JPH02293050A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH02293050A
JPH02293050A JP1113975A JP11397589A JPH02293050A JP H02293050 A JPH02293050 A JP H02293050A JP 1113975 A JP1113975 A JP 1113975A JP 11397589 A JP11397589 A JP 11397589A JP H02293050 A JPH02293050 A JP H02293050A
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
purification
pores
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1113975A
Other languages
Japanese (ja)
Inventor
Toshihiro Takada
登志広 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1113975A priority Critical patent/JPH02293050A/en
Publication of JPH02293050A publication Critical patent/JPH02293050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst having a high rate of removal of NOx and superior durability by supporting zeolite contg. the double oxide of different transition metals or the double oxide of a transition metal and an alkaline earth metal in the pores. CONSTITUTION:The double oxide of different transition metals such as a rare earth metal having atomic number 21 or 39 and other transition metal selected among transition metals having atomic numbers 21 to 30, 39 to 48, 57 to 80 and 89 or the double oxide of an alkaline earth metal having atomic number 4, 12, 20 and a transition metal is used. Zeolite contg. the double oxide in the pores is supported on a refractory carrier such as cordierite. The resulting catalyst has a high rate of removal of NOx on the lean side and superior durability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自動車などの車両に用いる排気浄化用触媒、特
に詳しくは空燃比がリーン側となる酸素過剰雰囲気にお
いても排気中のNOxを高率に浄化できる触媒に関する
ものである.〔従来の技゛術〕 自動車の排気浄化用触媒として,一酸化炭素(Co)及
び炭化水2 (HC) l![?,ト、窒素酸化物(N
 O x)の還元を同時に行う触媒が棲汎用されている
.このような触媒は基本的にはコージエライト等の耐火
性担体にγ−アルミナスラリーを塗布、焼成した後、P
d,PtRh等の金属又はその混合物を担持させたもの
である. ところで前記のような触媒は、エンジンの設定空燃比に
よって浄化特性が大きく左右され、!4薄混合気つまり
空燃比が大きいリーン側では燃焼後も酸素(0ユ)の量
が多くなり、酸化作用が活発に、還元作用が不活発にな
る.この逆に、空燃比の小さいリッチ側では酸化作用が
不活発に、還元作用が活発になる.この酸化と還元のバ
ランスがとれる理論空燃比(A/F=1 4 . 6)
付近で触媒は最も有効に働く.このような触媒を用いる
排気浄化装置を取付けた自動車では、排気系の酸素濃度
を検出して,混合気を理論空燃比付近に保つようフィー
ドバック制御が行なわれている. 一方、自動車においては低燃比化も要請されており、そ
のためには通常走行時なるべく酸素過剰の混合気を燃焼
させればよいことが知られている.しかしそうすると空
燃比がリーン側の酸素過剰雰囲気となって、排気中の有
害成分のうちHC ,Coは酸化除去できても、NOx
は触媒床に吸着した04によって活性金属との接触が妨
げられるために、還元除去することが困難とされる. このような欠点を改良するため,本出願人は特願昭62
−291258号において、遷移金属で棲イオン交換さ
れたゼオライトが耐火性担体上に担持されていることを
特徴とする排気浄化用触媒を提案した. 上記の遷移金属としては、Cu,Go,CrNi,Fe
,Mnが好ましく、特にCuが好ましい. ゼオライトは周知のように一般式; xM  /neAu.,O  sysio.     
I で表わされる結晶性アルミノケイ酸で.M(n価の金属
),x,yの違いによって、結晶構造中のトンネル構造
(細孔径)が異なり、多くの種類のものが市賑されてい
る.又、Sil+の一部をARl−1!で置換している
ため正電荷が不足し、その不足を補うためN a”, 
K’−等の陽イオン交換能を持っている. モして又、ゼオライトは別名分子篩いと言われているよ
うに分子の大きさと並ぶA単位の細孔を有している.そ
のためHCが細孔に選択的に取り込まれ、そこでHCが
醜点に吸着される.又、細孔中にはイオン交換により導
入された遷移金属の活性サイトが存在するため、そこに
Noが吸着しHC若しくはHCから生成した活性なCO
と反応を起す.このため、リーン側においてもNOxを
効率よく除去することができる. 本出願人は又、特願昭63−140281号において、
ゼオライトからなり銅がイオン交換損持され且つ貴金属
が相持された触媒層が、耐火性担体上に設けられている
ことを特徴とする排気nl化用触媒を提案した. と記の触媒は,リーン側でNOxのみならずHC及びC
Oの浄化性1敵も高い.貴金属としては、PL,Pd,
Rh等が挙げられる.〔発明が解決しようとする課題〕 しかしながら、イオン交換で遷移金属例えば銅を担持す
ると、ゼオライト細孔内のみならずゼオライト粒子の表
面にも銅が付着する恐れがあり、銅が触媒製造時の熱処
理やその使用時の熱負荷などに伴って凝集し易く、これ
は活性や耐久性低下の大きな原因となる. 本発明は前記従来技術における問題点を解決するための
ものである.本発rJIの7J4lの目的はリーン側で
NOxi化率が高く耐久性に優れた排気浄化用触媒を提
供することである.又、本発明の第2の目的は前記に加
えて更にHCやCOの浄化率を高めることもできリーン
NOx触媒としてのみならず、三元触媒としても又使用
し得る排気昂化川触媒を提供することである. 〔課題を解決するための手段〕 すなわち、本発明の排気浄化用触媒は、異なる種類の遷
移金属同士の複合酸化物又は遷移金属とアルカリ土類金
属との複合酸化物を細孔内に有するゼオライトが、耐火
性担体上に担持されて成ることを特徴とする。遷移金属
の用語は、通常使用されている最も広い意味を有する.
すなわち、原子番号2 1 (S c) 〜3 0 (
Z n:)まで、39(Y)〜48(Cd)まで、57
(L a) 〜8 0 (Hg)まで、及び89(Ac
)以上の元素を包含する. 異なる種類の遷移金属同士の複合酸化物の好ましい例と
しては、例えば希土類金属(原子番号21 (Sc),
39 (Y).57 (La) 〜71(LLI))と
それ以外の遷移金属との複合酸化物が挙げられる. 本発明で使用する他の複合酸化物は,遷移金属とアルカ
リ土類金属〔原子番号4(Be)、12 (Mg).2
0 (Ca).38 (Sr)、56 (Ba).88
 (Ra))との複合酸化物である. 複合酸化物は1種類を使用してもよく、又は2種類以上
の複合酸化物を組合せて使用してもよい. 複合酸化物の結晶型としては、イルメナイト型、ペロブ
ス力イト型、BiNi0・3型、スビネル型及びそれら
の類似型が好ましく、とりわけベロブスカイト型が好ま
しい。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an exhaust purification catalyst used in vehicles such as automobiles, and more particularly, to a catalyst for purifying NOx in exhaust gas at a high rate even in an oxygen-rich atmosphere where the air-fuel ratio is on the lean side. It is related to a catalyst that can purify wastewater. [Conventional technology] Carbon monoxide (Co) and hydrocarbon 2 (HC) l! are used as catalysts for automobile exhaust purification. [? , g, nitrogen oxides (N
Catalysts that simultaneously reduce O x ) are widely used. Basically, such catalysts are made by coating a refractory support such as cordierite with γ-alumina slurry, firing it, and then applying P.
d, metals such as PtRh or mixtures thereof are supported. By the way, the purification characteristics of the above-mentioned catalyst are greatly influenced by the air-fuel ratio setting of the engine. 4. In a lean mixture, that is, on the lean side where the air-fuel ratio is high, the amount of oxygen (0 units) increases even after combustion, and the oxidizing action becomes active and the reducing action becomes inactive. Conversely, on the rich side where the air-fuel ratio is low, oxidation is inactive and reduction is active. The stoichiometric air-fuel ratio that balances this oxidation and reduction (A/F = 14.6)
The catalyst works most effectively in the vicinity. In automobiles equipped with exhaust purification devices that use such catalysts, feedback control is performed to detect the oxygen concentration in the exhaust system and maintain the air-fuel mixture near the stoichiometric air-fuel ratio. On the other hand, there is a demand for lower fuel ratios in automobiles, and it is known that this can be achieved by burning a mixture with excess oxygen as much as possible during normal driving. However, if this is done, the air-fuel ratio will be on the lean side, resulting in an oxygen-rich atmosphere, and although HC and Co among the harmful components in the exhaust can be removed by oxidation, NOx
It is said that it is difficult to reduce and remove 04 because contact with active metals is hindered by 04 adsorbed on the catalyst bed. In order to improve these drawbacks, the present applicant filed a patent application filed in 1983.
In No. 291258, we proposed an exhaust purification catalyst characterized by a zeolite ion-exchanged with a transition metal supported on a refractory carrier. The above transition metals include Cu, Go, CrNi, Fe
, Mn are preferred, and Cu is particularly preferred. As is well known, zeolite has the general formula; xM /neAu. , O sysio.
A crystalline aluminosilicate represented by I. The tunnel structure (pore diameter) in the crystal structure varies depending on the differences in M (n-valent metal), x, and y, and many types are available on the market. Also, a part of Sil+ is ARl-1! Because of the substitution, there is a lack of positive charge, and to compensate for the lack, N a'',
It has the ability to exchange cations such as K'-. Furthermore, zeolites are also known as molecular sieves and have pores with A unit sizes that match the size of molecules. Therefore, HC is selectively taken into the pores, where it is adsorbed to the ugliness. In addition, since there are active sites of transition metals introduced by ion exchange in the pores, No is adsorbed there and active CO generated from HC or HC is absorbed.
This causes a reaction. Therefore, NOx can be removed efficiently even on the lean side. The applicant also stated in Japanese Patent Application No. 63-140281,
We have proposed a catalyst for converting exhaust gas into nitride, which is characterized by having a catalyst layer made of zeolite in which copper is supported by ion exchange and precious metals are supported on a refractory carrier. The catalyst marked with does not only produce NOx but also HC and C on the lean side.
The purification property of O is also high. As precious metals, PL, Pd,
Examples include Rh. [Problems to be Solved by the Invention] However, when a transition metal such as copper is supported by ion exchange, there is a risk that copper will adhere not only to the inside of the zeolite pores but also to the surface of the zeolite particles. It tends to aggregate due to the heat load during use, and this is a major cause of decreased activity and durability. The present invention is intended to solve the problems in the prior art described above. The purpose of rJI's 7J4l is to provide a highly durable exhaust purification catalyst with a high NOx conversion rate on the lean side. In addition to the above, the second object of the present invention is to provide an exhaust gas purification catalyst that can further increase the purification rate of HC and CO and can be used not only as a lean NOx catalyst but also as a three-way catalyst. It is to be. [Means for Solving the Problems] That is, the exhaust purification catalyst of the present invention is a zeolite having in its pores a composite oxide of different types of transition metals or a composite oxide of a transition metal and an alkaline earth metal. is supported on a refractory carrier. The term transition metal has the broadest meaning commonly used.
That is, atomic number 2 1 (S c) ~ 3 0 (
Up to Z n:), 39 (Y) to 48 (Cd), 57
(La) to 80 (Hg), and 89 (Ac
) includes the above elements. Preferred examples of composite oxides of different types of transition metals include rare earth metals (atomic number 21 (Sc),
39 (Y). 57 (La) to 71 (LLI)) and other transition metals. Other composite oxides used in the present invention include transition metals and alkaline earth metals [atomic numbers 4 (Be), 12 (Mg). 2
0 (Ca). 38 (Sr), 56 (Ba). 88
(Ra)). One type of composite oxide may be used, or two or more types of composite oxide may be used in combination. The crystal type of the composite oxide is preferably ilmenite type, perovskite type, BiNi0.3 type, Subinel type, and similar types thereof, and particularly preferred is berovskite type.

前記の複合酸化物を細孔内に形成するためのゼオライト
は、ケイ酸質交換体を意味し、例えばアルミノケイ酸塩
やその内のアルミニウムを希土類金属やアルカリ土類金
属と置換したものであってよい. 下記:5t表におもなゼオライトの名称及びその性状を
示す。
The zeolite used to form the composite oxide in the pores is a siliceous exchanger, such as an aluminosilicate or one in which aluminum is replaced with a rare earth metal or an alkaline earth metal. good. The following: 5t table shows the names of the main zeolites and their properties.

第1表 おもなゼオライトの スパーケージ (Supe r  cage)入口と網目構造第1表の
ゼオライトの内でもZSM−5が特に好ましい,ZSM
−5はその他のゼオライトと比較して、S i O 2
/An;: 03が大きく酸強度が高い;酸素10員環
である;結晶水が非常に少なく疎水性で弱酸点が少ない
等の特徴を有するものである,ZSM−5についてば例
えばジー.ティー.ココテイ口(G.T.Kokota
ilo),zス.エル,o−}ン(S.L.La賀ta
n)及びディー.工一,チ.オルソンCD.H . O
Ison )“ストラクチャー オブ シンセティック
ゼオライトZSM−5)”.ネイチャ− ( Natu
re)第272巻,1978年3月30日,第437頁
に記載されている, ゼオライトの細孔内に複合酸化物を形成するには,イオ
ン交換法によりゼオライトに遷移金属を担持し、その後
所定条件下で処理する.イオン交換法は水溶液を用いる
慣用の方法であってよい.水溶液としては所望金属の化
合物例えば憤酸塩などの無機酸塩、ハロゲン化物、イ1
機酸塩、及び配位子として例えばCo , H0NH3
、NO等を含む錯塩の水溶液を用いることができる. そして,イオン交換後アルカリ処理を行ない、例えば酸
素分圧0.1〜50atmで300〜800℃で1〜 
100時間焼成する.アルカリ処理には有機又は無機の
各種のアルカリ溶液が使用できるが、アンモニア水溶液
を使用するのが好ましい. 本発明の触媒に使用する耐火性担体は例えばコージェラ
イト等のセラミックス担体、金属担体等が挙げられる.
耐火性担体へのゼオライトの塗布量,耐火性担体の大き
さや形状等の性状は触媒に要求される特性に応じて選択
する.〔作 用〕 本発明の触媒は、ゼオライトの細孔(径5〜10A程度
 )内にゼオライト構造の格子内酸素原子を利用して複
合酸化物(単位格子の大きさ3.5〜4八程度)の一部
が形成されているので、ゼオライト触媒によるNOXE
I元作用と複合酸化物によるHC及びGO酸化作用とを
併有する.又、前記の構造を有するため、本発明の触媒
はゼオライト構造の耐熱性が向上し耐久性に優れる. 〔実施例〕 以下の実施例及び比較例により、本発明を更に詳細に説
明する.なお、本発明は下記実施例に限定されるもので
はない. 実施例1〜5 以下の成分: )シリカゾル(30wt%Si02) 1i)(r.s Na20/R20,)化合物(Rは希
土類金属) 111)純水 ■)テトラプロビルアンモニウムヒドロキシド(TPA
OH)水溶液(lmol/交)を最終的にeosto2
 φR203●1.5 NaO−2.9TPAOH●5
 5 0 tizoの組成比となるように混合して、室
温で10分程攪拌する.その後、オートクレープ中で,
160℃で10時間反応させ、水洗、乾燥後、約500
℃で焼成する. 上記によって合成したゼオライト粉末50部、シリカゾ
/lz(20wt%Sin,)35部、純水15部、を
混合して攪拌してスラリーを得る.次いで、このスラリ
ーを、直径30mm、長さ5 0 m mのコージェラ
イト賀モノリステストビースにウォッシェギコートし(
コート量=1 2 0 gl文)、これを500℃で3
時間焼成する. 次いで. 0.02M遷移金属(M)水溶液を用いてイ
オン交換し、前記テストビースに遷移金属を2〜3g/
見担持する.その後、これをアルカリ処理(例えば0.
5Nアンモニア水溶液に浸漬する)し、更に酸素分圧0
.2 atmの下で500℃で2時間焼成して複合酸化
物を形成させることにより、図に示す排気浄化用触媒l
を得た. 第2表に、希土類金属及び遷移金属を変えた実施例1〜
5の各触媒(No.1〜5)を示す.比較例1 成分11)としてアルミン酸ナトリウム(1.5N a
 3 0 / A l 2 0 3)水溶液を使用する
こと以外は、実施例1〜5の方法と同様にして第2表に
示す触媒No.6を得た. 比較例2 遷移金属でイオン交換しないこと以外は、実施例1〜5
の方法と同様にして第2表に示す触媒No.7を得た。
Table 1 Super cage inlet and network structure of main zeolites Among the zeolites in Table 1, ZSM-5 is particularly preferred.
-5 compared to other zeolites, S i O 2
/An;: 03 is large and acid strength is high; it is a 10-membered oxygen ring; it has very little crystal water, is hydrophobic, and has few weak acid sites. For example, ZSM-5 has the following characteristics: tea. G.T. Kokota
ilo), zs. El, o-}n (S.L. Lagata
n) and D. Koichi, Ch. Olson CD. H. O
Ison) “Structure of Synthetic Zeolite ZSM-5)”. Nature
re) Volume 272, March 30, 1978, page 437, in order to form a composite oxide within the pores of zeolite, a transition metal is supported on zeolite by an ion exchange method, and then Process under specified conditions. The ion exchange method may be a conventional method using an aqueous solution. As an aqueous solution, compounds of the desired metal such as inorganic acid salts such as urate, halides, i.
salt, and as a ligand, e.g. Co, H0NH3
, NO, etc. can be used. Then, after ion exchange, alkali treatment is performed, for example, at 300 to 800°C with an oxygen partial pressure of 0.1 to 50 atm.
Bake for 100 hours. Although various organic or inorganic alkaline solutions can be used for alkali treatment, it is preferable to use aqueous ammonia solution. Examples of the refractory carrier used in the catalyst of the present invention include ceramic carriers such as cordierite, metal carriers, and the like.
The amount of zeolite applied to the refractory carrier, the size and shape of the refractory carrier, and other properties are selected depending on the characteristics required of the catalyst. [Function] The catalyst of the present invention utilizes the oxygen atoms in the lattice of the zeolite structure in the pores (about 5 to 10A in diameter) of the zeolite to form a composite oxide (with a unit cell size of about 3.5 to 48A). ) is formed, so NOXE by zeolite catalyst
It has both I element action and HC and GO oxidation action due to the complex oxide. Furthermore, since the catalyst has the above-mentioned structure, the heat resistance of the zeolite structure is improved and the catalyst has excellent durability. [Examples] The present invention will be explained in more detail with the following Examples and Comparative Examples. Note that the present invention is not limited to the following examples. Examples 1 to 5 The following components: ) Silica sol (30 wt% Si02) 1i) (rs Na20/R20,) compound (R is a rare earth metal) 111) Pure water ■) Tetraprobylammonium hydroxide (TPA
OH) aqueous solution (lmol/c) was finally eosto2
φR203●1.5 NaO-2.9TPAOH●5
Mix to a composition ratio of 50 tizo and stir at room temperature for about 10 minutes. After that, in the autoclave,
After reacting at 160°C for 10 hours, washing with water, and drying, approximately 500
Bake at ℃. 50 parts of the zeolite powder synthesized above, 35 parts of silicazo/lz (20 wt% Sin,), and 15 parts of pure water are mixed and stirred to obtain a slurry. Next, this slurry was coated on a cordierite monolith test bead with a diameter of 30 mm and a length of 50 mm (
Coating amount = 120gl), this was heated at 500℃ for 3
Bake for an hour. Next. Ion exchange was performed using a 0.02M transition metal (M) aqueous solution, and 2 to 3 g of transition metal was added to the test bead.
I will take care of it. Thereafter, this is treated with an alkali (e.g. 0.
(soaked in 5N ammonia aqueous solution) and further oxygen partial pressure 0
.. By firing at 500°C for 2 hours under 2 ATM to form a composite oxide, the exhaust purification catalyst l shown in the figure was prepared.
I got it. Table 2 shows Examples 1 to 3 in which rare earth metals and transition metals were changed.
Each of the catalysts No. 5 (No. 1 to 5) is shown below. Comparative Example 1 Sodium aluminate (1.5N a
30/A120 3) Catalyst No. 2 shown in Table 2 was prepared in the same manner as in Examples 1 to 5, except that an aqueous solution was used. I got 6. Comparative Example 2 Examples 1 to 5 except that ion exchange with transition metal was not performed.
Catalyst No. shown in Table 2 was prepared in the same manner as in the method of I got a 7.

比較例3 活性アルミナ100?!&、アルミナゾル(10wt%
SiO.,)70部、純水30分及び硝醜アルミニウム
水溶液(40wt%)15部を混合し、攪拌してウォッ
シュコートスラリーを得る.これを実施例1〜5と同様
のテストビースにウォッシュコートし(コートi:  
120g/l)、700℃で1時間焼成する. 別に、ジニトロジアンミン白金[Pt (M}I 3 
) .,(NO2),:]水溶液と塩化ロジウム[Rh
 C文,]水溶液とをPt/Rh=1.5 /0.3 
 g/見一catとなるように混合し,責金屈担持液を
調製する. 焼成したテストビースを貴金属担持液に1時間浸漬して
貴金属を担持した後引き上げ、余分な液を空気流で吹き
払った後250℃で1時間焼成し,白金及びロジウムを
テストピース1文当り各々 1.5g及び0.3g担持
して触媒No 8を得た. 比較例4 ゼオライト45部、シリカゾル(20wt%S i 0
2)35部、LaCo03粉末5部及び純水15部を混
合し、攪拌してウオッシュコートスラリーを得る.これ
を使用して、以下比較例3と同様の方法で触媒NO.9
を得た.触媒No.1〜9を、空気中でaOO℃で5時
間熱処理した後、下記の条件で浄化性能を測定した. 評価条件= 入りガス温度400℃, sv= eoo
oo h−,’A/F=22 結果を下記第2表に示す. 第2表 各種触媒の浄化性旋 1)希土類一ケイ酸塩型ゼオライト 〜9に比べて、総合的な浄化率が非常に優れているのが
判る. 更に詳細に検討すると、触媒No. 1〜5と触媒No
. 8とを比べると、触媒No.1〜5は触媒No.8
よりNOx浄化率が著しく高く、これは触媒成分の担持
層としてのゼオライトの効果を示している. 又、触媒No.1〜5は触媒No.6〜7より全体的に
、特にNOxの浄化率が高く、これは希いると考えられ
る. 又、触媒No.1〜5は触媒No.9より全体的に、特
にNOxの浄化率が高い.このことは、単にゼオライト
に複合酸化物が組合されたのみでは効果がなく、複合酸
化物がゼオライト細孔内に形成されているのが重要であ
ることを示している.この構造を有することにより、本
発明の触媒では、NOxの還元作用並びにHC及びCO
の酸化作用が促進され、又、リーン雰囲気においてのみ
ならず、更に従来三元触媒を使用していた領域において
も優れた性俺を発揮する可俺性を有している. 第2表において、触媒No.1〜5の浄化率に差が生じ
ているのは、形成された複合酸化物の安定性及びゼオラ
イト構造においておよぼすひずみの程度に原因がある.
すなわち,好ましい希七類金属(R)と遷移金属(M)
の組合せは次式I: 〔式中、r3はR原子のイオン半径を表し、rNlはM
原子のイオン半径を表し、r..)は酸素原子のイオン
半径を表わす〕で表わされるしの値が,0.8〜1.0
程度の組合せがよい.そしてこ(7) 場合、ペロブス
カイト型の複合酸化物が生成していると考えられる. 前記実施例1〜5以外に、ゼオライトの細孔内に複合酸
化物としテS r T t O 3、SrCeO3La
Fe03,SmFe03、SrLa03、BaCe03
,BaFe03.LaRh03、C a C e O 
:I、SrRu03、NdCoO3、NdFe03、S
mIn03等を有する触媒でも,同様の効果が得られた
. (発明の効果〕 上述の如く本発明の排気浄化用触媒は、ゼオライトの細
孔内に複合酸化物を有するため,ゼオライト触媒による
NOxil元作用と複合酸化物によるHC及びCo酸化
作用とを併有し、リーン雰囲気において総合的に高い排
気浄化性箋を有している.又、従来のゼオライト型排気
浄化用触媒のように熱負荷などに伴ってイオン交換担持
した遷移金属が凝集することがなく、耐熱性及び耐久性
が向上した.又、本発明の触媒はリーンNOx触媒とし
てのみならず、三元触媒としても使用し得るものである
. 更に本発明の触媒においては遷移金属やアルカリ土類金
属の種類を変えたり、これらを2種類以上組合せて使用
することにより、種々の変形が可簡であり、要求に応じ
た各種の排気浄化用触媒を同様の手法で得ることができ
る.
Comparative example 3 Activated alumina 100? ! &, alumina sol (10wt%
SiO. , ), 30 minutes of pure water, and 15 parts of a nitric aluminum aqueous solution (40 wt%) were mixed and stirred to obtain a washcoat slurry. This was wash coated on the same test beads as in Examples 1 to 5 (coat i:
120g/l) and baked at 700℃ for 1 hour. Separately, dinitrodiammine platinum [Pt (M}I 3
). , (NO2), :] aqueous solution and rhodium chloride [Rh
C sentence, ] aqueous solution Pt/Rh=1.5/0.3
g/cat to give an appearance, and prepare a liquid-bearing solution. The fired test beads were immersed in the precious metal supporting solution for 1 hour to support the precious metals, then pulled out, the excess liquid was blown off with an air stream, and the beads were fired at 250°C for 1 hour, platinum and rhodium were added to each test piece. Catalyst No. 8 was obtained by supporting 1.5 g and 0.3 g. Comparative Example 4 45 parts of zeolite, silica sol (20wt%S i 0
2) Mix 35 parts of LaCo03 powder, 5 parts of LaCo03 powder, and 15 parts of pure water and stir to obtain a wash coat slurry. Using this, in the same manner as in Comparative Example 3, catalyst No. 9
I got it. Catalyst No. Nos. 1 to 9 were heat treated at aOO°C in air for 5 hours, and then their purification performance was measured under the following conditions. Evaluation conditions = Inlet gas temperature 400℃, sv = eoo
oo h-,'A/F=22 The results are shown in Table 2 below. Table 2: Purification performance of various catalysts 1) It can be seen that the overall purification rate is very superior compared to rare earth monosilicate type zeolite ~9. When examined in more detail, catalyst No. 1 to 5 and catalyst No.
.. Comparing with catalyst No. 8, catalyst No. 1 to 5 are catalyst Nos. 8
The NOx purification rate was significantly higher, which indicates the effectiveness of zeolite as a support layer for catalyst components. Also, catalyst No. 1 to 5 are catalyst Nos. The overall purification rate, especially of NOx, is higher than that of Nos. 6 and 7, which is considered to be rare. Also, catalyst No. 1 to 5 are catalyst Nos. 9, the purification rate is higher overall, especially for NOx. This shows that simply combining a complex oxide with zeolite is not effective, and that it is important that the complex oxide is formed within the zeolite pores. By having this structure, the catalyst of the present invention can reduce NOx and reduce HC and CO.
The oxidation action of the catalyst is promoted, and it has a flexible property that exhibits excellent performance not only in lean atmospheres but also in areas where three-way catalysts have traditionally been used. In Table 2, catalyst No. The reason for the difference in the purification rates of No. 1 to No. 5 is due to the stability of the formed composite oxide and the degree of strain exerted on the zeolite structure.
That is, preferable rare class 7 metals (R) and transition metals (M)
The combination is the following formula I: [where r3 represents the ionic radius of the R atom, rNl is M
represents the ionic radius of the atom, r. .. ) represents the ionic radius of the oxygen atom] is 0.8 to 1.0.
A good combination of degrees. In this case (7), it is thought that a perovskite-type complex oxide is generated. In addition to Examples 1 to 5, composite oxides such as S r T t O 3 and SrCeO3La were added to the pores of the zeolite.
Fe03, SmFe03, SrLa03, BaCe03
, BaFe03. LaRh03, C a C e O
:I, SrRu03, NdCoO3, NdFe03, S
Similar effects were obtained with catalysts such as mIn03. (Effects of the Invention) As described above, the exhaust purification catalyst of the present invention has a composite oxide in the pores of the zeolite, so it has both the NOxil source action of the zeolite catalyst and the HC and Co oxidation action of the composite oxide. It has overall high exhaust purification properties in a lean atmosphere.In addition, unlike conventional zeolite-type exhaust purification catalysts, the transition metals supported by ion exchange do not aggregate due to heat load, etc. In addition, the catalyst of the present invention can be used not only as a lean NOx catalyst but also as a three-way catalyst.Furthermore, in the catalyst of the present invention, transition metals and alkaline earth By changing the type of metal or using a combination of two or more types, various modifications can be made, and various exhaust purification catalysts can be obtained in accordance with the requirements using the same method.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明餐の        9  排気浄化用触媒
の一例の斜視図である. 図中、 i ......排気浄化用触媒 特許 出願人  トヨタ自動車株式会社11ト 気浄イ
し用 員!!i幕 1 ノ
The figure is a perspective view of an example of the exhaust purification catalyst of the present invention. In the figure, i. .. .. .. .. .. Exhaust Purification Catalyst Patent Applicant Toyota Motor Corporation 11th Air Purification Employee! ! i act 1 no

Claims (1)

【特許請求の範囲】[Claims]  異なる種類の遷移金属同士の複合酸化物又は遷移金属
とアルカリ土類金属との複合酸化物を細孔内に有するゼ
オライトが、耐火性担体上に担持されて成ることを特徴
とする排気浄化用触媒。
An exhaust purification catalyst comprising a zeolite having in its pores a composite oxide of different types of transition metals or a composite oxide of a transition metal and an alkaline earth metal supported on a refractory carrier. .
JP1113975A 1989-05-06 1989-05-06 Catalyst for purification of exhaust gas Pending JPH02293050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1113975A JPH02293050A (en) 1989-05-06 1989-05-06 Catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1113975A JPH02293050A (en) 1989-05-06 1989-05-06 Catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH02293050A true JPH02293050A (en) 1990-12-04

Family

ID=14625907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1113975A Pending JPH02293050A (en) 1989-05-06 1989-05-06 Catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH02293050A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389942A (en) * 1989-08-31 1991-04-15 Tosoh Corp Exhaust gas purifying catalyst and purifying method with it utilized therefor
WO1995009047A1 (en) 1993-09-29 1995-04-06 Honda Giken Kogyo Kabushiki Kaisha Adsorption material for nitrogen oxides and exhaust emission control catalyst
US6455463B1 (en) 2001-03-13 2002-09-24 Delphi Technologies, Inc. Alkaline earth/transition metal lean NOx catalyst
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389942A (en) * 1989-08-31 1991-04-15 Tosoh Corp Exhaust gas purifying catalyst and purifying method with it utilized therefor
WO1995009047A1 (en) 1993-09-29 1995-04-06 Honda Giken Kogyo Kabushiki Kaisha Adsorption material for nitrogen oxides and exhaust emission control catalyst
US5804526A (en) * 1993-09-29 1998-09-08 Honda Giken Kogyo Kabushiki Kaisha Adsorbent for nitrogen oxides and exhaust emission control catalyst
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
US6455463B1 (en) 2001-03-13 2002-09-24 Delphi Technologies, Inc. Alkaline earth/transition metal lean NOx catalyst
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst

Similar Documents

Publication Publication Date Title
JP2771321B2 (en) Exhaust gas purifying catalyst composition, exhaust gas purifying catalyst and method for producing the same
JP2660411B2 (en) Method for reducing and removing nitrogen oxides in exhaust gas
US5433933A (en) Method of purifying oxygen-excess exhaust gas
JP2660412B2 (en) Exhaust gas purification method
JPH09276703A (en) Catalyst for clening of exhaust gas
JPH05220403A (en) Exhaust gas purifying catalyst
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPH02293050A (en) Catalyst for purification of exhaust gas
JPH0671181A (en) Method for treating exhaust gas
JPH0640964B2 (en) Exhaust gas purification catalyst manufacturing method
JPH11226414A (en) Exhaust gas purification catalyst
JP2849585B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2605956B2 (en) Exhaust gas purification catalyst
JP3219815B2 (en) Exhaust gas purification catalyst
JP4019460B2 (en) Exhaust gas purification catalyst
JPH08257407A (en) Catalyst for cleaning exhaust gas from internal combustion engine
JP2000024517A (en) Catalyst for cleaning exhaust gas and its production
JPH0824656A (en) Catalyst for purifying exhaust gas
JP2932106B2 (en) Exhaust gas purification catalyst
JP2601018B2 (en) Exhaust gas purification catalyst
JP3291316B2 (en) Exhaust gas purification catalyst
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH10151325A (en) Method for purifying exhaust gas
JPH0817945B2 (en) Exhaust gas purification catalyst
JP3300028B2 (en) Exhaust gas purification catalyst and method for producing the same