JP3104717B2 - Production method of iron oxide catalyst for gas treatment - Google Patents
Production method of iron oxide catalyst for gas treatmentInfo
- Publication number
- JP3104717B2 JP3104717B2 JP03274839A JP27483991A JP3104717B2 JP 3104717 B2 JP3104717 B2 JP 3104717B2 JP 03274839 A JP03274839 A JP 03274839A JP 27483991 A JP27483991 A JP 27483991A JP 3104717 B2 JP3104717 B2 JP 3104717B2
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- particles
- iron oxide
- monolithic carrier
- supported
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、セラミック製又は金属
製モノリス担体に鉄酸化物粒子を多量且つ強固に担持さ
せることにより優れた触媒性能と大きな強度を有するガ
ス体処理用鉄酸化物系触媒を提供することを目的とす
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron oxide catalyst for treating a gaseous substance having excellent catalytic performance and large strength by supporting a large amount of iron oxide particles firmly on a ceramic or metal monolith carrier. The purpose is to provide.
【0002】[0002]
【従来の技術】周知の通り、燃焼炉、内燃機関等から排
出される排ガス中には窒素酸化物や硫黄酸化物等の有害
成分が多量に含まれており、大気汚染等の所謂公害問題
を引き起している。近時、環境問題が重視されるに伴い
規制は益々厳しくなっておりその処理対策が切望されて
いる。2. Description of the Related Art As is well known, exhaust gas discharged from a combustion furnace, an internal combustion engine, etc. contains a large amount of harmful components such as nitrogen oxides and sulfur oxides, and causes so-called pollution problems such as air pollution. Is evoking. In recent years, as environmental issues have become more important, regulations have become increasingly strict, and there is an urgent need for measures to deal with them.
【0003】排ガス中に存在する窒素酸化物や硫黄酸化
物等の有害成分を変成又は分解して除去する為の触媒と
して、マグネタイト粒子(FeOx・Fe2 O3 0<
x≦1)、含水酸化第二鉄粒子(α、β、γ−FeOO
H)、ヘマタイト粒子(α−Fe2 O3 )、マグヘマイ
ト粒子(γ−Fe2 O3 )等結晶構造の異なる各種の鉄
酸化物が有効であることが広く知られている。これら結
晶構造の異なる各種鉄酸物は用途によって触媒性能が異
なる為、用途に応じて鉄酸化物の種類を使い分けてい
る。また、使用に際しては、そのまま粉末状態で使用し
たり、バインダー等を添加して造粒物として使用した
り、または、シリカ、アルミナ、チタニア、マグネシ
ア、ケイソウ土等の担体物質に担持させて実用上使用し
やすい形状に成形して使用することが行われている。As a catalyst for denaturing or decomposing and removing harmful components such as nitrogen oxides and sulfur oxides present in exhaust gas, magnetite particles ( FeO x .Fe 2 O 30 <
x ≦ 1), hydrous ferric oxide particles (α, β, γ-FeOO)
It is widely known that various iron oxides having different crystal structures such as H), hematite particles (α-Fe 2 O 3 ), and maghemite particles (γ-Fe 2 O 3 ) are effective. Since these various iron oxides having different crystal structures have different catalytic performances depending on the application, the type of iron oxide is properly used depending on the application. In use, it can be used in powder form as it is, used as a granulated substance by adding a binder, or practically supported on a carrier material such as silica, alumina, titania, magnesia, diatomaceous earth, etc. 2. Description of the Related Art Molding into a shape that is easy to use has been performed.
【0004】鉄酸化物系触媒は一度使用すると450〜
850℃の高温で加熱して再生することにより繰り返し
て使用できるものであるが、前出粉末状、造粒物の形態
のものは、その再生過程において崩壊が著しく長期の使
用に耐えることができず強度上の問題点が指摘されてい
る。一方、シリカ、アルミナ、チタニア、マグネシア、
ケイソウ土等の担体物質に鉄酸化物を担持させて成形し
た触媒は、強度面では有利であるが、球状、円柱状、円
筒状等の成形品は、特に固定床反応器に充填した場合に
はダストによる閉塞が生じ排ガス中の有害成分の除去効
率が低下する原因となっていた。[0004] Once used, the iron oxide-based catalyst is 450 to
It can be used repeatedly by heating and regenerating at a high temperature of 850 ° C, but the powdery and agglomerated forms mentioned above can be remarkably disintegrated in the regeneration process and can withstand long-term use. However, problems with strength have been pointed out. On the other hand, silica, alumina, titania, magnesia,
Catalysts formed by supporting iron oxide on a carrier material such as diatomaceous earth are advantageous in terms of strength, but spherical, cylindrical, and cylindrical shaped articles are particularly useful when packed in a fixed-bed reactor. In this case, dust was clogged and the efficiency of removing harmful components in the exhaust gas was reduced.
【0005】そこで、ダストによる閉塞を防止する為
に、セラミック製又は金属製モノリス担体に鉄酸化物粒
子を担持させた触媒が提案され実用化されている。モノ
リス(Monolith)担体とは、ハニカム構造体に
代表される平行貫通した円型、角型、三角型、六角型、
正弦型などの孔が多数配列した構造体であり、孔の形状
や配置そして構造体の形状の相違等により種々のものが
ある。[0005] In order to prevent clogging with dust, a catalyst in which iron oxide particles are supported on a ceramic or metal monolith carrier has been proposed and put into practical use. The monolith (Monolith) carrier is a circular, square, triangular, hexagonal, hexagonal, parallel-penetrating structure represented by a honeycomb structure,
It is a structure in which a large number of holes, such as a sine shape, are arranged, and there are various structures depending on the shape and arrangement of the holes and the difference in the shape of the structure.
【0006】従来、担体に鉄酸化物を担持させる方法と
しては、鉄塩水溶液中に多孔質担体を浸漬して多孔質
担体中に鉄塩水溶液を含浸させた後加熱して前記鉄塩水
溶液を熱分解して鉄酸化物粒子を生成させる方法(特開
昭63−294939号公報)、あらかじめ、準備し
たハニカム構造体を鉄酸化物粒子とコロイダルシリカ等
の接着剤とを含むスラリー溶液に浸漬することにより接
着剤を介して鉄酸化物粒子を担持させる方法(特開昭6
3−42735号公報)、シート状担体を鉄酸化物粒
子とコロイダルシリカ等の接着剤とを含むスラリー溶液
に浸漬することによりあらかじめシート状担体に接着剤
を介して鉄酸化物粒子を担持させ、その後該シートを接
着剤を用いてハニカム構造体に成形する方法(特開昭6
3−232847号公報)等が知られている。Conventionally, as a method of supporting an iron oxide on a carrier, a porous carrier is immersed in an aqueous solution of an iron salt to impregnate the porous carrier with the aqueous solution of the iron salt, and then heated to remove the aqueous solution of the iron salt. A method of generating iron oxide particles by pyrolysis (Japanese Patent Application Laid-Open No. 63-294939), in which a prepared honeycomb structure is immersed in a slurry solution containing iron oxide particles and an adhesive such as colloidal silica. To support iron oxide particles via an adhesive (Japanese Patent Laid-Open No.
JP-A-3-42735), by immersing the sheet-shaped carrier in a slurry solution containing iron oxide particles and an adhesive such as colloidal silica, the iron oxide particles are supported on the sheet-shaped carrier in advance via an adhesive, Thereafter, a method of forming the sheet into a honeycomb structure using an adhesive (Japanese Unexamined Patent Publication No.
No. 3,232,847) is known.
【0007】上述した通り、モノリス担体に鉄酸化物粒
子を担持させた触媒は、ダストによる閉塞を防止するこ
とができる点で有利である為、近年、モノリス担体を用
い、より長期の使用に耐える触媒の研究開発がさかんで
ある。触媒が長期の使用に耐える為には、触媒性能の向
上と強度性の向上が必要であり、その為には鉄酸化物粒
子をモノリス担体に多量且つ強固に担持させることが強
く要求される。As described above, a catalyst in which iron oxide particles are supported on a monolithic carrier is advantageous in that clogging with dust can be prevented. Therefore, in recent years, a monolithic carrier has been used to withstand long-term use. Research and development of catalysts is active. In order for the catalyst to withstand long-term use, it is necessary to improve catalyst performance and strength, and for that purpose, it is strongly required that iron oxide particles be supported in a large amount and firmly on a monolithic carrier.
【0008】[0008]
【発明が解決しようとする課題】セラミック製又は金属
製モノリス担体に鉄酸化物粒子を多量且つ強固に担持さ
せた鉄酸化物系触媒は現在最も要求されるところである
が、これら諸特性を十分満たすものは未だ得られていな
い。An iron oxide catalyst in which a large amount of iron oxide particles are firmly supported on a ceramic or metal monolithic carrier is the most required at present, but it satisfies these characteristics sufficiently. Things have not yet been obtained.
【0009】即ち、前出記載の方法による場合には、
担持されている鉄酸化物粒子は、第一鉄塩水溶液を熱分
解して生成されたものである為に超微粒子であるので、
再生の為に高温加熱処理を繰り返すと次第に超微粒子相
互間で焼結が生起して大粒子となり、比表面積が小さく
なる為、触媒性能が劣化する。前出及び記載のいず
れの方法による場合も、鉄酸化物粒子を接着剤を介して
担体に担持させる為、多量の鉄酸化物を担持することが
困難であり、また、触媒性能に関与しない接着剤の存在
によって十分な触媒性能が得られない。That is, in the case of the method described above,
Since the supported iron oxide particles are ultrafine particles because they are generated by thermally decomposing an aqueous ferrous salt solution,
When the high-temperature heat treatment is repeated for regeneration, sintering gradually occurs between the ultrafine particles to become large particles, and the specific surface area becomes small, so that the catalyst performance deteriorates. In any of the above and described methods, since the iron oxide particles are supported on a carrier via an adhesive, it is difficult to support a large amount of iron oxide, and the adhesion is not involved in the catalytic performance. Sufficient catalytic performance cannot be obtained due to the presence of the agent.
【0010】そこで、本発明は、セラミック製又は金属
製モノリス担体に鉄酸化物粒子を多量且つ強固に担持さ
せた鉄酸化物系触媒を製造することを技術的課題とす
る。Accordingly, an object of the present invention is to produce an iron oxide catalyst in which a large amount of iron oxide particles are firmly supported on a ceramic or metal monolith carrier.
【0011】[0011]
【課題を解決するための手段】前記技術的課題は、次の
通りの本発明によって達成できる。即ち、本発明は、セ
ラミック製又は金属製モノリス担体を第一鉄塩水溶液中
に浸漬して前記モノリス担体に第一鉄塩水溶液を含浸さ
せ、次いで、該第一鉄塩水溶液が含浸されているモノリ
ス担体を水酸化アルカリ水溶液又は炭酸アルカリ水溶液
中に浸漬して酸素含有ガスを通気することにより当該モ
ノリス担体にマグネタイト粒子又は含水酸化第二鉄粒子
を析出担持させるか、又は、必要により、マグネタイト
粒子又は含水酸化第二鉄粒子を析出担持させたモノリス
担体を水洗、乾燥した後更に200〜700℃の温度範
囲で加熱処理することからなるガス体処理用鉄酸化物系
触媒の製造法である。The above technical objects can be achieved by the present invention as described below. That is, the present invention impregnates a monolithic carrier made of ceramic or metal in an aqueous ferrous salt solution to impregnate the monolithic carrier with an aqueous ferrous salt solution, and then impregnates the aqueous ferrous salt solution. The monolithic carrier is immersed in an aqueous alkali hydroxide solution or an aqueous alkali carbonate solution, and the oxygen-containing gas is aerated to deposit and support the magnetite particles or the ferric oxide-containing particles on the monolithic carrier, or, if necessary, the magnetite particles. Alternatively, the method is a method for producing an iron oxide-based catalyst for treating a gaseous substance, comprising washing a water, drying a monolithic carrier having precipitated and supported hydrous ferric oxide particles thereon, followed by heat treatment in a temperature range of 200 to 700 ° C.
【0012】次に、本発明実施にあたっての諸条件につ
いて述べる。本発明におけるセラミック製又は金属製モ
ノリス担体としてはコージェライト、アルミナ、ムライ
ト等のセラミックス材料を用いて成形したものや鉄板、
ステンレス鋼(Fe−Cr−Al系、Fe−Cr−Al
−La系)等の金属材料を用いて成形したものが使用で
きる。なお、鉄酸化物粒子を多量に担持させる為には、
モノリス担体を構成する材料が多数の細孔又は凹凸を有
していることが好ましい。Next, various conditions for implementing the present invention will be described. As a ceramic or metal monolith carrier in the present invention, cordierite, alumina, iron plate or molded using a ceramic material such as mullite,
Stainless steel (Fe-Cr-Al, Fe-Cr-Al
-La) can be used. In addition, in order to carry a large amount of iron oxide particles,
It is preferable that the material constituting the monolithic carrier has many pores or irregularities.
【0013】本発明における第一鉄塩水溶液としては、
硝酸第一鉄水溶液、硫酸第一鉄水溶液、塩化第一鉄水溶
液等を使用することができる。第一鉄塩水溶液の濃度
は、0.001〜2.0Mの範囲が好ましい。0.00
1M未満の場合には、多量のマグネタイト粒子又は含水
酸化第二鉄粒子を担体上に析出担持させることができな
い。2.0Mを越える場合には、析出担持されたマグネ
タイト粒子又は含水酸第二鉄粒子が凝集粒子となってし
まうため比表面積が小さくなり、触媒性能が劣る。The aqueous ferrous salt solution in the present invention includes:
An aqueous ferrous nitrate solution, an aqueous ferrous sulfate solution, an aqueous ferrous chloride solution, or the like can be used. The concentration of the aqueous ferrous salt solution is preferably in the range of 0.001 to 2.0M. 0.00
If it is less than 1M, a large amount of magnetite particles or hydrous ferric oxide particles cannot be deposited and supported on the carrier. If it exceeds 2.0 M, the magnetite particles or ferric hydrate particles deposited and supported become agglomerated particles, so that the specific surface area becomes small and the catalyst performance is inferior.
【0014】本発明におけるアルカリ水溶液としては、
水酸化ナトリウム溶液、水酸化カリウム溶液等の水酸化
アルカリ水溶液や炭酸ナトリウム水溶液、炭酸カリウム
水溶液、炭酸アンモニウム、炭酸水素ナリトウム、炭酸
水素カリウム等の炭酸アルカリ水溶液等を使用すること
ができる。The alkaline aqueous solution in the present invention includes:
An aqueous solution of an alkali hydroxide such as a sodium hydroxide solution or a potassium hydroxide solution, an aqueous solution of sodium carbonate, an aqueous solution of potassium carbonate, or an aqueous solution of an alkali carbonate such as ammonium carbonate, sodium hydrogen carbonate, or potassium hydrogen carbonate can be used.
【0015】本発明における酸化手段は、酸素含有ガス
(例えば空気)を液中に通気することにより行い、必要
により機械的操作等により攪拌を伴ってもよい。The oxidizing means in the present invention is carried out by passing an oxygen-containing gas (for example, air) through the liquid, and may be accompanied by stirring by a mechanical operation or the like, if necessary.
【0016】本発明における酸素含有ガスを通気する時
の液中の温度は100℃以下である。液中の温度によっ
てモノリス担体に析出担持される鉄酸化物の種類が異な
り、50℃未満の温度においては含水酸化第二鉄粒子
が、50〜100℃の温度範囲においてはマグネタイト
粒子が析出する。In the present invention, the temperature in the liquid when the oxygen-containing gas is passed is 100 ° C. or less. The type of iron oxide deposited and supported on the monolithic carrier varies depending on the temperature in the liquid. At a temperature lower than 50 ° C, hydrous ferric oxide particles precipitate, and at a temperature range of 50 to 100 ° C, magnetite particles precipitate.
【0017】本発明においては、マグネタイト粒子又は
含水酸化第二鉄粒子を析出担持させたモノリス担体を加
熱処理して鉄酸化物の結晶構造を変えることができる。
担体に析出担持されているマグネタイト粒子は、加熱温
度が200〜500℃の場合には、マグヘマイト(γ−
Fe2 O3 )となり、500℃以上の場合にはヘマタイ
ト(α−Fe2 O3 )となる。また、含水酸化第二鉄粒
子は200℃以上でヘマタイト(α−Fe2 O3 )とな
る。In the present invention, the crystal structure of the iron oxide can be changed by heat-treating the monolithic carrier on which magnetite particles or ferric oxide-containing particles are deposited and supported.
When the heating temperature is 200 to 500 ° C., the magnetite particles deposited and supported on the carrier are maghemite (γ-
Fe 2 O 3 ), and becomes hematite (α-Fe 2 O 3 ) at 500 ° C. or higher. Further, the ferric oxide particles become hematite (α-Fe 2 O 3 ) at 200 ° C. or higher.
【0018】[0018]
【作用】先ず、本発明において最も重要な点は、セラミ
ック製又は金属製モノリス担体を第一鉄塩水溶液中に浸
漬して前記モノリス担体に第一鉄塩水溶液を含浸させ、
次いで、該第一鉄塩水溶液が含浸されているモノリス担
体を水酸化アルカリ水溶液又は炭酸アルカリ水溶液中に
浸漬して酸素含有ガスを通気することにより当該モノリ
ス担体にマグネタイト粒子又は含水酸化第二鉄粒子を析
出担持させた場合には、鉄酸化物粒子を多量且つ強固に
担持させたガス体処理用鉄酸化物系触媒を得ることがで
きるという事実である。First, the most important point in the present invention is that a ceramic or metal monolith carrier is immersed in a ferrous salt aqueous solution to impregnate the monolith carrier with a ferrous salt aqueous solution.
Next, the monolithic carrier impregnated with the aqueous ferrous salt solution is immersed in an aqueous alkali hydroxide solution or an aqueous alkali carbonate solution, and an oxygen-containing gas is passed through the monolithic carrier, so that the monolithic carrier has magnetite particles or hydrous ferric oxide particles. This is the fact that, when precipitated and supported, it is possible to obtain an iron oxide-based catalyst for gas treatment in which a large amount of iron oxide particles are firmly supported.
【0019】本発明において、鉄酸化物粒子を多量且つ
強固に担持させることができる理由について、本発明者
は、鉄原料をイオンの形態でモノリス担体に含浸させて
いるので接着剤を使用する必要がなく、しかも、モノリ
ス担体の鋭角部や陰影部並びに複雑形状の微細部の表面
はもちろん、モノリス担体を構成する材料自体の細孔や
凹凸部にまでも容易に含浸させることができるため多量
の第一鉄塩を担持させることができ、また、モノリス担
体に担持された第一鉄イオンからマグネタイト粒子や含
水酸化第二鉄粒子が直接析出成長する為強固に担持さ
れ、殊に、細孔を利用して担持されたものはそのアンカ
ー効果により、より強固に担持されるものと考えてい
る。In the present invention, the reason why the iron oxide particles can be supported in a large amount and firmly is that the present inventors impregnate the monolithic carrier with the iron raw material in the form of ions, so that it is necessary to use an adhesive. And the monolithic carrier can easily impregnate not only the sharp corners and shades and the surface of the fine part having a complicated shape, but also the pores and irregularities of the material itself that constitutes the monolithic carrier. Ferrous salt can be supported, and magnetite particles and ferric oxide-containing particles are directly supported by ferrite ions supported on the monolithic carrier to directly precipitate and grow. It is considered that the material carried by utilizing is more firmly carried by the anchor effect.
【0020】本発明においては、マグネタイト粒子や含
水酸化第二鉄粒子が担持されているモノリス担体を加熱
処理することにより、結晶構造の異なる鉄酸化物粒子を
得ることができる。In the present invention, iron oxide particles having different crystal structures can be obtained by heat-treating a monolithic carrier on which magnetite particles or ferric hydroxide particles are supported.
【0021】[0021]
【実施例】次に、実施例並びに比較例により、本発明を
説明する。尚、以下の実施例並びに比較例における鉄酸
化物の担体への密着性は、下記の方法で求めた値で示し
た。鉄酸化物を担持させたモノリス担体をメスシリンダ
ー中に固定し、これに、10000回の上下衝撃振動を
与えた。この後、モノリス担体をメスシリンダーから取
り出し、残存している酸化鉄の定量分析を行なった。上
下衝撃振動後に残存している鉄酸化物の重量(Bg)を
最初に担持されていた鉄酸化物の重量(Ag)で除した
値を百分率で表した。この値が大きい程、密着性が優れ
ている。後出使用例1〜14における触媒性能は、講談
社サイエンティフィック発行「触媒実験ハンドブック」
の第44頁に記載の評価方法に従って測定した値で示し
た。即ち、モノリス担体をカラム中に充填して流動式吸
着容量評価装置にセットし、次に、試験ガスを一定流量
で一定時間通気した後、カラムの出口の有害成分濃度を
ガスクロマトグラフィー法により測定した値で示した。Next, the present invention will be described with reference to examples and comparative examples. In the following Examples and Comparative Examples, the adhesion of the iron oxide to the carrier was shown by the value obtained by the following method. The monolith carrier supporting iron oxide was fixed in a graduated cylinder, and subjected to 10,000 vertical vibrations. Thereafter, the monolith carrier was taken out of the measuring cylinder, and the remaining iron oxide was quantitatively analyzed. The value obtained by dividing the weight (Bg) of the iron oxide remaining after the vertical impact vibration by the weight (Ag) of the iron oxide initially supported was expressed in percentage. The larger the value, the better the adhesion. The catalyst performance in later-mentioned use examples 1 to 14 is published in Kodansha Scientific, "Catalyst Experiment Handbook"
The values measured in accordance with the evaluation method described on page 44 are shown. That is, a monolithic carrier is filled in a column and set in a flow-type adsorption capacity evaluation device. Then, after a test gas is passed at a constant flow rate for a predetermined time, the concentration of harmful components at the outlet of the column is measured by a gas chromatography method. The values are shown below.
【0022】<鉄酸化物系触媒の製造> 実施例1〜7 比較例1〜4 実施例1 コージェライト材で作製された円筒状(直径23mm
φ、筒高50mm、400セル/inch2 )のモノリ
ス担体(日本碍子(株)製)(以下、担体Aとする。)
をアセトン中に浸漬して脱脂した。脱脂したモノリス担
体を1.0MのFeSO4 水溶液に室温で30分間浸漬
した後空気中に取り出し、余分のFeSO4 水溶液を除
去した。次いで、温度40℃において1−NのNa2 C
O3 溶液150mlに浸漬した後、該Na2 CO3 溶液
中に毎分1 lの割合で空気を1時間通気して、黄褐色
のゲータイト粒子(α−FeOOH)を析出担持させ
た。得られたゲータイト粒子が担持されているモノリス
担体は、十分水洗した後80℃で乾燥した。このモノリ
ス担体に担持されているゲータイトの量は、モノリス担
体に対して2.8重量%であった。また、ゲータイト粒
子の担体への密着性は99.9%であった。<Production of Iron Oxide Catalyst> Examples 1 to 7 Comparative Examples 1 to 4 Example 1 A cylindrical shape (diameter 23 mm) made of cordierite material
Monolith carrier (manufactured by Nippon Insulators Co., Ltd.) (φ, cylinder height 50 mm, 400 cells / inch 2 ) (hereinafter, referred to as carrier A)
Was degreased by dipping in acetone. The degreased monolithic carrier was immersed in a 1.0 M FeSO 4 aqueous solution at room temperature for 30 minutes and then taken out into the air to remove the excess FeSO 4 aqueous solution. Then, at a temperature of 40 ° C., 1-N Na 2 C
After immersion in 150 ml of an O 3 solution, air was passed through the Na 2 CO 3 solution at a rate of 1 liter per minute for 1 hour to deposit and support yellow-brown goethite particles (α-FeOOH). The monolithic carrier on which the obtained goethite particles were supported was sufficiently washed with water and then dried at 80 ° C. The amount of goethite supported on the monolithic carrier was 2.8% by weight based on the monolithic carrier. The adhesion of the goethite particles to the carrier was 99.9%.
【0023】実施例2 シリカ繊維、アルミノシリケート繊維、ジルコニア繊維
の混合繊維で作製された円筒状(直径23mmφ、筒高
50mm)のモノリス担体(ニチアス(株)製:商品名
ハニクル)(以下、担体Bとする。)をアセトン中に浸
漬して脱脂した。脱脂したモノリス担体を1.2MのF
eSO4 水溶液に室温下30分間浸漬した以外は、実施
例1と同様にしてモノリス担体にゲータイト粒子を析出
担持させた。モノリス担体に担持されているゲータイト
の量はモノリス担体に対して4.4重量%であった。ま
た、ゲータイト粒子の担体への密着性は99.8%であ
った。Example 2 A cylindrical monolith carrier (diameter: 23 mm, cylinder height: 50 mm) made of a mixed fiber of silica fiber, aluminosilicate fiber and zirconia fiber (manufactured by Nichias Co., Ltd .: trade name: Honeycle) B) was immersed in acetone to degrease it. The defatted monolithic carrier was replaced with 1.2M F
Goethite particles were deposited and supported on a monolithic carrier in the same manner as in Example 1 except that the monolithic carrier was immersed in an eSO 4 aqueous solution at room temperature for 30 minutes. The amount of goethite supported on the monolith support was 4.4% by weight based on the monolith support. The adhesion of the goethite particles to the carrier was 99.8%.
【0024】実施例3 FeSO4 水溶液の濃度を1.5Mとした以外は、実施
例1と同様にしてゲータイト粒子が担持されているモノ
リス担体を得た。これを空気中600℃にて2時間加熱
してヘマタイト粒子が担持されているモノリス担体を得
た。モノリス担体に担持されているヘマタイト粒子の量
はモノリス担体に対して3.7wt%であった。また、
ヘマタイト粒子の担体への密着性は99.6%であっ
た。Example 3 A monolithic carrier carrying goethite particles was obtained in the same manner as in Example 1 except that the concentration of the aqueous FeSO 4 solution was 1.5 M. This was heated in air at 600 ° C. for 2 hours to obtain a monolithic carrier carrying hematite particles. The amount of hematite particles supported on the monolithic carrier was 3.7% by weight based on the monolithic carrier. Also,
The adhesion of the hematite particles to the carrier was 99.6%.
【0025】実施例4 担体Bを用い、FeSO4 水溶液の濃度を0.2Mとし
た以外は、実施例3と同様にしてヘマタイト粒子を担持
したモノリス担体を得た。モノリス担体に担持されてい
るヘマタイト粒子の量はモノリス担体に対して0.6重
量%であった。また、ヘマタイト粒子の担体への密着性
は99.8%であった。Example 4 A monolithic carrier carrying hematite particles was obtained in the same manner as in Example 3 except that the carrier B was used and the concentration of the aqueous FeSO 4 solution was 0.2 M. The amount of hematite particles supported on the monolithic carrier was 0.6% by weight based on the monolithic carrier. The adhesion of the hematite particles to the carrier was 99.8%.
【0026】実施例5 FeSO4 水溶液の濃度を0.8M、アルカリ溶液での
反応温度を90℃とした以外は、実施例1と同様にして
マグネタイト粒子を担持したモノリス担体を得た。モノ
リス担体に担持されているマグネタイト粒子の量はモノ
リス担体に対して2.3wt%であった。また、マグネ
タイト粒子の担体への密着性は99.4%であった。Example 5 A monolithic carrier carrying magnetite particles was obtained in the same manner as in Example 1, except that the concentration of the aqueous FeSO 4 solution was 0.8 M and the reaction temperature in the alkaline solution was 90 ° C. The amount of magnetite particles supported on the monolithic carrier was 2.3% by weight based on the monolithic carrier. The adhesion of the magnetite particles to the carrier was 99.4%.
【0027】実施例6 担体Bを用い、FeSO4 水溶液の濃度を0.1Mとし
た以外は、実施例5と同様にしてマグネタイト粒子を担
持したモノリス担体を得た。モノリス担体に担持されて
いるマグネタイト粒子の量はモノリス担体に対して0.
3wt%であった。また、マグネタイト粒子の担体への
密着性は99.6%であった。Example 6 A monolithic carrier carrying magnetite particles was obtained in the same manner as in Example 5 except that the carrier B was used and the concentration of the aqueous FeSO 4 solution was 0.1 M. The amount of the magnetite particles supported on the monolithic carrier was 0.1 to the monolithic carrier.
3 wt%. The adhesion of the magnetite particles to the carrier was 99.6%.
【0028】実施例7 ステンレス鋼(Fe 75wt%−Cr 20wt%−
Al 5wt%−La)で作製された円筒状(直径25
mmφ、筒高50mm)のハニカム担体(以下、担体C
とする。)を1.2MのFeSO4 水溶液に室温下で1
0分浸漬した後空気中に取り出し、余分のFeSO4 水
溶液を除去した。次いで、1.0MのNa2 CO3 溶液
に浸漬し、40℃の温度で3時間空気を通気して黄褐色
のゲータイト粒子を析出担持させた後、水洗、乾燥して
ゲータイト粒子が担持されているハニカム触媒を得た。
このハニカム担体に担持されているゲータイトの量はモ
ノリス担体に対して1.2重量%であった。また、ゲー
タイト粒子の担体への密着性は99.0%であった。Example 7 Stainless steel (75 wt% Fe-20 wt% Cr-
Al (5 wt% -La) and a cylindrical shape (diameter 25)
mmφ, 50 mm cylinder height (hereinafter referred to as “carrier C”)
And ) In a 1.2 M aqueous FeSO 4 solution at room temperature.
After being immersed for 0 minutes, it was taken out into the air and excess FeSO 4 aqueous solution was removed. Next, it is immersed in a 1.0 M Na 2 CO 3 solution, and air is passed through at a temperature of 40 ° C. for 3 hours to deposit and support yellow-brown goethite particles, and then washed and dried to carry the goethite particles. A honeycomb catalyst was obtained.
The amount of goethite supported on the honeycomb carrier was 1.2% by weight based on the monolith carrier. The adhesion of the goethite particles to the carrier was 99.0%.
【0029】比較例1 3.50MのNa2 CO3 水溶液1 lに1.0MのF
eSO4 水溶液3 lを添加、混合し、温度40℃にお
いてFeCO3 を得た。これに10 l/minの空気
を3時間通気して酸化反応を行ない、黄褐色沈澱粒子を
生成させた。生成した粒子を、常温により濾別、水洗、
乾燥してゲータイト粒子を得た。得られたゲータイト粒
子に水を加えてホモミキサーで攪拌して1重量%のスラ
リー液を得た。このスラリーにNaOHを加えpHを1
1に調整し、温度を60℃としたスラリー液中に担体A
を浸漬した。pHを5として常温まで冷却した後水洗、
乾燥してゲータイト粒子を担持したモノリス担体を得
た。モノリス担体に担持されているゲータイト粒子の量
は、0.5重量%であった。また、ゲータイト粒子の担
体への密着性は96.7%であった。COMPARATIVE EXAMPLE 1 1.0 M F was added to 1 liter of a 3.50 M Na 2 CO 3 aqueous solution.
3 l of an eSO 4 aqueous solution was added and mixed to obtain FeCO 3 at a temperature of 40 ° C. Oxidation reaction was performed by passing 10 l / min of air through the mixture for 3 hours to produce yellow-brown precipitate particles. The generated particles are separated by filtration at normal temperature, washed with water,
Drying gave goethite particles. Water was added to the obtained goethite particles and stirred with a homomixer to obtain a 1% by weight slurry liquid. NaOH was added to this slurry to adjust the pH to 1
1 and the carrier A in the slurry liquid at a temperature of 60 ° C.
Was immersed. After cooling to room temperature with pH 5, washing with water,
After drying, a monolithic carrier carrying goethite particles was obtained. The amount of goethite particles supported on the monolithic carrier was 0.5% by weight. The adhesion of the goethite particles to the carrier was 96.7%.
【0030】比較例2 Fe2+ 1.5mol/lを含む硫酸第一鉄水溶液20
lを、あらかじめ、反応器中に準備された3.45−
NのNaOH水溶液20 lに加え(Fe2+に対し1.
15当量に該当する。)pH12.8、Fe(OH)2
を含む水溶液の生成を行なった。上記Fe(OH)2 を
含む水溶液に温度90℃において毎分100 lの空気
を220分間通気してマグネタイト粒子を生成した。生
成粒子を常法により濾別、水洗、乾燥してマグネタイト
粒子粉末を得た。得られたマグネタイト粒子粉末を空気
中450℃で加熱してヘマタイト粒子を得た。このヘマ
タイト粒子に水を加えてホモミキサーで攪拌して1重量
%のヘマタイト粒子を含むスラリーを得た。比較例1と
同様にしてヘマタイト粒子を担持したモノリス担体を得
た。モノリス担体に担持されているヘマタイト粒子の量
は0.3重量%であった。また、ヘマタイト粒子の担体
への密着性は96.0%であった。Comparative Example 2 An aqueous solution of ferrous sulfate containing 1.5 mol / l of Fe 2+ 20
1 is obtained from 3.45- previously prepared in the reactor.
N 2 aqueous solution of NaOH (1: 1 with respect to Fe 2+ ).
This corresponds to 15 equivalents. ) PH 12.8, Fe (OH) 2
An aqueous solution containing was produced. 100 liters of air per minute was passed through the aqueous solution containing Fe (OH) 2 at a temperature of 90 ° C. for 220 minutes to produce magnetite particles. The resulting particles were separated by filtration, washed with water, and dried by a conventional method to obtain magnetite particle powder. The obtained magnetite particle powder was heated at 450 ° C. in the air to obtain hematite particles. Water was added to the hematite particles, and the mixture was stirred with a homomixer to obtain a slurry containing 1% by weight of hematite particles. A monolithic carrier carrying hematite particles was obtained in the same manner as in Comparative Example 1. The amount of hematite particles supported on the monolithic carrier was 0.3% by weight. Further, the adhesion of the hematite particles to the carrier was 96.0%.
【0031】比較例3 比較例2と同様にして得られたマグネタイト粒子粉末を
用いて1重量%のマグネタイト粒子を含むスラリーを得
た。最終pHを7にした以外は、比較例1と同様にして
マグネタイト粒子を担持したモノリス担体を得た。モノ
リス担体に担持されているマグネタイト粒子は0.3重
量%であった。また、マグネタイト粒子の担体への密着
性は95.8%であった。Comparative Example 3 Using the magnetite particle powder obtained in the same manner as in Comparative Example 2, a slurry containing 1% by weight of magnetite particles was obtained. Except that the final pH was 7, a monolithic carrier carrying magnetite particles was obtained in the same manner as in Comparative Example 1. The magnetite particles supported on the monolithic carrier were 0.3% by weight. The adhesion of the magnetite particles to the carrier was 95.8%.
【0032】比較例4 担体Cを用いた以外は、比較例1と同様にしてゲータイ
ト粒子を担持したハニカム担体を得た。ハニカム担体に
担持されているゲータイト粒子の量は0.2重量%であ
った。またゲータイト粒子の担体への密着性は95.1
%であった。Comparative Example 4 A honeycomb carrier supporting goethite particles was obtained in the same manner as in Comparative Example 1 except that the carrier C was used. The amount of goethite particles supported on the honeycomb carrier was 0.2% by weight. The adhesion of the goethite particles to the carrier is 95.1.
%Met.
【0033】<鉄酸化物系触媒の使用> 使用例1〜14; 使用例1 実施例1で得られたモノリス担体5個をカラム中に連結
して充填して試料カラムを作製し、流通式吸着容量評価
装置にセットした。次いで、濃度10ppmの硫化水素
含有の試験ガス(湿度10%)を0.5 l/分の流量
で試験カラム中に通気した。通気120分後のカラムの
出口の硫化水素含有濃度は、0.42ppmであった。<Use of Iron Oxide Catalyst> Use Examples 1 to 14; Use Example 1 Five monolith carriers obtained in Example 1 were connected in a column and packed to prepare a sample column. It was set in an adsorption capacity evaluation device. Next, a test gas containing 10 ppm of hydrogen sulfide (humidity: 10%) was passed through the test column at a flow rate of 0.5 l / min. The hydrogen sulfide-containing concentration at the outlet of the column 120 minutes after the aeration was 0.42 ppm.
【0034】使用例2〜5 触媒の種類を変化させた以外は使用例1と同様にテスト
を行なった。その結果を表1に示す。Use Examples 2 to 5 Tests were conducted in the same manner as in Use Example 1 except that the type of catalyst was changed. Table 1 shows the results.
【0035】使用例6 試験ガスを10ppmのトリメチルアミンに代えた以外
は、使用例1と同様にしてテストを行なった。カラムの
出口のトリメチルアミン含有濃度は、1.3ppmであ
った。Use Example 6 A test was conducted in the same manner as in Use Example 1 except that the test gas was changed to 10 ppm of trimethylamine. The concentration of trimethylamine at the outlet of the column was 1.3 ppm.
【0036】使用例7〜8 触媒の種類を変化させた以外は、使用例6と同様にして
テストを行なった。その結果を表1に示す。Use Examples 7 and 8 The test was carried out in the same manner as in Use Example 6 except that the type of the catalyst was changed. Table 1 shows the results.
【0037】使用例9 実施例3で得られたモノリス担体5個を連結させ、反応
管にセットした。これにH2 Sガス1000ppmを含
む試験ガスを500℃、3気圧にて1Nl/分の流速で
通気した。H2 S吸着破過、即ち、反応管の出口におけ
るH2 Sガス量が、最低値から徐々に増加して当初のH
2 Sガス量に対し50%の量になるまでの時間は203
時間であった。Use Example 9 Five monolith carriers obtained in Example 3 were connected and set in a reaction tube. To this, a test gas containing 1000 ppm of H 2 S gas was passed at 500 ° C. and 3 atm at a flow rate of 1 Nl / min. The H 2 S adsorption breakthrough, that is, the amount of H 2 S gas at the outlet of the reaction tube gradually increases from the minimum value and the initial H 2 S
The time required to reach 50% of the 2 S gas amount is 203
It was time.
【0038】使用例10〜11 モノリス担体の種類と連結個数を変えた以外は、使用例
9と同様にしてテストした。その結果を表1に示す。Use Examples 10 to 11 Tests were carried out in the same manner as in Use Example 9 except that the type of monolith carrier and the number of monolith carriers were changed. Table 1 shows the results.
【0039】使用例12 実施例5で得られたモノリス担体5個をカラム中に連結
して充填、設置し、800℃に加熱した。カラムの一方
から5000ppmの一酸化炭素を1 Nl/minで
通気した。通気後10分のカラム出口における一酸化炭
素の濃度は1.2ppmであった。Use Example 12 Five monolith carriers obtained in Example 5 were connected in a column, packed, placed, and heated to 800 ° C. 5000 ppm of carbon monoxide was passed from one end of the column at 1 Nl / min. The concentration of carbon monoxide at the column outlet at 10 minutes after aeration was 1.2 ppm.
【0040】使用例13〜14 触媒の種類を変えた以外は使用例12と同様にして試験
を行なった。その結果を表1に示す。Use Examples 13 and 14 A test was conducted in the same manner as in Use Example 12 except that the type of the catalyst was changed. Table 1 shows the results.
【0041】[0041]
【表1】 [Table 1]
【0042】[0042]
【発明の効果】本発明に係るガス体処理用鉄酸化物系触
媒の製造法によれば、前出実施例に示した通り、セラミ
ック製又は金属製モノリス担体に鉄酸化物粒子を多量且
つ強固に担持させることができるから、優れた触媒性能
と大きな強度を有するので、ガス体処理用鉄酸化物系触
媒として好適である。According to the method for producing an iron oxide-based catalyst for treating a gas body according to the present invention, as shown in the preceding embodiment, a large amount of iron oxide particles are firmly and firmly applied to a ceramic or metal monolith carrier. It has excellent catalytic performance and great strength, and is therefore suitable as an iron oxide-based catalyst for treating a gaseous substance.
フロントページの続き (56)参考文献 特開 昭52−143989(JP,A) 特開 昭64−58348(JP,A) 特公 昭47−46267(JP,B1) 特公 昭42−20479(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 Continuation of the front page (56) References JP-A-52-143989 (JP, A) JP-A-64-58348 (JP, A) JP-B-47-46267 (JP, B1) JP-B-42-20479 (JP, A) , B1) (58) Field surveyed (Int. Cl. 7 , DB name) B01J 21/00-37/36
Claims (2)
第一鉄塩水溶液中に浸漬して前記モノリス担体に第一鉄
塩水溶液を含浸させ、次いで、該第一鉄塩水溶液が含浸
されているモノリス担体を水酸化アルカリ水溶液又は炭
酸アルカリ水溶液中に浸漬して酸素含有ガスを通気する
ことにより当該モノリス担体にマグネタイト粒子又は含
水酸化第二鉄粒子を析出担持させることを特徴とするガ
ス体処理用鉄酸化物系触媒の製造法。1. A monolith carrier made of ceramic or metal is immersed in an aqueous ferrous salt solution to impregnate the monolithic carrier with an aqueous ferrous salt solution, and then impregnated with the aqueous ferrous salt solution. Gas treatment iron characterized by depositing and supporting magnetite particles or hydrous ferric oxide particles on the monolithic carrier by immersing the carrier in an aqueous alkali hydroxide solution or an aqueous alkali carbonate solution and passing an oxygen-containing gas through the monolithic carrier. A method for producing an oxide-based catalyst.
水酸化第二鉄粒子を析出担持させたモノリス担体を水
洗、乾燥した後200〜700℃の温度範囲で加熱処理
することを特徴とするガス体処理用鉄酸化物系触媒の製
造法。2. A gaseous body characterized in that the monolithic carrier on which the magnetite particles or the ferric hydroxide-containing particles according to claim 1 are deposited and supported is washed with water, dried, and then heat-treated at a temperature in the range of 200 to 700 ° C. Production method of iron oxide catalyst for treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03274839A JP3104717B2 (en) | 1991-09-25 | 1991-09-25 | Production method of iron oxide catalyst for gas treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03274839A JP3104717B2 (en) | 1991-09-25 | 1991-09-25 | Production method of iron oxide catalyst for gas treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0576761A JPH0576761A (en) | 1993-03-30 |
JP3104717B2 true JP3104717B2 (en) | 2000-10-30 |
Family
ID=17547308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03274839A Expired - Fee Related JP3104717B2 (en) | 1991-09-25 | 1991-09-25 | Production method of iron oxide catalyst for gas treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3104717B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101350598B1 (en) * | 2006-12-20 | 2014-01-16 | 주식회사 포스코 | Method for producing cobalt-ferritic desulfurization catalyst |
JP4918465B2 (en) * | 2007-11-22 | 2012-04-18 | 美濃窯業株式会社 | Decomposition and removal method of hydrogen sulfide gas |
JP2013022498A (en) * | 2011-07-20 | 2013-02-04 | Ube Industries Ltd | Detoxifying method of hydrogen sulfide |
-
1991
- 1991-09-25 JP JP03274839A patent/JP3104717B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0576761A (en) | 1993-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4904633A (en) | Catalyst for purifying exhaust gas and method for production thereof | |
US3362783A (en) | Treatment of exhaust gases | |
US4661329A (en) | Catalyst for oxidizing an offensively smelling substance and a method of removing an offensively smelling substance | |
JPH0534284B2 (en) | ||
JPS5881441A (en) | Catalyst for purifying exhaust gas and preparation thereof | |
CN108926911B (en) | Preparation method of denitration and demercuration integral filter material | |
JPS59142847A (en) | Catalyst for oxidizing hydrogen sulfide | |
EP1256382B1 (en) | Exhaust gas purification catalyst and exhaust gas purification material | |
US5759949A (en) | Supported cold-complex oxidation catalyst | |
JP2001524030A (en) | Gold-containing catalyst for exhaust gas purification | |
JP3104717B2 (en) | Production method of iron oxide catalyst for gas treatment | |
KR100745117B1 (en) | Catalyst for purifying exhaust gases and process for producing the same | |
JP2008279439A (en) | Catalyst for removing carbon monoxide and/or nitrogen oxide and its production method | |
JP3107108B2 (en) | Production method of iron oxide catalyst for gas treatment | |
JP3107109B2 (en) | Production method of iron oxide catalyst for gas treatment | |
JP3427856B2 (en) | Granular goethite fine particle powder, method for producing the same, and method for producing granular iron oxide fine particle powder using the fine particle powder | |
JPH0194945A (en) | Catalyst of carrying superfine gold particles fixed on metal oxide and manufacture therefor | |
JPH11123330A (en) | Exhaust gas cleaning catalyst and manufacture thereof | |
JPH0687976B2 (en) | Gold catalyst for removing nitrogen oxides and method for removing nitrogen oxides | |
JP3998218B2 (en) | Carbon deposition control desulfurization agent | |
CN116689018B (en) | Low-temperature denitration catalyst synthesized by taking waste FCC catalyst as raw material and preparation method thereof | |
JP4974004B2 (en) | Particulate matter purification catalyst and particulate matter purification method using the same | |
JPS6260937B2 (en) | ||
JP3257598B2 (en) | Method for producing nitrous oxide decomposition catalyst | |
CN115138373A (en) | Mn-Fe-Ce (Ho)/TiO 2 Low-temperature SCR denitration catalyst and preparation and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |