JP2660411B2 - Method for reducing and removing nitrogen oxides in exhaust gas - Google Patents

Method for reducing and removing nitrogen oxides in exhaust gas

Info

Publication number
JP2660411B2
JP2660411B2 JP62291258A JP29125887A JP2660411B2 JP 2660411 B2 JP2660411 B2 JP 2660411B2 JP 62291258 A JP62291258 A JP 62291258A JP 29125887 A JP29125887 A JP 29125887A JP 2660411 B2 JP2660411 B2 JP 2660411B2
Authority
JP
Japan
Prior art keywords
exhaust gas
nitrogen oxides
zeolite
reducing
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62291258A
Other languages
Japanese (ja)
Other versions
JPH01130735A (en
Inventor
徹 田中
伸一 松本
秀昭 村木
四郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Tosoh Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Tosoh Corp
Priority to JP62291258A priority Critical patent/JP2660411B2/en
Publication of JPH01130735A publication Critical patent/JPH01130735A/en
Application granted granted Critical
Publication of JP2660411B2 publication Critical patent/JP2660411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は排気ガス中の窒素酸化物を還元除去する方
法、特には、空燃比がリーン側となる酸素過剰雰囲気に
おいても、窒素酸化物、炭化水素及び一酸化炭素が共存
する排気ガスからNOxを還元除去して、排気ガスを高率
に浄化できる方法に関するものである。 <従来の技術> 自動車の排気ガス浄化用触媒として、一酸化炭素(C
O)及び炭化水素(HC)の酸化と、窒素酸化物(NOx)の
還元を同時に行う触媒が汎用されている。このような触
媒は基本的にはコージエライト等の耐火性担体にγ−ア
ルミナスラリーを塗布、焼成した後、Pd,Pt,Rh等の金属
又はその混合物を担持させたものである。またその触媒
活性を高めるための提案が数多くなされており、例えば
特開昭61−11147号公報には、希土類酸化物で安定され
たγ−アルミナ粒子上に貴金属等を分散させるタイプの
触媒において、実質的に希土類酸化物を含まぬ粒子上に
Rhを分散させた触媒が開示されている。 ところで今まで使用され又は提案されている触媒は、
エンジンの設定空燃比によつて浄化特性が大きく左右さ
れ、希薄混合気つまり空燃比が大きいリーン側では燃焼
後も酸素(O2)の量が多くなり、酸化作用が活発に、還
元作用が不活発になる。この逆に、空燃比の小さいリツ
チ側では酸化作用が不活発に、還元作用が活発になる。
この酸化と還元のバランスがとれる理論空燃比(A/F=1
4.6)付近で接触は最も有効に働く。 従つて触媒を用いる排気ガス浄化装置を取付けた自動
車では、排気系の酸素濃度を検出して、混合気を理論空
燃比付近に保つようフイードバツク制御が行なわれてい
る。 <発明が解決しようとする問題点> 一方、自動車においては低燃費化も要請されており、
そのためには通常走行時なるべく酸素過剰の混合気を燃
焼させればよいことが知られている。しかしそうすると
空燃比がリーン側の酸素過剰雰囲気となつて、排気ガス
中の有害成分のうちHC,COは酸化除去できても、NOxは触
媒床に吸着したO2によつて活性金属との接触が妨げられ
るために、還元除去できないという問題があつた。その
ため従来、触媒によつて高度の排気ガス浄化を図る自動
車にあつては混合気を希薄にすることができなかつた。 本発明は上記問題点を解決するために為されたもので
あり、その目的とするところは、リーン側でも、窒素酸
化物、炭化水素及び一酸化炭素が共存する排気ガスから
NOxを還元除去できる方法を提供することである。 〔問題点を解決するための手段〕 そのための本発明は、窒素酸化物、炭化水素及び一酸
化炭素が共存する酸素過剰雰囲気の排気ガスから窒素酸
化物を還元除去する方法において、 遷移金属でイオン交換され、かつ、5.0〜5.9Åの細孔
径を有するゼオライトがアルミナゾルおよびシリカゾル
からなるバインダーと混練され耐火性担体上に担持さ
れ、さらにゼオライトのSi/Alモル比をMとした場合、
使用されるバインダーのSi/Alモル比がM〜M+60の範
囲にある触媒を用いて、排気ガス中の窒素酸化物を還元
除去する方法である。 本発明の方法で用いる触媒は、従来担体上の触媒活性
成分であつたγ−アルミナと金属が、遷移金属でイオン
交換されたゼオライトに代わつたものと言うことができ
る。 上記の遷移金属としては、Cu,Co,Cr,Ni,Fe,Mg,Mnが好
ましく、特にCuが好ましい。 ゼオライトは周知のように一般式: xM2/nO・Al2O3・ySiO2 で表わされる結晶性アルミノケイ酸で、M(n価の金
属),x,yの違いによつて、結晶構造中のトンネル構造
(細孔径)が異なり、多くの種類のものが市販されてい
る。またSi4+の一部をAl3+で置換しているため正電荷が
不足し、その不足を補うためNa+,K+等の陽イオンを結晶
内に保持する性質があるため、高い陽イオン交換能を持
つている。 本触媒のためのゼオライトとしては、NOx分子径より
も僅かに大きい5.0〜5.9Åの細孔径を有するものを使用
する。 本触媒を製造するには、例えば、遷移金属イオン溶液
で処理してイオン交換した合成ゼオライトを、アルミナ
ゾル及びシリカゾルからなるバインダーと混練し、得ら
れたスラリーを担体にウオツシユコートした後焼成すれ
ばよい。或は、合成ゼオライトをウオツシユコートした
後イオン交換するようにしてもよい。 <作 用> ゼオライトは別名分子篩いと言われているように分子
の大きさと並ぶ数Å単位の細孔を有している。そのため
NOxが細孔に選択的に取り込まれる。細孔中にはイオン
交換により導入された遷移金属の活性サイトが存在する
ため、そこにNOxが吸着し反応を起こす。 <実施例> 以下、実施例により本発明を更に詳しく説明する。 実施例1 Si/Al比40、最大細孔径5.9Åのゼオライト粉末を酢酸
銅溶液(濃度0.04mol/)中に数日間静置した後、取出
して乾燥し、Cuイオン交換したゼオライトを得る。アル
ミナゾルとシリカゾルをSi/Al比が40となるように混合
して得られたスラリー状バインダー60部に、上記のCuイ
オン交換したゼオライト100部及び水60部を加えて混合
し、pHが3〜6の範囲となるよう硝酸アルミニウム溶液
で調整してスラリーを造る。このスラリーをコージエラ
イト製ハニカム担体にウオツシユコートし、乾燥後、60
0〜650℃で焼成して、Cuイオン交換ゼオライト触媒を得
る。 実施例2、3 酢酸銅溶液の代わりに酢酸コバルト溶液、並びに酢酸
マグネシウム溶液を用いる外は、上記実施例1の製造操
作に従つて、Coイオン交換ゼオライト触媒(実施例2)
ならびにMgイオン交換ゼオライト触媒(実施例3)を得
る。 比較例1〜3 イオン交換しないゼオライトを、上記実施例1の場合
と同様にしてハニカム担体上にコートしたものを3個作
り、それぞれ担体1当り1.5gのPt,Pd,Rhを常法により
担持させ、Pt担持触媒(比較例1)、Pd担持触媒(比較
例2)及びRh担持触媒(比較例3)を得る。 試験例1 実施例1〜3、比較例1〜3及び従来例(γ−アルミ
ナをウオツシユコートしたものにPt+Rhを1.5+0.3g/
担持したもの)の各触媒を3エンジンの排気系に取付
け、A/F=13〜25,入りガス温度600℃条件下でのNOxの浄
化率を測定した。 その結果を第1表に示す。 遷移金属でイオン交換したゼオライト触媒(実施例1
〜3)は、イオン交換しないゼオライト上に貴金属を担
持させた触媒(比較例1〜3)に比べ明らかに優れてお
り、従来例と比べると空燃比(A/F)が大きなリーン側
で大きく優つていることが判る。 参考実施例 バインダーのアルミナゾルとシリカゾルの混合比が触
媒活性にどのような影響を及ぼすかをみるために、Si/A
l比が0,50,100,200,400,1000の6,種類のバインダーを用
意し、実施例1で使用されたバインダーの代わりに上記
6種類のバインダーを用いる以外は実施例1の操作に従
つてCuイオン交換ゼオライト触媒を製造し、それらのNO
x浄化率を試験例1と同様の方法により調べた。その結
果を第2表に示す。 この結果は、ゼオライトのSi/Al比に近いSi/Al比のバ
インダーを用いるのがよいことを示している。 <発明の効果> 本発明の方法で用いる排気ガス浄化用触媒は、触媒能
を有する遷移金属でイオン交換されかつNOx分子の取込
みに適する細孔を持つゼオライトを担体上に担持させた
ものであるため、リーン雰囲気においてもNOxが選択的
に細孔中の遷移金属の活性サイトに吸着・反応し、浄化
される触媒となつた。 従つて前記排気ガス浄化用触媒を用いる本発明の方法
によれば、リーン雰囲気走行でも大気中にNOxを排出す
る恐れがなくなることから、エンジンの設定空燃比を大
きくして、自動車の低燃費化を図ることができる。また
混合気を希薄にすることでHC,COの発生自体も低くな
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for reducing and removing nitrogen oxides in exhaust gas, and particularly to a method for reducing nitrogen oxides even in an oxygen-excess atmosphere where the air-fuel ratio is lean. The present invention relates to a method for purifying exhaust gas at a high rate by reducing and removing NOx from exhaust gas in which hydrocarbons and carbon monoxide coexist. <Conventional technology> Carbon monoxide (C
Catalysts that simultaneously oxidize O) and hydrocarbons (HC) and reduce nitrogen oxides (NOx) are widely used. Basically, such a catalyst is obtained by applying a γ-alumina slurry to a refractory carrier such as cordierite and calcining, and then supporting a metal such as Pd, Pt, Rh or a mixture thereof. Also, many proposals have been made to enhance the catalytic activity, for example, JP-A-61-11147 discloses a type of catalyst in which a noble metal or the like is dispersed on γ-alumina particles stabilized with a rare earth oxide. On particles substantially free of rare earth oxides
Rh dispersed catalysts are disclosed. By the way, the catalysts used or proposed so far are:
Purification characteristics are greatly affected by the set air-fuel ratio of the engine. On the lean side, that is, on the lean side where the air-fuel ratio is large, the amount of oxygen (O 2 ) increases even after combustion, and the oxidizing action is active and the reducing action is not effective. Be active. Conversely, on the rich side with a small air-fuel ratio, the oxidizing action is inactive and the reducing action is active.
The stoichiometric air-fuel ratio (A / F = 1
4.6) Contact works best around. Therefore, in an automobile equipped with an exhaust gas purifying device using a catalyst, feedback control is performed so as to detect the oxygen concentration in the exhaust system and keep the air-fuel mixture near the stoichiometric air-fuel ratio. <Problems to be solved by the invention> On the other hand, low fuel consumption is also demanded in automobiles,
It is known that, for that purpose, it is only necessary to burn an air-fuel mixture in excess of oxygen during normal running. However Then the air-fuel ratio is summer and oxygen-rich atmosphere leaner, HC of the harmful components in the exhaust gas, CO can be be removed oxide, NOx is contacted with the O connexion active metal O 2 adsorbed on the catalyst bed However, there is a problem that reduction and removal cannot be performed because of the hindrance. For this reason, in the past, it has not been possible to make the air-fuel mixture lean in an automobile that purifies a high degree of exhaust gas by using a catalyst. The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to reduce exhaust gas containing nitrogen oxides, hydrocarbons and carbon monoxide on the lean side.
An object of the present invention is to provide a method capable of reducing and removing NOx. [Means for Solving the Problems] The present invention for that purpose is a method for reducing and removing nitrogen oxides from an exhaust gas in an oxygen-excess atmosphere where nitrogen oxides, hydrocarbons and carbon monoxide coexist. When exchanged, and zeolite having a pore size of 5.0 to 5.9Å is kneaded with a binder composed of alumina sol and silica sol and supported on a refractory support, and further, when the Si / Al molar ratio of zeolite is M,
This is a method for reducing and removing nitrogen oxides in exhaust gas using a catalyst in which a Si / Al molar ratio of a binder used is in a range of M to M + 60. The catalyst used in the method of the present invention can be said to be one in which γ-alumina and metal, which have been catalytically active components on a carrier, have been replaced by zeolite ion-exchanged with a transition metal. As the above transition metal, Cu, Co, Cr, Ni, Fe, Mg, and Mn are preferable, and Cu is particularly preferable. Zeolite known as general formula: in xM 2 / n O · Al 2 O 3 · ySiO crystalline aluminosilicate represented by 2, M (n-valent metal), x, Yotsute the difference in y, the crystal structure Many types of tunnel structures (pore diameters) differing from each other are commercially available. In addition, since a part of Si 4+ is substituted with Al 3+ , the positive charge is insufficient, and to compensate for the shortage, there is a property of retaining cations such as Na + , K + and the like in the crystal. Has ion exchange capacity. As the zeolite for the present catalyst, a zeolite having a pore diameter of 5.0 to 5.9 ° slightly larger than the NOx molecular diameter is used. In order to produce the present catalyst, for example, synthetic zeolite ion-exchanged by treatment with a transition metal ion solution is kneaded with a binder composed of alumina sol and silica sol, and the resulting slurry is wash-coated on a carrier and then calcined. Good. Alternatively, ion exchange may be performed after the synthetic zeolite is wash-coated. <Operation> Zeolite has pores of several Å units which are in line with the molecular size, as is also called molecular sieve. for that reason
NOx is selectively taken into the pores. Since the active site of the transition metal introduced by ion exchange exists in the pores, NOx is adsorbed there to cause a reaction. <Example> Hereinafter, the present invention will be described in more detail with reference to examples. Example 1 A zeolite powder having a Si / Al ratio of 40 and a maximum pore diameter of 5.9 mm was left in a copper acetate solution (concentration 0.04 mol /) for several days, then taken out and dried to obtain a Cu ion-exchanged zeolite. To 60 parts of a slurry-like binder obtained by mixing alumina sol and silica sol so that the Si / Al ratio becomes 40, 100 parts of the above-mentioned Cu ion-exchanged zeolite and 60 parts of water are added and mixed. A slurry is prepared by adjusting with an aluminum nitrate solution so as to be in the range of 6. This slurry was wash-coated on a cordierite honeycomb carrier, dried, and dried.
Calcination at 0 to 650 ° C gives a Cu ion exchanged zeolite catalyst. Examples 2 and 3 Co ion-exchanged zeolite catalyst (Example 2) according to the production procedure of Example 1 except that a cobalt acetate solution and a magnesium acetate solution are used instead of the copper acetate solution.
And an Mg ion exchanged zeolite catalyst (Example 3). Comparative Examples 1-3 Zeolite not ion-exchanged was coated on a honeycomb carrier in the same manner as in Example 1 to produce three pieces, each of which supported 1.5 g of Pt, Pd, Rh per carrier by a conventional method. Thus, a Pt-supported catalyst (Comparative Example 1), a Pd-supported catalyst (Comparative Example 2), and a Rh-supported catalyst (Comparative Example 3) are obtained. Test Example 1 Examples 1-3, Comparative Examples 1-3 and Conventional Example (1.5-0.3 g / Pt + Rh was added to a washcoat of γ-alumina.
Each catalyst was mounted on the exhaust system of three engines, and the NOx purification rate was measured under the conditions of A / F = 13 to 25 and incoming gas temperature of 600 ° C. Table 1 shows the results. Zeolite catalyst ion-exchanged with a transition metal (Example 1)
3) are clearly superior to catalysts in which a noble metal is supported on zeolite without ion exchange (Comparative Examples 1 to 3), and the air-fuel ratio (A / F) is larger on the lean side than in the conventional example. You can see that they are superior. Reference Example In order to see how the mixing ratio of alumina sol and silica sol of the binder affects the catalytic activity, Si / A
l The ratio is 0,50,100,200,400,1000. Six kinds of binders are prepared, and the Cu ion exchanged zeolite is operated according to the procedure of Example 1 except that the above six kinds of binders are used instead of the binder used in Example 1. Producing catalysts and their NO
The x purification rate was examined in the same manner as in Test Example 1. Table 2 shows the results. This result indicates that it is better to use a binder having a Si / Al ratio close to that of zeolite. <Effect of the Invention> The exhaust gas purifying catalyst used in the method of the present invention is one in which zeolite having ion exchanged with a transition metal having catalytic activity and having pores suitable for taking in NOx molecules is supported on a carrier. Therefore, even in a lean atmosphere, NOx selectively adsorbs and reacts with the active site of the transition metal in the pores, resulting in a catalyst that is purified. Therefore, according to the method of the present invention using the exhaust gas purifying catalyst, since there is no possibility that NOx is emitted into the atmosphere even in a lean atmosphere, the set air-fuel ratio of the engine is increased and the fuel efficiency of the vehicle is reduced. Can be achieved. Further, by making the air-fuel mixture lean, the generation itself of HC and CO is also reduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 伸一 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 村木 秀昭 愛知県愛知郡長久手町大字長湫字横道41 番地の1 株式会社豊田中央研究所内 (72)発明者 近藤 四郎 愛知県愛知郡長久手町大字長湫字横道41 番地の1 株式会社豊田中央研究所内 (56)参考文献 特開 昭63−283727(JP,A) 特開 昭60−125250(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Shinichi Matsumoto               1 Toyota Town, Toyota City, Aichi Prefecture               Dosha Co., Ltd. (72) Inventor Hideaki Muraki               Aichi-gun Aichi-gun Nagakute-machi               Address 1 Toyota Central Research Laboratory Co., Ltd. (72) Inventor Shiro Kondo               Aichi-gun Aichi-gun Nagakute-machi               Address 1 Toyota Central Research Laboratory Co., Ltd.                (56) References JP-A-63-283727 (JP, A)                 JP-A-60-125250 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.窒素酸化物、炭化水素及び一酸化炭素が共存する酸
素過剰雰囲気の排気ガスから窒素酸化物を還元除去する
方法において、 遷移金属でイオン交換され、かつ、5.0〜5.9Åの細孔径
を有するゼオライトがアルミナゾルおよびシリカゾルか
らなるバインダーと混練され耐火性担体上に担持され、
さらにゼオライトのSi/Alモル比をMとした場合、使用
されるバインダーのSi/Alモル比がM〜M+60の範囲に
ある触媒を用いて、排気ガス中の窒素酸化物を還元除去
する方法。
(57) [Claims] In a method for reducing and removing nitrogen oxides from an exhaust gas in an oxygen-excess atmosphere where nitrogen oxides, hydrocarbons and carbon monoxide coexist, zeolite ion-exchanged with a transition metal and having a pore diameter of 5.0 to 5.9 mm is obtained. Kneaded with a binder consisting of alumina sol and silica sol and supported on a refractory carrier,
Furthermore, when the Si / Al molar ratio of the zeolite is M, a method of reducing and removing nitrogen oxides in the exhaust gas using a catalyst in which the Si / Al molar ratio of the binder used is in the range of M to M + 60.
JP62291258A 1987-11-18 1987-11-18 Method for reducing and removing nitrogen oxides in exhaust gas Expired - Fee Related JP2660411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291258A JP2660411B2 (en) 1987-11-18 1987-11-18 Method for reducing and removing nitrogen oxides in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62291258A JP2660411B2 (en) 1987-11-18 1987-11-18 Method for reducing and removing nitrogen oxides in exhaust gas

Publications (2)

Publication Number Publication Date
JPH01130735A JPH01130735A (en) 1989-05-23
JP2660411B2 true JP2660411B2 (en) 1997-10-08

Family

ID=17766537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291258A Expired - Fee Related JP2660411B2 (en) 1987-11-18 1987-11-18 Method for reducing and removing nitrogen oxides in exhaust gas

Country Status (1)

Country Link
JP (1) JP2660411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110028463A (en) * 2008-06-27 2011-03-18 우미코레 아게 운트 코 카게 Method and device for the purification of diesel exhaust gases

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692311B2 (en) * 1989-12-01 1997-12-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
EP0434063B1 (en) * 1989-12-21 1997-03-12 Toyota Jidosha Kabushiki Kaisha Method of purifying oxygen-excess exhaust gas
DE69118024T2 (en) * 1990-06-29 1996-10-02 Toyota Motor Co Ltd Catalytic converter for cleaning exhaust gases
JP2771364B2 (en) * 1990-11-09 1998-07-02 日本碍子株式会社 Catalytic converter for automotive exhaust gas purification
US5208198A (en) * 1990-12-18 1993-05-04 Tosoh Corporation Catalyst for purifying exhaust gas
JP2973524B2 (en) * 1990-12-18 1999-11-08 東ソー株式会社 Exhaust gas purification catalyst
US5206196A (en) * 1990-12-18 1993-04-27 Tosoh Corporation Catalyst for purifying exhaust gas
JPH04219150A (en) * 1990-12-20 1992-08-10 Tosoh Corp Exhaust gas purification catalyst
JP2663720B2 (en) * 1990-12-26 1997-10-15 トヨタ自動車株式会社 Diesel engine exhaust purification system
JPH04243525A (en) * 1991-01-22 1992-08-31 Toyota Motor Corp Apparatus for purifying exhaust gas of internal combustion engine
US5174111A (en) 1991-01-31 1992-12-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
US5201802A (en) * 1991-02-04 1993-04-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
EP0678325B1 (en) 1991-07-09 1999-05-06 Mitsubishi Jukogyo Kabushiki Kaisha Catalyst and method for exhaust gas purification
US5534237A (en) * 1991-07-23 1996-07-09 Kubushiki Kaisha Riken Method of cleaning an exhaust gas and exhaust gas cleaner therefor
DE69316287T2 (en) * 1992-08-25 1998-07-23 Idemitsu Kosan Co Catalytic converter for cleaning exhaust gases
EP0605251A1 (en) * 1992-12-28 1994-07-06 Kabushiki Kaisha Riken Exhaust gas cleaner
US5714432A (en) * 1992-12-28 1998-02-03 Kabushiki Kaisha Riken Exhaust gas cleaner comprising supported silver or silver oxide particles
JPH06272542A (en) * 1993-03-17 1994-09-27 Hitachi Ltd Apparatus and method for controlling exhaust emission of internal combustion engine
JP3440290B2 (en) * 1993-08-26 2003-08-25 独立行政法人産業技術総合研究所 Exhaust gas purification method
EP0685258A4 (en) * 1993-12-21 1996-05-15 Toray Industries Material having selective adsorptivity of inorganic materials and production method thereof.
EP0661089B1 (en) * 1993-12-28 1998-03-11 Kabushiki Kaisha Riken Device and method for cleaning exhaust gas
EP0667182A3 (en) * 1994-02-10 1995-10-18 Riken Kk Exhaust gas cleaner and method for cleaning exhaust gas.
US5658542A (en) * 1994-07-15 1997-08-19 Kabushiki Kaisha Riken Exhaust gas cleaner and method for cleaning same
EP0710499A3 (en) 1994-11-04 1997-05-21 Agency Ind Science Techn Exhaust gas cleaner and method for cleaning exhaust gas
US5714130A (en) * 1994-11-28 1998-02-03 Kabushiki Kaisha Riken Exhaust gas cleaner and method for cleaning exhaust gas
US5741468A (en) * 1994-12-28 1998-04-21 Kabushiki Kaisha Riken Exhaust gas cleaner and method for cleaning exhaust gas
JP3374569B2 (en) * 1995-01-10 2003-02-04 株式会社日立製作所 Exhaust gas purification catalyst and purification method
JPH09133032A (en) * 1995-11-10 1997-05-20 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP3977883B2 (en) * 1996-10-03 2007-09-19 株式会社日立製作所 Exhaust gas purification catalyst for internal combustion engine
US6555492B2 (en) 1999-12-29 2003-04-29 Corning Incorporated Zeolite/alumina catalyst support compositions and method of making the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125250A (en) * 1983-12-08 1985-07-04 Shiyuuichi Kagawa Catalytic cracking catalyst of nitrogen oxide and use thereof
DE3713169A1 (en) * 1987-04-17 1988-11-03 Bayer Ag METHOD AND DEVICE FOR REDUCING NITROGEN OXIDES

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110028463A (en) * 2008-06-27 2011-03-18 우미코레 아게 운트 코 카게 Method and device for the purification of diesel exhaust gases
KR101598988B1 (en) 2008-06-27 2016-03-02 우미코레 아게 운트 코 카게 Method and device for the purification of diesel exhaust gases

Also Published As

Publication number Publication date
JPH01130735A (en) 1989-05-23

Similar Documents

Publication Publication Date Title
JP2660411B2 (en) Method for reducing and removing nitrogen oxides in exhaust gas
EP0993861B1 (en) Catalyst for purifying exhaust gas from lean-burn engine
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JP2773428B2 (en) Exhaust gas purification method
JP2660412B2 (en) Exhaust gas purification method
JP4703818B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3409894B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH05220403A (en) Exhaust gas purifying catalyst
JP3407901B2 (en) Exhaust gas purifying catalyst, method for producing the catalyst, and method for purifying exhaust gas
JPH04219141A (en) Exhaust gas purification catalyst
JP3488487B2 (en) Exhaust gas purification method
JPH01310742A (en) Catalyst for use in purification of exhaust gas
JPH0810573A (en) Exhaust gas purifying device
JPH0640964B2 (en) Exhaust gas purification catalyst manufacturing method
JP2849585B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH02293050A (en) Catalyst for purification of exhaust gas
JPH0859236A (en) Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
JPS59162948A (en) Catalyst for purifying exhaust gas
JP4106762B2 (en) Exhaust gas purification catalyst device and purification method
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2001314763A (en) CARRIER FOR NOx ABSORBING AND REDUCING CATALYST AND NOx ABSORBING AND REDUCING CATALYST USING THE SAME
JP2802335B2 (en) Method for producing exhaust purification catalyst
JP3379125B2 (en) Exhaust gas purification catalyst
JP3111491B2 (en) Exhaust gas purification catalyst
JP3391569B2 (en) Exhaust gas purification method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees