JPH11123330A - Exhaust gas cleaning catalyst and manufacture thereof - Google Patents

Exhaust gas cleaning catalyst and manufacture thereof

Info

Publication number
JPH11123330A
JPH11123330A JP10109235A JP10923598A JPH11123330A JP H11123330 A JPH11123330 A JP H11123330A JP 10109235 A JP10109235 A JP 10109235A JP 10923598 A JP10923598 A JP 10923598A JP H11123330 A JPH11123330 A JP H11123330A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
oxide
weight
purifying catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10109235A
Other languages
Japanese (ja)
Inventor
Mitsuru Hosoya
満 細谷
Shinya Sato
信也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP10109235A priority Critical patent/JPH11123330A/en
Publication of JPH11123330A publication Critical patent/JPH11123330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel catalyst which can improve the efficiency of a catalyst metal to reduce NOx in the exhaust gas of an internal combustion engine. SOLUTION: In the catalyst, at least one kind of element selected from the group consisting of iridium, platinum, rhodium, palladium, silver, cobalt, copper, nickel, iron, magnesium, and lanthanoid, in catalytically active quantities, is carried on and/or in carrier particles comprising metal oxides and/or composite oxides in an evenly dispersed state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はディーゼルエンジン
等の内燃機関から排出されるNOxを低減する排ガス浄
化触媒及びその製法に関し、さらに詳しくは、通常の排
ガス温度範囲の約350〜約500℃においてNOxを
高効率で低減することが可能な上記触媒及びその製法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for reducing NOx emitted from an internal combustion engine such as a diesel engine and a method for producing the same, and more particularly, to NOx in a normal exhaust gas temperature range of about 350 to about 500.degree. The present invention relates to the above-mentioned catalyst and a method for producing the same, which can reduce the amount of the catalyst with high efficiency.

【0002】[0002]

【従来の技術】内燃機関、例えばディーゼルエンジンか
らの排ガス中に余剰の空気と共に含まれる窒素酸化物
(NOx)を低減するための触媒として、遷移金属のイ
オン、例えば銅イオンを交換して有するゼオライト、す
なわち銅−ゼオライト(Cu−ZSM−5)触媒が提案
されてきている(例えば特開昭63−283727号公
報参照)。しかしながら、この種のゼオライト触媒は排
ガス中に共存する水蒸気や硫黄化合物及び排ガスの熱等
の影響を受けて経時的に劣化し易い傾向があり、耐久性
の点で実用化するのが困難と考えられる。さらに窒素酸
化物浄化についての最適活性温度が400〜500℃と
高いため、エンジンの始動時や低速回転時等のように排
ガス温度が低い場合には窒素酸化物浄化作用が極端に低
減するという問題点、ならびに上記の最適活性温度範囲
においてさえもNOx低減率が充分に満足すべき水準で
はない。
2. Description of the Related Art As a catalyst for reducing nitrogen oxides (NOx) contained in exhaust gas from an internal combustion engine, for example, a diesel engine together with excess air, a zeolite having exchanged ions of transition metals, for example, copper ions, is used. That is, a copper-zeolite (Cu-ZSM-5) catalyst has been proposed (see, for example, JP-A-63-283727). However, this type of zeolite catalyst tends to deteriorate over time under the influence of water vapor and sulfur compounds coexisting in the exhaust gas and the heat of the exhaust gas, and is considered to be difficult to put into practical use in terms of durability. Can be Furthermore, since the optimum activation temperature for nitrogen oxide purification is as high as 400 to 500 ° C., the nitrogen oxide purification action is extremely reduced when the exhaust gas temperature is low, such as when the engine is started or at low speed. However, even in the above-mentioned optimum activation temperature range, the NOx reduction rate is not at a sufficiently satisfactory level.

【0003】本出願人は先に特願平8−347376号
(平成8年12月26日)明細書においてゼオライト粒
子と貴金属粒子とが混合されてなる排ガス浄化触媒を提
案している。この触媒は、貴金属の水溶液に炭素粒子粉
末を加え、得られた混合液を濃縮した後、還元処理に供
して、貴金属を炭素粒子上に析出させ、これにゼオライ
ト粒子を加え、更に水と無機バインダーとを加えてスラ
リーとし、得られたスラリーを基体に施し、乾燥し、更
に焼成することにより炭素粒子を燃焼させて除去すると
共にゼオライト粒子と貴金属粒子とを基体に乾固担持さ
せる、各工程からなるやや複雑な方法により製造するこ
とができる。
The applicant of the present application has previously proposed in Japanese Patent Application No. 8-347376 (December 26, 1996) a catalyst for purifying exhaust gas in which zeolite particles and noble metal particles are mixed. This catalyst is obtained by adding carbon particle powder to an aqueous solution of a noble metal, concentrating the resulting mixture, and subjecting the mixture to a reduction treatment to precipitate the noble metal on the carbon particles, adding zeolite particles thereto, and further adding water and an inorganic material. Adding a binder to form a slurry, applying the obtained slurry to a substrate, drying, and further firing to burn off the carbon particles and to carry the zeolite particles and the noble metal particles on the substrate in a dry state. Can be produced by a slightly more complicated method.

【0004】また本出願人は、特願平8−261547
号(平成8年10月20日)明細書において白金族金属
の粒子と、金属酸化物粉体担体と、バインダーとからな
る混合物の被覆を多孔質セラミック基体に付けてなる排
ガス浄化触媒も提案した。この触媒は白金族金属粒子
(微粉体)、金属酸化物粉末、バインダー及び水でスラ
リーとなし、これを多孔質基体(例えばハニカム状)の
表面に被着し、焼成することにより製造できる。
[0004] The applicant of the present invention has filed Japanese Patent Application No. 8-26147.
No. (Oct. 20, 1996) also proposed an exhaust gas purifying catalyst in which a coating of a mixture comprising platinum group metal particles, a metal oxide powder carrier, and a binder was applied to a porous ceramic substrate. . This catalyst can be produced by forming a slurry with platinum group metal particles (fine powder), metal oxide powder, binder and water, applying the slurry to the surface of a porous substrate (for example, honeycomb), and firing.

