム0.9
55 g、ロジウム0.191  gを含有していた。
In Example 5, 3000 g of cerium-containing activated alumina, ceria, and lantana mixed powder was mixed with 9.2 g of platinum.
A dinitrodiammine platinum nitrate solution containing 24 g, a dinitrodiammine palladium nitrate solution containing 9.224 g as palladium, and a rhodium nitrate solution containing 1.85 g of rhodium were mixed, and ion-exchanged water was added to give a solution of 1,800 g.
mg, and then added a 10% by weight nitric acid solution until the hydrogen ion concentration (PH) reached 1.0, and added to the obtained solution while stirring. After 60 minutes, 180ml of 10% by weight acetic acid solution
1 was added thereto, and Catalyst 8 was obtained in the same manner. This catalyst 8 contained 78.1 g of ceria and 23.1 g of ceria per monolithic support.
9g of lantana, 0.955g of platinum, 0.9g of palladium
55 g, containing 0.191 g of rhodium.

実施例9 実施例1において、セリウム含有活性アルミナとセリア
の混合粉末3000 gを、白金として18.5 gを
含む塩化白金酸溶液と、ロジウムとして1.85gを含
む塩化ロジウム溶液を混合し、イオン交換水を加え18
00m Ilとした後、10重量%塩酸溶液を水素イオ
ン濃度(PH) 1.0以下となるまで添加し、得た溶
液に攪拌しながら加えた。60分後、10重量%酢酸溶
液180mAを加え、さらに10分間攪拌し、全量を乾
燥容器に移し、マイクロ波乾燥機を用いて乾燥を行なっ
た。次いで空気気流中600℃で2時間焼成して白金、
ロジウム担持触媒粉末を得る以外同様にして触媒9を得
た。この触媒9は、一体型担体1個当り111.5 g
のセリアと、白金1.91 g 。
Example 9 In Example 1, 3000 g of mixed powder of cerium-containing activated alumina and ceria was mixed with a chloroplatinic acid solution containing 18.5 g of platinum and a rhodium chloride solution containing 1.85 g of rhodium, and ions were prepared. Add replacement water 18
After the solution was adjusted to 00 mIl, a 10% by weight hydrochloric acid solution was added until the hydrogen ion concentration (PH) became 1.0 or less, and the mixture was added to the obtained solution while stirring. After 60 minutes, 180 mA of a 10% by weight acetic acid solution was added, and the mixture was further stirred for 10 minutes, and the entire amount was transferred to a drying container and dried using a microwave dryer. The platinum was then fired at 600°C for 2 hours in a stream of air.
Catalyst 9 was obtained in the same manner except that rhodium-supported catalyst powder was obtained. This catalyst 9 weighs 111.5 g per monolithic carrier.
ceria and 1.91 g of platinum.

ロジウム0.191gを含有していた。It contained 0.191 g of rhodium.

ル較桝工 活性アルミナ粒状担体1437.Ogとアルミナゾル(
ベーマイトアルミナ10重量%懸濁液に、10重量%H
NO3を添加することによって得られたゾル>2563
.0gをポットミルに充填し、6時間粉砕した後、得ら
れたスラリーをコーディエライトを主成分とする一体型
担体(1,71,400セル)に付着させ、650℃で
2時間焼成した。この時の付着量は340g/1個に設
定した。
Activated alumina granular carrier 1437. Og and alumina sol (
10% by weight H in a 10% by weight suspension of boehmite alumina
Sol obtained by adding NO3>2563
.. After filling 0 g into a pot mill and pulverizing for 6 hours, the resulting slurry was adhered to an integrated carrier (1,71,400 cells) mainly composed of cordierite, and calcined at 650° C. for 2 hours. The amount of adhesion at this time was set at 340 g/piece.

次にこのアルミナ付着担体を、塩化白金酸と、塩化ロジ
ウムの混合水溶液に浸漬し、白金とロジウムの付着量が
白金1.91 g、ロジウム0.191gになるように
担持した後、600℃で2時間焼成し、触媒Aを得た。
Next, this alumina-adhered carrier was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride to support the platinum and rhodium in amounts of 1.91 g of platinum and 0.191 g of rhodium, and then heated at 600°C. After firing for 2 hours, catalyst A was obtained.

ル較孤叢 セリウムを、セリウム金属換算で5重量%担持させた活
性アルミナ粒状担体1437.Ogとアルミナゾル25
63.0 gを用いた以外は比較例1と同様にして触媒
Bを得た。ただし白金とロジウムの付着量は、一体型担
体1個当り白金1.91 g、ロジウム0.191 g
に設定した。
Activated alumina granular carrier 1437. supports 5% by weight of cerium in terms of cerium metal. Og and alumina sol 25
Catalyst B was obtained in the same manner as in Comparative Example 1 except that 63.0 g was used. However, the amount of platinum and rhodium deposited is 1.91 g of platinum and 0.191 g of rhodium per integrated carrier.
It was set to

ル較班盈 セリウムを、セリウム金属換算で50重量%担持させた
活性アルミナ粒状担体454.3 gとアルミナゾル2
563 gを用いた以外は比較例1と同様にして触媒C
を得た。ただし白金とロジウムの付着量は、一体型担体
1個当り白金1.91 g、ロジウム0.191gに設
定した。
454.3 g of activated alumina granular carrier supporting 50% by weight of cerium in terms of cerium metal and alumina sol 2
Catalyst C was prepared in the same manner as in Comparative Example 1 except that 563 g was used.
I got it. However, the amount of deposited platinum and rhodium was set to 1.91 g of platinum and 0.191 g of rhodium per one integrated carrier.

パイアライトアルミナおよび無定形アルミナ水酸化物を
含むアルミナスラリーに塩化白金酸および塩化ロジウム
並びに酸化セリウムを添加し、硫化水素(Has)処理
した後乾燥し、340℃で焼成しく米国特許第3,56
5,830号明細書実施例刈の方法による)触媒りを得
た。この触媒りは1.12g/ILの白金、0.112
g/41のロジウム、14.4 g / 1のセリアお
よび31 g / 1のアルミナを含有していた。
Chloroplatinic acid, rhodium chloride, and cerium oxide are added to an alumina slurry containing pialite alumina and amorphous alumina hydroxide, treated with hydrogen sulfide (Has), dried, and calcined at 340°C. US Patent No. 3,56
A catalyst (according to the method of Example Kari in the specification of No. 5,830) was obtained. This catalyst contains 1.12 g/IL of platinum, 0.112
It contained 41 g/41 rhodium, 14.4 g/1 ceria and 31 g/1 alumina.

拭竣貞 実施例1〜9で得た触媒1〜9および比較例1〜4で得
た触媒A−Dにつき、下記条件で実車耐久(エンジン耐
久)を行ない、10モードエミツシヨンの浄化率を測定
し、浄化率m と して表1に示す。
The catalysts 1 to 9 obtained in Examples 1 to 9 and the catalysts A to D obtained in Comparative Examples 1 to 4 were subjected to actual vehicle durability (engine durability) under the following conditions, and the purification rate of 10 mode emission was determined. was measured and shown in Table 1 as the purification rate m.

王ノ乏l鮭久条佳 触媒      一体貴金属触媒 触媒出口温度  750℃ 空間速度    約7万Hr−’ 耐久時間    100時間 エンジン    排気量2200cc jノ」W収 耐久中入ロエミソション CO0,4〜0.6% oz    0.5±0.1% NO1001000 pp    2500ppm COz   14.9±0.1% 表   1 (発明の効果) 以上説明してきたように、この発明の触媒は希土類金属
を含有する活性アルミナと希土類金属酸化物粉末の混合
粉末に触媒金属を担持した後、還元性溶液を添加して得
た触媒粉末と還元性溶液を含むアルミナゾルとを混合粉
砕して得られるスラリーを、一体型担体にコーティング
し、乾燥、焼成して得られたものであるため、Pt、R
h等のシンタリングによる貴金属表面積の低下を含む活
性点の減少を防ぐことができ、従来の一体型貴金属触媒
に比べ、著しく浄化率が向上し、耐久性が改善されてい
る。また、このことにより従来の触媒に比し、低貴金属
量であっても同等以上の高い効率を示すという効果が得
られる。
King-no-sho l Salmon Kujoka catalyst Integrated precious metal catalyst Catalyst outlet temperature 750℃ Space velocity Approximately 70,000 Hr-' Durability time 100 hours Engine displacement 2200cc oz 0.5±0.1% NO1001000 pp 2500ppm COz 14.9±0.1% Table 1 (Effects of the invention) As explained above, the catalyst of the present invention is made of active alumina containing rare earth metal and rare earth metal. After supporting a catalyst metal on a mixed powder of oxide powder, the catalyst powder obtained by adding a reducing solution and an alumina sol containing a reducing solution are mixed and pulverized, and a slurry obtained is coated on an integrated carrier, Since it is obtained by drying and firing, Pt, R
It is possible to prevent a decrease in the number of active sites, including a decrease in the surface area of the noble metal due to sintering such as h, and the purification rate is significantly improved and the durability is improved compared to the conventional integrated noble metal catalyst. Furthermore, this provides the effect of showing equivalent or higher efficiency than conventional catalysts even with a low amount of noble metal.

Claims (1)

【特許請求の範囲】[Claims] 1、希土類金属を担持した活性アルミナと希土類金属酸
化物とを有する混合物粉末に白金、ロジウムおよびパラ
ジウムから成る群から選ばれた1種または2種以上の触
媒金属を担持させた後還元性溶液を添加して得た粉末に
、還元性溶液を含むアルミナゾルを添加して得られたス
ラリーを触媒担体にコーティングした後乾燥、焼成して
なることを特徴とする内燃機関の排ガス中の炭化水素、
一酸化炭素および窒素酸化物を除去する排ガス処理用触
媒。
1. After supporting one or more catalyst metals selected from the group consisting of platinum, rhodium, and palladium on a powder mixture containing activated alumina supporting a rare earth metal and a rare earth metal oxide, a reducing solution is applied. Hydrocarbons in the exhaust gas of an internal combustion engine, characterized by coating a catalyst carrier with a slurry obtained by adding an alumina sol containing a reducing solution to the powder obtained by adding the alumina sol, followed by drying and firing.
Exhaust gas treatment catalyst that removes carbon monoxide and nitrogen oxides.
JP61107692A 1986-05-13 1986-05-13 Catalyst for treating exhaust gas Pending JPS62266142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61107692A JPS62266142A (en) 1986-05-13 1986-05-13 Catalyst for treating exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107692A JPS62266142A (en) 1986-05-13 1986-05-13 Catalyst for treating exhaust gas

Publications (1)

Publication Number Publication Date
JPS62266142A true JPS62266142A (en) 1987-11-18

Family

ID=14465538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107692A Pending JPS62266142A (en) 1986-05-13 1986-05-13 Catalyst for treating exhaust gas

Country Status (1)

Country Link
JP (1) JPS62266142A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991008827A1 (en) * 1989-12-14 1991-06-27 Allied-Signal Inc. High-temperature three-way catalyst
US5391533A (en) * 1993-02-19 1995-02-21 Amtx, Inc. Catalyst system for producing chlorine dioxide
US5534475A (en) * 1994-03-02 1996-07-09 Instituto Mexicano Del Petroleo Catalytically active ceramic monoliths for the reduction of leaded gasoline fueled engine pollutants and the production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991008827A1 (en) * 1989-12-14 1991-06-27 Allied-Signal Inc. High-temperature three-way catalyst
US5391533A (en) * 1993-02-19 1995-02-21 Amtx, Inc. Catalyst system for producing chlorine dioxide
US5534475A (en) * 1994-03-02 1996-07-09 Instituto Mexicano Del Petroleo Catalytically active ceramic monoliths for the reduction of leaded gasoline fueled engine pollutants and the production thereof

Similar Documents

Publication Publication Date Title
CA2032799C (en) Catalyst for and method of purifying oxygen-excess exhaust gas
US3524721A (en) Catalyst composition
JP2660411B2 (en) Method for reducing and removing nitrogen oxides in exhaust gas
JPS60110334A (en) Preparation of catalyst for purifying exhaust gas
JPS63162043A (en) Catalyst for cleaning exhaust gas
KR0153448B1 (en) Catalyst for purification exhaust gas and process for production thereof
JP2660412B2 (en) Exhaust gas purification method
CN113304745A (en) Pt-Pd-Rh ternary catalyst and preparation method thereof
JPH04284847A (en) Exhaust gas purifying catalyst excellent in heat resistance and its preparation
JPH01139144A (en) Catalyst for controlling exhaust emission
JPS60110335A (en) Catalyst for purifying exhaust gas
JP2669861B2 (en) Catalyst
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH05220403A (en) Exhaust gas purifying catalyst
JPH07155614A (en) Production of exhaust gas purifying catalyst
JPH05285386A (en) Production of catalyst for purification of exhaust gas
EP0119715A2 (en) Catalysts with support coatings having increased macroporosity
JPS62266142A (en) Catalyst for treating exhaust gas
JPH0244580B2 (en)
JPH0582258B2 (en)
JPH0398644A (en) Preparation of catalyst for purifying exhaust gas
WO2002055194A1 (en) Catalyst for clarification of nitrogen oxides
KR100494543B1 (en) Method for manufacturing low precious metal loaded Pt-Pd-Rh three way catalyst
JPS59162948A (en) Catalyst for purifying exhaust gas
JPH06190282A (en) Catalyst for purification of exhaust gas