【0005】[0005]

【発明が解決しようとする課題】本発明者等は、排ガス
浄化触媒の活性成分たる貴金属等の成分の有効利用、触
媒のさらなる活性の向上、ならびに触媒製造方法の簡易
化等を目的として、鋭意研究、検討を重ねた結果、多種
の元素から選択されるいくつかの特定の元素の水溶性化
合物の水溶液と金属酸化物及び/または複合酸化物から
なる担体粉末とを緊密均一に混合し、乾燥し、担体にそ
の重量基準で0.1〜10重量%の該特定元素(金属換
算)を担持せしめ(必要ならば上記混合及び乾燥を繰り
返して該特定元素の所要担持量を達成する)、次いでそ
の乾燥混合物を水素ガス含有還元性気流中で昇温におい
て還元処理しそれに引き続き窒素ガス気流中で昇温にお
いて処理するという比較的簡単な方法により、担体の粒
子中及び/または上に該特定元素が均一に分散して付着
している触媒が得られることを見出した。さらにこのよ
うにして得られる触媒は350〜500℃の排ガス温度
において高効率にNOxを低減することも判明した。な
おこの触媒において該特定元素は担体に粒状では付着し
ておらず(顕微鏡観察)、原子状もしくは原子の集合体
(クラスター)の形で担体に均一に分散した状態で付着
ないし結合しているものと信じられ、またそのような該
特定元素の存在状態及び分散状態がNOxの高効率低減
に寄与しているものと考えられる。
DISCLOSURE OF THE INVENTION The inventors of the present invention have eagerly aimed at effectively utilizing components such as precious metals as active components of an exhaust gas purifying catalyst, further improving the activity of a catalyst, and simplifying a method for producing a catalyst. As a result of repeated studies and studies, an aqueous solution of a water-soluble compound of several specific elements selected from various elements and a carrier powder composed of a metal oxide and / or a composite oxide are intimately and uniformly mixed and dried. Then, the carrier is loaded with 0.1 to 10% by weight of the specific element (in terms of metal) based on the weight thereof (if necessary, the above mixing and drying are repeated to achieve the required loading of the specific element). In a relatively simple manner, the dried mixture is reduced in a reducing gas stream containing hydrogen gas at an elevated temperature and then treated in a nitrogen gas stream at an elevated temperature, in a relatively simple manner in the particles of the carrier and / or Catalyst in which the specific elements are attached uniformly dispersed was found that obtained. Further, it has been found that the catalyst obtained in this way can reduce NOx with high efficiency at an exhaust gas temperature of 350 to 500 ° C. In this catalyst, the specific element is not attached to the carrier in the form of particles (microscopic observation), but is attached or bound in a state of being uniformly dispersed in the carrier in the form of atoms or clusters of atoms. It is believed that the existence state and the dispersion state of the specific element contribute to the high efficiency reduction of NOx.

【0006】従って、本発明は、金属酸化物及び/また
は複合酸化物からなる担体粒子上及び/または中に触媒
活性量の特定の選択された金属元素を均一に分散した状
態で担持してなる排ガス浄化触媒、ならびにその製法を
提供することを目的としている。
Accordingly, the present invention provides a method in which a catalytically active amount of a specific selected metal element is supported on and / or in carrier particles comprising a metal oxide and / or a composite oxide in a state of being uniformly dispersed. An object of the present invention is to provide an exhaust gas purifying catalyst and a method for producing the same.

【0007】さらに本発明は上記の排ガス浄化触媒を、
エンジン排気系に実装しうるように、ペレットまたは多
管透孔ハニカムに成形した触媒装置、あるいは耐火性ハ
ニカム基体の表面に被覆した触媒装置を提供することも
目的としている。
The present invention further provides the exhaust gas purifying catalyst described above,
It is another object of the present invention to provide a catalyst device formed into a pellet or a multi-tube through-hole honeycomb or a catalyst device coated on the surface of a refractory honeycomb substrate so that it can be mounted on an engine exhaust system.

【0008】[0008]

【課題を解決するための手段】かくして、本発明は、イ
リジウム、白金、ロジウム、パラジウム、銀、コバル
ト、銅、ニッケル、鉄、マグネシウム及びランタニド系
元素からなる群より選択される少なくとも1種の元素
を、金属酸化物及び/または複合酸化物からなる担体粒
子中及び/または上にそれらの担体粒子の重量に基き
0.01〜10重量%の量で均一に分散して付着してな
る排ガス浄化触媒を提供する。
Thus, the present invention provides at least one element selected from the group consisting of iridium, platinum, rhodium, palladium, silver, cobalt, copper, nickel, iron, magnesium and lanthanide-based elements. Exhaust gas purification by uniformly dispersing and adhering in a carrier particle composed of a metal oxide and / or a composite oxide in an amount of 0.01 to 10% by weight based on the weight of the carrier particle Provide a catalyst.

【0009】さらに、本発明は、イリジウム、白金、ロ
ジウム、パラジウム、銀、コバルト、銅、ニッケル、
鉄、マグネシウム及びランタニド系元素からなる群より
選択される少なくとも1種の元素の水溶性化合物の水溶
液を作り、粉末状の金属酸化物及び/または複合酸化物
からなる担体に対してその担体の重量に基き該少なくと
も1種の元素0.01〜10重量%(金属換算)を供給
する量の上記水溶液を適用して均質に混合し、その均質
混合物を乾燥して遊離水を実質的に除去し、その乾燥混
合物を水素ガス含有気流中で昇温下に処理し、引き続き
不活性ガス気流中で昇温下に処理することにより、担体
粒子中及び/または上に該少なくとも1種の元素が均一
に分散して付着した排ガス浄化触媒を製造する方法を提
供する。
Further, the present invention relates to iridium, platinum, rhodium, palladium, silver, cobalt, copper, nickel,
An aqueous solution of a water-soluble compound of at least one element selected from the group consisting of iron, magnesium and lanthanide elements is prepared, and the weight of the carrier relative to the carrier composed of powdered metal oxide and / or composite oxide Applying the aqueous solution in an amount to supply 0.01 to 10% by weight (in terms of metal) of the at least one element based on the above, homogeneously mixing and drying the homogeneous mixture to substantially remove free water. The dried mixture is treated at an elevated temperature in a stream containing hydrogen gas and subsequently at an elevated temperature in a stream of inert gas so that the at least one element is homogeneously and / or in the carrier particles. The present invention provides a method for producing an exhaust gas purifying catalyst dispersed and adhered to a catalyst.

【0010】該特定の元素は、好ましくは、イリジウ
ム、白金、銀、コバルト、銅、鉄、サマリウム、プラセ
オジウム、ユーロピウム、ディスプロシウム及びエルビ
ウムからなる群、より好ましくはイリジウム、白金、コ
バルト、銅、サマリウム及びプラセオジウムからなる群
より選択される。
The specific element is preferably a group consisting of iridium, platinum, silver, cobalt, copper, iron, samarium, praseodymium, europium, dysprosium and erbium, more preferably iridium, platinum, cobalt, copper, It is selected from the group consisting of samarium and praseodymium.

【0011】本発明方法で使用する水溶性イリジウム化
合物の例は、典型的には塩化イリジウム(三塩化イリジ
ウム、四塩化イリジウム及びそれらの水和物ならびに錯
体)及び硫酸イリジウム等である。上記の水溶性イリジ
ウム化合物以外の本発明方法で使用の触媒活性金属元素
の水溶性化合物すなわち、白金、ロジウム、パラジウム
及びランタニド系元素の水溶性化合物は良く知られてお
り、一般的にはそれらの硝酸塩、例えば硝酸ロジウム、
硝酸コバルトならびにそれらの水和物を使用することが
できる。
Examples of the water-soluble iridium compound used in the method of the present invention are typically iridium chloride (iridium trichloride, iridium tetrachloride and hydrates and complexes thereof) and iridium sulfate. Water-soluble compounds of the catalytically active metal element used in the method of the present invention other than the above-mentioned water-soluble iridium compounds, that is, water-soluble compounds of platinum, rhodium, palladium and lanthanide-based elements are well known, and generally, Nitrates, such as rhodium nitrate,
Cobalt nitrate as well as hydrates thereof can be used.

【0012】本発明で担体として使用する金属酸化物及
び複合酸化物の例は、シリカ(SiO2)、アルミナ
(Al23)、ジルコニア(ZrO2)、ゼオライト類
(ZSM−5)、酸化鉄(Fe23)、酸化コバルト、
酸化ガリウム、酸化マンガン、Feを含む複合酸化物
(例えばフェライト等)等である。好ましい担体として
酸化クロム、酸化コバルト、酸化マンガン、Feを含む
複合酸化物等を挙げることができる。これらは単独でま
たは2以上のものの混合物として使用することができ
る。これら金属酸化物及び/または複合酸化物からなる
担体は粉末の状態で使用され、その粒径は要件ではない
が、数100ミクロン以下、例えば0.1〜50ミクロ
ンの範囲であるのが好適である。
Examples of metal oxides and composite oxides used as carriers in the present invention include silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), zeolites (ZSM-5), Iron (Fe 2 O 3 ), cobalt oxide,
Examples include gallium oxide, manganese oxide, and a composite oxide containing Fe (eg, ferrite). Preferred carriers include chromium oxide, cobalt oxide, manganese oxide, and composite oxides containing Fe. These can be used alone or as a mixture of two or more. The carrier composed of these metal oxides and / or composite oxides is used in the form of a powder, and the particle size is not critical, but is preferably several hundred microns or less, for example, in the range of 0.1 to 50 microns. is there.

【0013】金属酸化物及び/または複合酸化物からな
る担体への特定の選択された金属元素の水溶性化合物の
適用は、その水溶性化合物の水溶液を粉末状の金属酸化
物及び/または複合酸化物に加え、比較的高粘度のスラ
リーとなし、ミキサーを用いてこのスラリーを均質にな
るまで混合ないし混練し、この物質混合物をエバポレー
ターを用い(さらに必要ならば乾燥炉を用い)、例えば
100〜110℃の温度で数時間〜数十時間、例えば1
〜10時間(必要に応じて減圧下)乾燥し遊離水を実質
的に除去する。もしも1回の操作で所要量の特定元素分
が担体に付着されない場合は、上記の混合(混練)及び
乾燥操作を繰り返すことにより所要濃度の特定元素分の
適用を達成できる。
The application of a water-soluble compound of a specific selected metal element to a support composed of a metal oxide and / or a composite oxide can be performed by converting an aqueous solution of the water-soluble compound into a powdery metal oxide and / or a composite oxide. A slurry having a relatively high viscosity is added to the mixture, and the slurry is mixed or kneaded using a mixer until the slurry becomes homogeneous, and the material mixture is mixed using an evaporator (and further using a drying furnace if necessary). Several hours to several tens of hours at a temperature of 110 ° C., for example, 1
Dry for 10 to 10 hours (under reduced pressure if necessary) to substantially remove free water. If the required amount of the specific element is not adhered to the carrier in one operation, the application of the required concentration of the specific element can be achieved by repeating the above mixing (kneading) and drying operations.

【0014】次にその特定元素化合物と担体との乾燥均
質混合物を、水素ガス含有気体、例えば数%程度以下、
好ましくは2,000ppm〜10,000ppmのH
2を含むN2ガス中で、約600〜900℃、好ましくは
約700℃の温度で約5〜10時間、例えば8時間にわ
たり処理し、引き続き不活性気体、典型的にはN2ガス
中で約600〜900℃の温度で約5〜10時間にわた
り処理する。この一連の処理により特定元素化合物はい
くつかの酸化状態を経て金属状にまで(例えば3価→2
価→1価→0価)還元され、また担体での原子状もしく
は原子の集合体(クラスター)としての分散ないしは分
布状態が安定化される。
Next, the dried homogeneous mixture of the specific element compound and the carrier is mixed with a hydrogen gas-containing gas, for example, about several percent or less.
Preferably 2,000 ppm to 10,000 ppm of H
In N 2 gas containing 2, about 600 to 900 ° C., preferably at a temperature of about 5 to 10 hours to about 700 ° C., for example treated for 8 hours, subsequently the inert gas, typically in an N 2 gas The treatment is performed at a temperature of about 600 to 900 ° C. for about 5 to 10 hours. Through this series of treatments, the specific element compound goes through several oxidation states to become metallic (for example, trivalent → 2
(Valent → monovalent → zero)), and the dispersion or distribution as an atomic state or an aggregate of atoms (cluster) on the carrier is stabilized.

【0015】得られる触媒における特定の選択元素の量
(金属換算)が0.01重量%未満では満足なNOx低
減効果が得られず、また10重量%を越えてもNOx低
減効果がさらには向上しない。
If the amount of the specific selected element (in terms of metal) in the obtained catalyst is less than 0.01% by weight, a satisfactory NOx reduction effect cannot be obtained, and if it exceeds 10% by weight, the NOx reduction effect is further improved. do not do.

【0016】上記の処理で得られる触媒は、一般的には
凝集塊の形であるので、軽く粉砕、すなわち解砕して粉
末の状態の触媒とされる。
Since the catalyst obtained by the above treatment is generally in the form of agglomerates, it is lightly pulverized, that is, pulverized to obtain a powdery catalyst.

【0017】この触媒をX線回折により試験すると特定
元素の存在が確認される。また通常の光学顕微鏡で観察
した場合に、担体粒子が認められるものの、導入された
特定元素の金属粒子は見えず、従って、おそらく原子状
もしくは原子の集合体(クラスター)として存在してい
るものと考えられる。
Examination of the catalyst by X-ray diffraction confirms the presence of a particular element. In addition, when observed with a normal optical microscope, although the carrier particles are observed, the introduced metal particles of the specific element are not visible, and therefore, it is presumed that they exist as atoms or clusters of atoms. Conceivable.

【0018】上記の粉末状の本発明の触媒は、エンジン
の排気系内に実装するために、適当な成形体、例えばペ
レット、多管透孔ハニカムに成形した触媒装置とする。
あるいはさらに実用的には、粉末状触媒の水性スラリー
を耐火性セラミック製または金属(例:ステンレス鋼)
製ハニカムの表面に被覆した触媒装置とする。上記の成
形や被覆には、それぞれに適当な粘度の水性スラリーを
用いるのが一般的であり、その際にバインダー(例え
ば、アルミナゾル、シリカゾル)を用いて、成形体や被
覆の物理的強度を向上させるのが好ましい。上記の成形
や被覆のための技法は当業者が良く知るところであるの
で、さらに詳しく述べる必要はないであろう。
The above-mentioned powdery catalyst of the present invention is a catalyst device formed into an appropriate molded body, for example, a pellet or a multi-tube through-hole honeycomb, for mounting in an exhaust system of an engine.
Alternatively, or more practically, an aqueous slurry of the powdered catalyst is made of a refractory ceramic or metal (eg, stainless steel).
It is a catalyst device coated on the surface of the honeycomb made of. Generally, aqueous slurries having appropriate viscosities are used for the above-mentioned molding and coating, and at this time, a binder (eg, alumina sol, silica sol) is used to improve the physical strength of the molded article or coating. It is preferred that The techniques for forming and coating are well known to those skilled in the art and need not be described in further detail.

【0019】本発明の触媒は、約350〜500℃の広
い温度範囲でほぼ30%〜46%の高水準のNOx低減
率を示し、上記温度範囲外でも相当なNOx低減率を示
し実用上有意義な排ガス浄化性質を有し、しかも長期間
にわたり高い触媒活性を維持する。
The catalyst of the present invention exhibits a high NOx reduction rate of about 30% to 46% in a wide temperature range of about 350 to 500 ° C., and shows a considerable NOx reduction rate outside the above temperature range, which is practically significant. It has excellent exhaust gas purification properties and maintains high catalytic activity for a long period of time.

【0020】本発明を以下に実施例(及び比較例)によ
りさらに具体的に説明する。
The present invention will be described more specifically with reference to the following examples (and comparative examples).

【0021】実施例1 Ir/SiO2触媒の調製 平均粒径38ミクロンのSiO2粉末100重量部に対
して三塩化イリジウム(IrCl3=298.58)の
10重量%水溶液50重量部を加え、ミキサーで均質に
なるまで良く混合した。この均質混合物をエバポレータ
ーで100〜105℃で10時間乾燥させた。乾燥混合
物を、H2を5000ppm含むN2ガス中で8時間70
0℃で処理し、次いでN2ガス中で8時間700℃で処
理した。この加熱処理物を放冷し、次いで原料SiO2
担体の平均粒径にまで粉砕した。分析の結果この粉末触
媒には2.7重量%のイリジウム(金属換算)が含まれ
ていた。
Example 1 Preparation of Ir / SiO 2 catalyst 50 parts by weight of a 10% by weight aqueous solution of iridium trichloride (IrCl 3 = 298.58) was added to 100 parts by weight of SiO 2 powder having an average particle size of 38 μm. Mix well with a mixer until homogeneous. This homogeneous mixture was dried at 100 to 105 ° C. for 10 hours using an evaporator. The dried mixture was placed in N 2 gas containing 5000 ppm of H 2 for 70 hours for 8 hours.
Treated at 0 ° C. and then at 700 ° C. for 8 hours in N 2 gas. The heat-treated product is allowed to cool, and then the raw material SiO 2
It was ground to the average particle size of the carrier. As a result of analysis, the powder catalyst contained 2.7% by weight of iridium (in terms of metal).

【0022】実装用触媒装置の作成 上記の粉砕触媒70重量部、バインダー(アルミナゾ
ル)20重量部及び水100重量部の混合物を高速ミキ
サーで撹拌し、均質なスラリーを得た。コージェライト
からなる円筒状ハニカム基体(直径30mm;容積21
cc;セル数400cpi)を上記のスラリーに浸漬
し、引き上げ、余剰付着スラリーを空気ジェットで吹き
払い、乾燥し(100℃×5時間)、かくしてハニカム
上に層厚50〜100ミクロンの触媒被覆を形成せし
め、実装用触媒装置を得た。
Preparation of Catalyst Device for Mounting A mixture of 70 parts by weight of the above crushed catalyst, 20 parts by weight of a binder (alumina sol) and 100 parts by weight of water was stirred with a high-speed mixer to obtain a homogeneous slurry. Cylindrical honeycomb substrate made of cordierite (diameter 30 mm; volume 21
cc; cell number 400 cpi) is immersed in the above slurry, pulled up, and the excess adhered slurry is blown off with an air jet, dried (100 ° C. × 5 hours), and thus a catalyst coating having a layer thickness of 50 to 100 μm is formed on the honeycomb. It was formed to obtain a mounting catalyst device.

【0023】実施例2 Ir/Al23触媒の調製 実施例1のSiO2粉末の代りにAl23粉末を用い
て、実施例1の操作に準拠して、触媒粉末及び実装用触
媒装置を得た。
Example 2 Preparation of Ir / Al 2 O 3 catalyst According to the procedure of Example 1, a catalyst powder and a mounting catalyst were prepared by using Al 2 O 3 powder instead of the SiO 2 powder of Example 1. The device was obtained.

【0024】実施例3 Ir/Fe23触媒の調製 実施例1のSiO2粉末の代りにFe23粉末を用い
て、実施例1の操作に準拠して、触媒粉末及び実装用触
媒装置を得た。
Example 3 Preparation of Ir / Fe 2 O 3 Catalyst The catalyst powder and the mounting catalyst were prepared in the same manner as in Example 1 except that Fe 2 O 3 powder was used instead of the SiO 2 powder of Example 1. The device was obtained.

【0025】実施例4 Ir/ZrO2触媒の調製 実施例1のSiO2粉末の代りにZrO2粉末を用いて、
実施例1の操作に準拠して、触媒粉末及び実装用触媒装
置を得た。
Example 4 Preparation of Ir / ZrO 2 catalyst Using ZrO 2 powder instead of SiO 2 powder of Example 1,
According to the operation of Example 1, a catalyst powder and a mounting catalyst device were obtained.

【0026】実施例5 Ir/ZSM−5触媒の調製 実施例1のSiO2粉末の代りにゼオライトZSM−5
粉末を用いて、実施例1の操作に準拠して、触媒粉末及
び実装用触媒装置を得た。
Example 5 Preparation of Ir / ZSM-5 catalyst Instead of the SiO 2 powder of Example 1, zeolite ZSM-5 was used.
Using the powder, a catalyst powder and a mounting catalyst device were obtained according to the procedure of Example 1.

【0027】実施例6 Ir/Cr23触媒の調製 実施例1のSiO2粉末の代りにCr23粉末を用い
て、実施例1の操作に準拠して、触媒粉末及び実装用触
媒装置を得た。
Example 6 Preparation of Ir / Cr 2 O 3 catalyst In the same manner as in Example 1 except that Cr 2 O 3 powder was used instead of the SiO 2 powder, the catalyst powder and the mounting catalyst were mounted. The device was obtained.

【0028】実施例7 Ir/Mn23触媒の調製 実施例1のSiO2粉末の代りにMn23粉末を用い
て、実施例1の操作に準拠して、触媒粉末及び実装用触
媒装置を得た。
Example 7 Preparation of Ir / Mn 2 O 3 catalyst A catalyst powder and a mounting catalyst were prepared in the same manner as in Example 1 except that Mn 2 O 3 powder was used instead of the SiO 2 powder of Example 1. The device was obtained.

【0029】実施例8 Ir/Co34触媒の調製 実施例1のSiO2粉末の代りにCo34粉末を用い
て、実施例1の操作に準拠して、触媒粉末及び実装用触
媒装置を得た。
Example 8 Preparation of Ir / Co 3 O 4 catalyst A catalyst powder and a mounting catalyst were prepared in the same manner as in Example 1 except that Co 3 O 4 powder was used instead of the SiO 2 powder of Example 1. The device was obtained.

【0030】実施例9 Ir/CoFe24触媒の調製 実施例1のSiO2粉末の代りにCoFe24粉末を用
いて、実施例1の操作に準拠して、触媒粉末及び実装用
触媒装置を得た。
Example 9 Preparation of Ir / CoFe 2 O 4 catalyst In the same manner as in Example 1, except that CoFe 2 O 4 powder was used instead of the SiO 2 powder, a catalyst powder and a mounting catalyst were prepared. The device was obtained.

【0031】実施例10 Ir/ZnFe24触媒の調製 実施例1のSiO2粉末の代りにZnFe24粉末を用
いて、実施例1の操作に準拠して、触媒粉末及び実装用
触媒装置を得た。
Example 10 Preparation of Ir / ZnFe 2 O 4 Catalyst The procedure of Example 1 was repeated, except that the ZnFe 2 O 4 powder was used in place of the SiO 2 powder of Example 1. The device was obtained.

【0032】実施例11 Ir−Co/Fe23触媒の調製 平均粒径45ミクロンのFe23粉末100重量部に対
して三塩化イリジウム(IrCl3=298.58)の
8重量%水溶液、硝酸コバルト(Co(NO32・6H
2O=291.03)の5重量%水溶液をそれぞれ50
重量部加え、ミキサーで均質になるまで良く混合した。
この均質混合物をエバポレーターで100〜105℃で
10時間乾燥させた。乾燥混合物を、H2を5000p
pm含むN2ガス中で8時間700℃で処理し、次いで
2ガス中で8時間700℃で処理した。この加熱処理
物を放冷し、次いで原料Fe23担体の平均粒径にまで
粉砕した。分析の結果、この粉末触媒には2.2重量%
のイリジウム(金属換算)及び1.3重量%のコバルト
(金属換算)が含まれていた。
Example 11 Preparation of Ir—Co / Fe 2 O 3 catalyst An 8% by weight aqueous solution of iridium trichloride (IrCl 3 = 298.58) based on 100 parts by weight of Fe 2 O 3 powder having an average particle size of 45 μm , cobalt nitrate (Co (NO 3) 2 · 6H
2 O = 291.03) in 5% by weight aqueous solution
Add parts by weight and mix well with a mixer until homogeneous.
This homogeneous mixture was dried at 100 to 105 ° C. for 10 hours using an evaporator. The dry mixture, 5000P and H 2
Treatment was performed at 700 ° C. for 8 hours in N 2 gas containing pm, and then at 700 ° C. for 8 hours in N 2 gas. The heat-treated product was allowed to cool, and then ground to the average particle size of the raw material Fe 2 O 3 carrier. As a result of analysis, it was found that 2.2% by weight
Of iridium (in terms of metal) and 1.3% by weight of cobalt (in terms of metal).

【0033】実施例12 Ir−Sm/CoFe24触媒の調製 平均粒径35ミクロンのCoFe24粉末100重量部
に対して三塩化イリジウム(IrCl3=298.5
8)の7重量%水溶液、硝酸サマリウム(Sm(N
33・nH2O)の3重量%水溶液をそれぞれ50重
量部加え、ミキサーで均質になるまで良く混合した。こ
の均質混合物をエバポレーターで100〜105℃で1
0時間乾燥させた。乾燥混合物を、H2を5000pp
m含むN2ガス中で8時間700℃で処理し、次いでN2
ガス中で8時間700℃で処理した。この加熱処理物を
放冷し、次いで原料CoFe24担体の平均粒径にまで
粉砕した。分析の結果、この粉末触媒には1.8重量%
のイリジウム(金属換算)及び0.7重量%のサマリウ
ム(金属換算)が含まれていた。
Example 12 Preparation of Ir-Sm / CoFe 2 O 4 catalyst [0033] Iridium trichloride (IrCl 3 = 298.5) was used for 100 parts by weight of CoFe 2 O 4 powder having an average particle diameter of 35 microns.
8), a samarium nitrate (Sm (N
50 parts by weight of a 3% by weight aqueous solution of O 3 ) 3 .nH 2 O) was added and mixed well by a mixer until homogeneous. This homogenous mixture is heated at 100-105 ° C in an evaporator for 1 hour.
Dried for 0 hours. The dry mixture, 5000Pp of H 2
in an N 2 gas was treated with 8 hours 700 ° C. containing m, then N 2
Treated at 700 ° C. for 8 hours in gas. The heat-treated product was allowed to cool, and then pulverized to the average particle size of the raw material CoFe 2 O 4 support. As a result of analysis, 1.8% by weight of this powder catalyst was added.
Of iridium (in terms of metal) and 0.7% by weight of samarium (in terms of metal).

【0034】実施例13 Pt−Sm/CoFe24触媒の調製 平均粒径35ミクロンのCoFe24粉末100重量部
に対してジニトロジアミノ白金の3重量%水溶液、硝酸
サマリウム(Sm(NO33・nH2O)の10重量%
水溶液をそれぞれ50重量部加え、ミキサーで均質にな
るまで良く混合した。この均質混合物をエバポレーター
で100〜105℃で10時間乾燥させた。乾燥混合物
を、H2を5000ppm含むN2ガス中で8時間700
℃で処理し、次いでN2ガス中で8時間700℃で処理
した。この加熱処理物を放冷し、次いで原料CoFe2
4担体の平均粒径にまで粉砕した。分析の結果、この
粉末触媒には1.0重量%の白金(金属換算)及び2.
7重量%のサマリウム(金属換算)が含まれていた。
Example 13 Preparation of Pt-Sm / CoFe 2 O 4 Catalyst A 3% by weight aqueous solution of dinitrodiaminoplatinum was added to 100 parts by weight of CoFe 2 O 4 powder having an average particle diameter of 35 μm, and samarium nitrate (Sm (NO 3 10% by weight of 3 · nH 2 O)
Each 50 parts by weight of the aqueous solution was added and mixed well with a mixer until homogeneous. This homogeneous mixture was dried at 100 to 105 ° C. for 10 hours using an evaporator. The dry mixture was placed in N 2 gas containing 5000 ppm of H 2 for 700 hours for 8 hours.
It was treated with ° C., then treated with 8 hours 700 ° C. in N 2 gas. The heat-treated product is allowed to cool, and then the raw material CoFe 2
It was ground to an average particle size of the O 4 carrier. As a result of the analysis, 1.0% by weight of platinum (in terms of metal) and 2.
It contained 7% by weight of samarium (in terms of metal).

【0035】実施例14 Pt−Pr/CoFe24触媒の調製 平均粒径35ミクロンのCoFe24粉末100重量部
に対してジニトロジアミノ白金の3重量%水溶液、硝酸
プラセオジウム(Pr(NO33・nH2O)の10重
量%水溶液をそれぞれ50重量部加え、ミキサーで均質
になるまで良く混合した。この均質混合物をエバポレー
ターで100〜105℃で10時間乾燥させた。乾燥混
合物を、H2を5000ppm含むN2ガス中で8時間7
00℃で処理し、次いでN2ガス中で8時間700℃で
処理した。この加熱処理物を放冷し、次いで原料CoF
24担体の平均粒径にまで粉砕した。分析の結果、こ
の粉末触媒には1.1重量%の白金(金属換算)及び
2.5重量%のプラセオジウム(金属換算)が含まれて
いた。
Example 14 Preparation of Pt-Pr / CoFe 2 O 4 Catalyst A 100% by weight of CoFe 2 O 4 powder having an average particle diameter of 35 microns was treated with a 3% by weight aqueous solution of dinitrodiaminoplatinum, praseodymium nitrate (Pr (NO 3 50 parts by weight of a 10% by weight aqueous solution of 3 · nH 2 O) were added and mixed well by a mixer until homogeneous. This homogeneous mixture was dried at 100 to 105 ° C. for 10 hours using an evaporator. The dry mixture was placed in N 2 gas containing 5000 ppm of H 2 for 8 hours 7
Treated at 00 ° C., then at 700 ° C. for 8 hours in N 2 gas. The heat-treated product is allowed to cool, and then the raw material CoF
It was ground to an average particle size of e 2 O 4 support. As a result of the analysis, the powder catalyst contained 1.1% by weight of platinum (in terms of metal) and 2.5% by weight of praseodymium (in terms of metal).

【0036】実施例15 Cu−Sm/CoFe24触媒の調製 平均粒径35ミクロンのCoFe24粉末100重量部
に対して硝酸銅(Cu(NO32・nH2O)の7重量
%水溶液、硝酸サマリウム(Sm(NO33・nH
2O)の3重量%水溶液をそれぞれ50重量部加え、ミ
キサーで均質になるまで良く混合した。この均質混合物
をエバポレーターで100〜105℃で10時間乾燥さ
せた。乾燥混合物を、H2を5000ppm含むN2ガス
中で8時間700℃で処理し、次いでN2ガス中で8時
間700℃で処理した。この加熱処理物を放冷し、次い
で原料CoFe24担体の平均粒径にまで粉砕した。分
析の結果、この粉末触媒には2.1重量%の銅(金属換
算)及び0.8重量%のサマリウム(金属換算)が含ま
れていた。
Example 15 Preparation of Cu-Sm / CoFe 2 O 4 catalyst A mixture of copper nitrate (Cu (NO 3 ) 2 .nH 2 O) and 100 parts by weight of CoFe 2 O 4 powder having an average particle diameter of 35 μm was prepared. Wt% aqueous solution, samarium nitrate (Sm (NO 3 ) 3 .nH)
2 O) 3 wt% aqueous solution of each 50 parts by weight were added and mixed well until homogenous with a mixer. This homogeneous mixture was dried at 100 to 105 ° C. for 10 hours using an evaporator. The dry mixture was treated at 700 ° C. for 8 hours in N 2 gas containing 5000 ppm of H 2 and then at 700 ° C. for 8 hours in N 2 gas. The heat-treated product was allowed to cool, and then pulverized to the average particle size of the raw material CoFe 2 O 4 support. As a result of the analysis, the powder catalyst contained 2.1% by weight of copper (in terms of metal) and 0.8% by weight of samarium (in terms of metal).

【0037】比較例 この比較例は粉末Al23担体の粒子上にイリジウム金
属が粒子状(光学顕微鏡で可視)で存在する触媒に関す
る。
COMPARATIVE EXAMPLE This comparative example relates to a catalyst in which iridium metal is present in the form of particles (visible by an optical microscope) on particles of a powdery Al 2 O 3 carrier.

【0038】粒径が1.0μmのイリジウム粒子と、粒
径が1.0〜10μmアルミナ粉体とを、イリジウム粒
子が2.7重量%、アルミナ粉体が97.3重量%とな
る配合比で混合し、これにアルミナゾル(バインダー)
と水とを、重量比で混合物:アルミナゾル:水=10
0:20:100となるように加え、十分に撹拌してス
ラリーとし、これに実施例1のコージェライトからなる
多孔率が10%の多孔質ハニカム基体を浸漬し、引上
げ、基体に向けて高圧空気を噴射して余剰スラリーを吹
き落とし、基体を100〜150℃で2〜3時間にわた
って乾燥し、続けて500〜600℃で3〜5時間かけ
て空気雰囲気中で焼成した。得られた触媒の被覆層の厚
さは90μmであった。
A compounding ratio of iridium particles having a particle size of 1.0 μm and alumina powder having a particle size of 1.0 to 10 μm, wherein 2.7% by weight of iridium particles and 97.3% by weight of alumina powder. And mixed with alumina sol (binder)
And water in a weight ratio of mixture: alumina sol: water = 10
0: 20: 100, and sufficiently stirred to form a slurry. The porous honeycomb substrate made of cordierite of Example 1 having a porosity of 10% was immersed in the slurry, pulled up, and subjected to high pressure toward the substrate. Excess slurry was blown off by blowing air, and the substrate was dried at 100 to 150 ° C for 2 to 3 hours, and subsequently calcined at 500 to 600 ° C for 3 to 5 hours in an air atmosphere. The thickness of the coating layer of the obtained catalyst was 90 μm.

【0039】NOx低減テスト 上記の各実施例及び比較例で得たハニカム基体担持実装
タイプ触媒装置について、下記組成の模擬ガスを用い下
記のガス流通条件下でNOx低減性能を測定した。 模擬ガス組成 NO 1,000ppm C36 1.360ppm O2 10% SO2 20ppm H2O(スチーム) 4%(容) 空間速度(SV)=50,000h-1 温度=300℃
NOx Reduction Test The NOx reduction performance of the catalytic converters mounted on the honeycomb substrate obtained in each of the above Examples and Comparative Examples was measured under the following gas flow conditions using a simulated gas having the following composition. Simulated gas composition NO 1,000 ppm C 3 H 6 1.360 ppm O 2 10% SO 2 20 ppm H 2 O (steam) 4% (volume) Space velocity (SV) = 50,000 h −1 Temperature = 300 ° C.

【0040】測定された平均NOx(実際には上記N
O)低減率は下記の通りであった。触媒 NOx低減率% 実施例1 28 実施例2 32 実施例3 40 実施例4 30 実施例5 34 実施例6 38 実施例7 39 実施例8 37 実施例9 45 実施例10 46 実施例11 42 実施例12 41 実施例13 32 実施例14 30 実施例15 33 比較例 24 この結果は図1にグラフで示されている。
The measured average NOx (actually, N
O) The reduction rate was as follows. Catalyst NOx reduction rate% Example 1 28 Example 2 32 Example 3 40 Example 4 30 Example 5 34 Example 6 38 Example 7 39 Example 8 37 Example 9 45 Example 10 46 Example 11 42 Example Example 12 41 Example 13 32 Example 14 30 Example 15 33 Comparative Example 24 The results are shown graphically in FIG.

【図面の簡単な説明】[Brief description of the drawings]

【図1】触媒のNOx低減率のグラフ。FIG. 1 is a graph of a NOx reduction rate of a catalyst.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 23/745 B01J 35/04 301H 23/75 B01D 53/36 102B 29/40 102H 35/04 301 102A 102C B01J 23/74 301A 311A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 23/745 B01J 35/04 301H 23/75 B01D 53/36 102B 29/40 102H 35/04 301 102A 102C B01J 23/74 301A 311A

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 イリジウム、白金、ロジウム、パラジウ
ム、銀、コバルト、銅、ニッケル、鉄、マグネシウム及
びランタニド系元素からなる群より選択される少なくと
も1種の元素を、金属酸化物及び/または複合酸化物か
らなる担体粒子中及び/または上にそれらの担体粒子の
重量に基き0.01〜10重量%の量で均一に分散して
付着してなる排ガス浄化触媒。
At least one element selected from the group consisting of iridium, platinum, rhodium, palladium, silver, cobalt, copper, nickel, iron, magnesium and a lanthanide element is metal oxide and / or composite oxide. An exhaust gas purifying catalyst, which is uniformly dispersed and adhered to and / or on carrier particles made of a material in an amount of 0.01 to 10% by weight based on the weight of the carrier particles.
【請求項2】 金属酸化物がシリカ、アルミナ、ジルコ
ニア、ゼオライト、酸化鉄、酸化コバルト、酸化クロム
及び酸化マンガンから選択される少なくとも1種である
請求項1の排ガス浄化触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the metal oxide is at least one selected from silica, alumina, zirconia, zeolite, iron oxide, cobalt oxide, chromium oxide and manganese oxide.
【請求項3】 複合酸化物が鉄を含む複合酸化物である
請求項1の排ガス浄化触媒。
3. The exhaust gas purifying catalyst according to claim 1, wherein the composite oxide is a composite oxide containing iron.
【請求項4】 請求項1の排ガス浄化触媒をペレット状
または多管透孔ハニカム状に成形してなる排ガス浄化触
媒装置。
4. An exhaust gas purifying catalyst device formed by molding the exhaust gas purifying catalyst of claim 1 into a pellet shape or a multi-tube perforated honeycomb shape.
【請求項5】 請求項1の排ガス浄化触媒を耐火性セラ
ミック製または金属製ハニカムの表面に被覆してなる排
ガス浄化触媒装置。
5. An exhaust gas purifying catalyst device comprising the exhaust gas purifying catalyst according to claim 1 coated on the surface of a refractory ceramic or metallic honeycomb.
【請求項6】 イリジウム、白金、ロジウム、パラジウ
ム、銀、コバルト、銅、ニッケル、鉄、マグネシウム及
びランタニド系元素からなる群より選択される少なくと
も1種の元素の水溶性化合物の水溶液を作り、粉末状の
金属酸化物及び/または複合酸化物からなる担体に対し
てその担体の重量に基き該少なくとも1種の元素0.0
1〜10重量%(金属換算)を供給する量の上記水溶液
を適用して均質に混合し、その均質混合物を乾燥して遊
離水を実質的に除去し、その乾燥混合物を水素ガス含有
気流中で昇温下に処理し、引き続き不活性ガス気流中で
昇温下に処理することにより、金属酸化物及び/または
複合酸化物からなる担体粒子中及び/または上に該少な
くとも1種の元素が均一に分散して付着した排ガス浄化
触媒を製造する方法。
6. An aqueous solution of a water-soluble compound of at least one element selected from the group consisting of iridium, platinum, rhodium, palladium, silver, cobalt, copper, nickel, iron, magnesium and a lanthanide element is prepared. At least one element based on the weight of the carrier of the metal oxide and / or complex oxide carrier
An amount of the above aqueous solution that supplies 1 to 10% by weight (in terms of metal) is applied and mixed homogeneously, and the homogeneous mixture is dried to substantially remove free water, and the dried mixture is placed in a stream containing hydrogen gas. And at a temperature in an inert gas stream, whereby the at least one element is contained in and / or on the carrier particles made of metal oxide and / or composite oxide. A method for producing an exhaust gas purifying catalyst which is uniformly dispersed and adhered.
JP10109235A 1997-08-20 1998-04-20 Exhaust gas cleaning catalyst and manufacture thereof Pending JPH11123330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10109235A JPH11123330A (en) 1997-08-20 1998-04-20 Exhaust gas cleaning catalyst and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22363397 1997-08-20
JP9-223633 1997-08-20
JP10109235A JPH11123330A (en) 1997-08-20 1998-04-20 Exhaust gas cleaning catalyst and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11123330A true JPH11123330A (en) 1999-05-11

Family

ID=26449019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10109235A Pending JPH11123330A (en) 1997-08-20 1998-04-20 Exhaust gas cleaning catalyst and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11123330A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020056498A (en) * 2000-12-29 2002-07-10 이계안 Oxidation catalyst for diesel engine
JP2008149289A (en) * 2006-12-20 2008-07-03 Hitachi Ltd Gas cleaning method, gas cleaning catalyst, and exhaust gas cleaning apparatus
JP2010172848A (en) * 2009-01-30 2010-08-12 Toyota Central R&D Labs Inc Catalyst for cleaning exhaust gas and method for manufacturing the same
US8501662B2 (en) 2007-03-20 2013-08-06 Denso Corporation Catalyst material
JP2014161747A (en) * 2013-02-21 2014-09-08 Mazda Motor Corp Exhaust gas purification catalyst and method for producing the same
CN112958093A (en) * 2021-02-05 2021-06-15 辽宁大学 Cobalt ferrite photocatalyst with oxygen-containing defect and preparation method and application thereof
CN113880106A (en) * 2020-07-03 2022-01-04 中国科学院大连化学物理研究所 Rapid synthesis method of small-grain hierarchical-pore ZSM-11 molecular sieve

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541889A (en) * 1978-09-20 1980-03-24 Matsushita Electric Ind Co Ltd Oxidation catalyst
JPS63185453A (en) * 1987-01-28 1988-08-01 Cataler Kogyo Kk Catalyst for purifying exhaust gas
JPH05253484A (en) * 1992-03-09 1993-10-05 Daihatsu Motor Co Ltd Catalyst for cleaning exhaust gas and depositing method therefor
JPH06238170A (en) * 1993-02-15 1994-08-30 Mazda Motor Corp Production of catalyst for purification of exhaust gas
JPH081006A (en) * 1994-06-21 1996-01-09 Mitsubishi Heavy Ind Ltd Catalyst for purification of exhaust gas and its production
JPH0838897A (en) * 1994-08-03 1996-02-13 Toyota Motor Corp Production of exhaust gas purifying catalyst
JPH0880424A (en) * 1994-09-13 1996-03-26 Tokyo Gas Co Ltd Purifying method of combustion waste gas and catalyst used for this method
JPH08294624A (en) * 1995-04-26 1996-11-12 Toyota Central Res & Dev Lab Inc Catalyst for purifying exhaust gas
JPH08323204A (en) * 1995-05-29 1996-12-10 Kyocera Corp Oxide catalyst material and method for removing nitrogen oxide
JPH0975733A (en) * 1995-09-14 1997-03-25 Kyocera Corp Oxide catalytic material for removal of nox and method for removing nox
JPH0994459A (en) * 1995-09-29 1997-04-08 Hino Motors Ltd Production of exhaust gas purification catalyst
JPH0999240A (en) * 1986-06-27 1997-04-15 Engelhard Corp Preparation of catalyst composition
JPH09103678A (en) * 1995-10-11 1997-04-22 Hino Motors Ltd Exhaust gas-purifying catalyst and its manufacture
JPH09103687A (en) * 1995-10-11 1997-04-22 Toyota Central Res & Dev Lab Inc Manufacture of catalyst
JPH09248427A (en) * 1996-03-14 1997-09-22 Tosoh Corp Removal of nitrogen oxide
JPH10156183A (en) * 1996-11-29 1998-06-16 Ict:Kk Catalyst for purification of exhaust gas and method for purifying exhaust gas
JPH10296086A (en) * 1997-04-30 1998-11-10 Sekiyu Sangyo Kasseika Center Exhaust gas-purifying catalyst
JPH1157484A (en) * 1997-08-08 1999-03-02 Nissan Motor Co Ltd Exhaust gas cleaning catalyst and its use

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541889A (en) * 1978-09-20 1980-03-24 Matsushita Electric Ind Co Ltd Oxidation catalyst
JPH0999240A (en) * 1986-06-27 1997-04-15 Engelhard Corp Preparation of catalyst composition
JPS63185453A (en) * 1987-01-28 1988-08-01 Cataler Kogyo Kk Catalyst for purifying exhaust gas
JPH05253484A (en) * 1992-03-09 1993-10-05 Daihatsu Motor Co Ltd Catalyst for cleaning exhaust gas and depositing method therefor
JPH06238170A (en) * 1993-02-15 1994-08-30 Mazda Motor Corp Production of catalyst for purification of exhaust gas
JPH081006A (en) * 1994-06-21 1996-01-09 Mitsubishi Heavy Ind Ltd Catalyst for purification of exhaust gas and its production
JPH0838897A (en) * 1994-08-03 1996-02-13 Toyota Motor Corp Production of exhaust gas purifying catalyst
JPH0880424A (en) * 1994-09-13 1996-03-26 Tokyo Gas Co Ltd Purifying method of combustion waste gas and catalyst used for this method
JPH08294624A (en) * 1995-04-26 1996-11-12 Toyota Central Res & Dev Lab Inc Catalyst for purifying exhaust gas
JPH08323204A (en) * 1995-05-29 1996-12-10 Kyocera Corp Oxide catalyst material and method for removing nitrogen oxide
JPH0975733A (en) * 1995-09-14 1997-03-25 Kyocera Corp Oxide catalytic material for removal of nox and method for removing nox
JPH0994459A (en) * 1995-09-29 1997-04-08 Hino Motors Ltd Production of exhaust gas purification catalyst
JPH09103678A (en) * 1995-10-11 1997-04-22 Hino Motors Ltd Exhaust gas-purifying catalyst and its manufacture
JPH09103687A (en) * 1995-10-11 1997-04-22 Toyota Central Res & Dev Lab Inc Manufacture of catalyst
JPH09248427A (en) * 1996-03-14 1997-09-22 Tosoh Corp Removal of nitrogen oxide
JPH10156183A (en) * 1996-11-29 1998-06-16 Ict:Kk Catalyst for purification of exhaust gas and method for purifying exhaust gas
JPH10296086A (en) * 1997-04-30 1998-11-10 Sekiyu Sangyo Kasseika Center Exhaust gas-purifying catalyst
JPH1157484A (en) * 1997-08-08 1999-03-02 Nissan Motor Co Ltd Exhaust gas cleaning catalyst and its use

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020056498A (en) * 2000-12-29 2002-07-10 이계안 Oxidation catalyst for diesel engine
JP2008149289A (en) * 2006-12-20 2008-07-03 Hitachi Ltd Gas cleaning method, gas cleaning catalyst, and exhaust gas cleaning apparatus
US8501662B2 (en) 2007-03-20 2013-08-06 Denso Corporation Catalyst material
JP2010172848A (en) * 2009-01-30 2010-08-12 Toyota Central R&D Labs Inc Catalyst for cleaning exhaust gas and method for manufacturing the same
JP2014161747A (en) * 2013-02-21 2014-09-08 Mazda Motor Corp Exhaust gas purification catalyst and method for producing the same
US9266093B2 (en) 2013-02-21 2016-02-23 Mazda Motor Corporation Exhaust gas purification catalyst and method for producing the same
CN113880106A (en) * 2020-07-03 2022-01-04 中国科学院大连化学物理研究所 Rapid synthesis method of small-grain hierarchical-pore ZSM-11 molecular sieve
CN112958093A (en) * 2021-02-05 2021-06-15 辽宁大学 Cobalt ferrite photocatalyst with oxygen-containing defect and preparation method and application thereof
CN112958093B (en) * 2021-02-05 2023-09-15 辽宁大学 Cobalt ferrite oxygen-containing defect photocatalyst, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP0272136B1 (en) Catalyst for purifying exhaust gas and method for its production
JP5761917B2 (en) Bifunctional catalysts for selective ammonia oxidation
CN102215960B (en) Chabazite zeolite catalysts having low silica to alumina ratios
JP4849699B2 (en) Method for improving the adhesion and covering integrity of washcoats and overcoats
WO2009142180A1 (en) Exhaust gas purifying catalyst and method for producing the same
JP5987855B2 (en) Exhaust gas purification catalyst
JPH11123330A (en) Exhaust gas cleaning catalyst and manufacture thereof
JP2007289921A (en) Exhaust-gas cleaning catalyst and its regeneration method
JP3786522B2 (en) Exhaust gas purification catalyst
JP3219480B2 (en) Exhaust gas treatment method and catalyst
JP3406001B2 (en) Exhaust gas purification catalyst
JP3441267B2 (en) Catalyst production method
JP2003290658A (en) Catalyst for cleaning exhaust gas and manufacture method therefor
JPH1076159A (en) Exhaust gas purification catalyst and its production
JPH0824843B2 (en) Heat resistant catalyst and method of using the same
JPH0244580B2 (en)
JPH10180113A (en) Catalyst for purifying exhaust gas and preparation thereof
JP2007050382A (en) Exhaust gas purifying catalyst
JP2002210369A (en) Catalyst for cleaning exhaust gas and its production method
JP3104717B2 (en) Production method of iron oxide catalyst for gas treatment
JP3309711B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH04180835A (en) Production of catalyst for purifying exhaust gas
JP7442935B2 (en) Catalyst manufacturing method
JPH0568892A (en) Production of waste gas cleaning catalyst
JPS6241066B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050315