JP2008279439A - Catalyst for removing carbon monoxide and/or nitrogen oxide and its production method - Google Patents

Catalyst for removing carbon monoxide and/or nitrogen oxide and its production method Download PDF

Info

Publication number
JP2008279439A
JP2008279439A JP2008103001A JP2008103001A JP2008279439A JP 2008279439 A JP2008279439 A JP 2008279439A JP 2008103001 A JP2008103001 A JP 2008103001A JP 2008103001 A JP2008103001 A JP 2008103001A JP 2008279439 A JP2008279439 A JP 2008279439A
Authority
JP
Japan
Prior art keywords
catalyst
gold
iron
production method
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008103001A
Other languages
Japanese (ja)
Inventor
Kazuhiro Mae
一廣 前
Taisuke Maki
泰輔 牧
Shinji Kudo
真二 工藤
Toshio Norifusa
俊生 乗房
Masahiro Yamada
将宏 山田
Tamotsu Nonouchi
保 野々内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOTO NANO CHEMICAL KK
Kyoto University
Original Assignee
KYOTO NANO CHEMICAL KK
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOTO NANO CHEMICAL KK, Kyoto University filed Critical KYOTO NANO CHEMICAL KK
Priority to JP2008103001A priority Critical patent/JP2008279439A/en
Publication of JP2008279439A publication Critical patent/JP2008279439A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly durable catalyst which is high in removal activity of CO and/or NO<SB>x</SB>and low in deactivation of the catalyst, and its production method. <P>SOLUTION: The production method of the catalyst carrying gold nanoparticles on iron oxide includes (1) a step for mixing a trivalent iron salt and an inorganic alkaline component in water to obtain an aqueous mixture, (2) a step for adding a gold compound to the obtained aqueous mixture to make a precipitate deposit, and (3) a step for calcining the obtained precipitate, and the catalyst carrying the gold nanoparticles on the iron oxide and produced according to the production method is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金ナノ粒子が酸化鉄に担持された一酸化炭素及び/又は窒素酸化物除去用触媒、並びにその製造方法に関する。   The present invention relates to a carbon monoxide and / or nitrogen oxide removing catalyst in which gold nanoparticles are supported on iron oxide, and a method for producing the same.

自動車エンジンからの排ガスなどを浄化する排ガス浄化触媒として、アルミナなどの多孔質酸化物担体にPt、Rh、Pd等の貴金属を担持したものが広く知られている。   As an exhaust gas purification catalyst for purifying exhaust gas from an automobile engine, a catalyst in which a noble metal such as Pt, Rh or Pd is supported on a porous oxide carrier such as alumina is widely known.

近年では、Pt、Rh、Pd等の貴金属の代わりにAuを用いた触媒の研究も進められており、一例として、アルミナなどの担体にAu微粒子を担持した触媒は、可燃性ガス(CO等)の酸化活性に優れていることが知られている。しかし、Au微粒子は耐熱性が低いという問題があり、この問題を克服するべく、これまでにも低温で活性を示す触媒が種々提案されてきた。   In recent years, research on catalysts using Au instead of noble metals such as Pt, Rh, and Pd is also underway. As an example, a catalyst in which Au fine particles are supported on a carrier such as alumina is a combustible gas (CO, etc.). It is known that it has excellent oxidation activity. However, Au fine particles have a problem that heat resistance is low, and in order to overcome this problem, various catalysts having an activity at a low temperature have been proposed.

例えば、特許文献1には、硝酸第二鉄と塩化金酸(HAuCl)の水溶液を、炭酸ナトリウム水溶液に添加して得られる沈殿物を、焼成して得られるAu−Fe系触媒が、−30℃以下でも一酸化炭素を完全に燃焼できることが記載されている。 For example, Patent Document 1 discloses an Au—Fe 2 O 3 catalyst obtained by baking a precipitate obtained by adding an aqueous solution of ferric nitrate and chloroauric acid (HAuCl 4 ) to an aqueous sodium carbonate solution. However, it is described that carbon monoxide can be completely burned even at -30 ° C or lower.

特許文献2には、酸化鉄の水性懸濁液に塩化金酸の水溶液及び炭酸ナトリウムの水溶液を加えて得られる触媒が、酸化触媒、還元触媒、可燃性ガスセンサ素子等に用いられることが記載されている。   Patent Document 2 describes that a catalyst obtained by adding an aqueous solution of chloroauric acid and an aqueous solution of sodium carbonate to an aqueous suspension of iron oxide is used for an oxidation catalyst, a reduction catalyst, a combustible gas sensor element, or the like. ing.

特許文献3には、Feを含有する多孔性セラミック担体材料を、金化合物(例えば、テトラクロロ金酸−四水和物)の溶液に含浸するか、又は金化合物の懸濁液で被覆した後、か焼することにより得られる触媒が、50℃を下回る温度でCO酸化できることが記載されている。 In Patent Document 3, a porous ceramic carrier material containing Fe 2 O 3 is impregnated with a solution of a gold compound (eg, tetrachloroauric acid-tetrahydrate) or a suspension of a gold compound is used. It is described that the catalyst obtained by calcination after coating can be CO oxidized at temperatures below 50 ° C.

しかし、これらの触媒は比較的高い活性を有するが、空気中常温で放置した場合に活性の劣化が顕著であるため大いに改善の余地があった。   However, these catalysts have a relatively high activity, but there is much room for improvement because of the remarkable deterioration of the activity when left at room temperature in air.

この問題を解決するため、特許文献4では、金ナノ粒子を担持した酸化鉄からなる触媒にアルカリ多孔質体を共存させた複合体が、長期間触媒活性を維持できることを報告している。   In order to solve this problem, Patent Document 4 reports that a composite in which an alkali porous body is allowed to coexist with a catalyst made of iron oxide supporting gold nanoparticles can maintain catalytic activity for a long period of time.

近年、脚光を浴びている燃料電池においては、水素とCOを含む改質ガスからCOを高選択的に除去できる触媒が求められている。   In recent years, in fuel cells that have been in the limelight, a catalyst capable of highly selectively removing CO from a reformed gas containing hydrogen and CO has been demanded.

火力発電所等から排出されるNOxは、高温下(300℃以上)でアンモニアを還元剤として用いた触媒により除去されている。また、ガソリンエンジンから排出されるNOx除去は、高温下(500℃以上)、3元系触媒、即ち、排ガス中の炭化水素(HC)と一酸化炭素(CO)と窒素酸化物(NOx)の3物質を酸化・還元することによって同時に除去が行われている。   NOx discharged from a thermal power plant or the like is removed by a catalyst using ammonia as a reducing agent at a high temperature (300 ° C. or higher). Also, NOx removal from gasoline engines is performed at high temperatures (500 ° C. or higher), ternary catalysts, that is, hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) in exhaust gas. Removal is performed at the same time by oxidizing and reducing the three substances.

一方、ディーゼルエンジン等から排出されるNOxを低温(200℃以下)で除去できる有効な触媒は、現状では実用化の目処が立っていない。
特開昭60−238148号公報(例えば、実施例2、図3等) 特開昭63−252908号公報(例えば、請求項1) 特開平2−303539号公報(例えば、請求項1等) 特開2004−188243号公報(例えば、請求項1等)
On the other hand, an effective catalyst capable of removing NOx discharged from a diesel engine or the like at a low temperature (200 ° C. or less) has not yet been put to practical use.
Japanese Patent Laid-Open No. 60-238148 (for example, Example 2, FIG. 3) JP-A-63-252908 (for example, claim 1) JP-A-2-303539 (for example, claim 1) Japanese Patent Laying-Open No. 2004-188243 (for example, claim 1)

本発明の目的は、一酸化炭素(CO)及び/又は窒素酸化物(NOx)の除去活性が高く、かつ触媒活性の劣化が少ない高耐久性の触媒を提供すること、並びにその製造方法を提供することにある。   An object of the present invention is to provide a highly durable catalyst having high carbon monoxide (CO) and / or nitrogen oxide (NOx) removal activity and little deterioration in catalytic activity, and a method for producing the same. There is to do.

本発明は、上記の従来技術の課題に鑑みて鋭意研究を行った結果、金ナノ粒子が酸化鉄に担持された触媒(以下、「Au−Fe系触媒」とも記載する。)に着目し、その製造工程において酸化鉄の形成方法及びその上に金ナノ粒子を析出させる方法を工夫することによって、高いCO選択的酸化、NO還元等が可能であり、かつ触媒活性の劣化が少ない(耐久性に優れる)触媒が得られることを見出した。かかる知見に基づき、さらに研究を重ねた結果本発明を完成するに至った。 In the present invention, as a result of intensive studies in view of the above-described problems of the prior art, a catalyst in which gold nanoparticles are supported on iron oxide (hereinafter also referred to as “Au—Fe 2 O 3 -based catalyst”). Focusing on the method of forming iron oxide and the method of precipitating gold nanoparticles on the iron oxide in the manufacturing process, high CO selective oxidation, NO reduction, etc. are possible, and the catalytic activity is less deteriorated. It has been found that a catalyst (excellent in durability) can be obtained. As a result of further research based on this knowledge, the present invention has been completed.

即ち、本発明は、以下のAu−Fe系触媒及びその製造方法を提供する。 That is, the present invention provides the following Au-Fe 2 O 3 catalyst and a manufacturing method thereof.

項1. 金ナノ粒子が酸化鉄に担持された触媒の製造方法であって、(1)3価の鉄の塩及び無機アルカリ成分を水中で混合して水性混合物を得る工程、(2)得られた水性混合物に金化合物を加えて沈殿物を析出させる工程、及び(3)得られた沈殿物を焼成する工程、を含む製造方法。   Item 1. A method for producing a catalyst in which gold nanoparticles are supported on iron oxide, (1) a step of mixing a trivalent iron salt and an inorganic alkali component in water to obtain an aqueous mixture, (2) the obtained aqueous solution The manufacturing method including the process of adding a gold compound to a mixture, and depositing a deposit, and the process of (3) baking the obtained deposit.

項2. 工程(1)において、3価の鉄の塩を含む水溶液に無機アルカリ成分を加えてpHを5〜11に調整して混合する項1に記載の製造方法。   Item 2. Item 2. The production method according to Item 1, wherein in step (1), an inorganic alkali component is added to an aqueous solution containing a trivalent iron salt, and the pH is adjusted to 5 to 11 and mixed.

項3. 工程(3)において、焼成温度が100〜600℃である項1又は2に記載の製造方法。   Item 3. Item 3. The method according to Item 1 or 2, wherein in the step (3), the baking temperature is 100 to 600 ° C.

項4. 前記3価の鉄の塩が硝酸鉄、硫酸鉄又は塩化鉄であり、無機アルカリ成分がMgO、CaO、LiOH、NaOH、KOH、MgO、CaO、NaCO、KCO、NaHCO又はKHCOであり、金化合物が塩化金酸、塩化金、テトラクロロ金(III)アンモニウム、臭化金、シアン化金又は水酸化金である項1〜3のいずれかに記載の製造方法。 Item 4. The trivalent iron salt is iron nitrate, iron sulfate or iron chloride, and the inorganic alkali component is MgO, CaO, LiOH, NaOH, KOH, MgO, CaO, Na 2 CO 3 , K 2 CO 3 , NaHCO 3 or Item 4. The production method according to any one of Items 1 to 3, which is KHCO 3 and the gold compound is chloroauric acid, gold chloride, tetrachlorogold (III) ammonium, gold bromide, gold cyanide or gold hydroxide.

項5. 項1〜4のいずれかに記載される製造方法により製造された、金ナノ粒子が酸化鉄に担持された触媒。   Item 5. Item 5. A catalyst produced by the production method according to any one of Items 1 to 4, wherein gold nanoparticles are supported on iron oxide.

項6. 項5に記載される触媒を用いてCOを含有するガスからCOを除去する方法。   Item 6. A method for removing CO from a gas containing CO using the catalyst according to Item 5.

項7. 項5に記載される触媒を用いて窒素酸化物を含有するガスから窒素酸化物を除去する方法。   Item 7. A method for removing nitrogen oxides from a gas containing nitrogen oxides using the catalyst according to item 5.

項8. 項2に記載される触媒を含む改質ガス処理用触媒。   Item 8. A reformed gas treatment catalyst comprising the catalyst according to Item 2.

項9. 項5に記載される触媒を用いて改質ガスからCOを除去する方法。   Item 9. A method for removing CO from a reformed gas using the catalyst according to Item 5.

項10. 項5に記載される触媒を含む燃焼ガス処理用触媒。   Item 10. A combustion gas treatment catalyst comprising the catalyst according to Item 5.

項11. 項5に記載される触媒を用いて燃焼ガスからCO及びNOを除去する方法。   Item 11. A method for removing CO and NO from combustion gas using the catalyst according to Item 5.

項12. 項5に記載される触媒を基材に担持してなるフィルター。   Item 12. A filter comprising the base material carrying the catalyst according to Item 5.

本発明のAu−Fe系触媒は、従来のAu−Fe系触媒に比べて高いCO酸化活性を有し、特に室温付近の比較的低温でも高い活性を有している。 The Au—Fe 2 O 3 catalyst of the present invention has a higher CO oxidation activity than a conventional Au—Fe 2 O 3 catalyst, and particularly has a high activity even at a relatively low temperature around room temperature.

また、触媒活性の劣化が少ないという特徴も有している。特に、触媒を長期間継続して使用した場合、触媒を使用せず長期間空気中で放置した場合、及び両者を繰り返した場合のいずれでも触媒活性の劣化が少ない点(つまり高耐久性である点)は特筆すべきである。   In addition, there is a feature that the catalytic activity is hardly deteriorated. In particular, when the catalyst is used continuously for a long time, when it is left in the air for a long time without using the catalyst, or when both are repeated, the deterioration of the catalyst activity is small (that is, high durability) The point) should be noted.

また、水素及びCOを含む混合ガスから高選択的にCOを酸化除去することができるため、例えば、燃料電池用の改質ガスからのCO除去触媒として有効に用いられる。   Moreover, since CO can be oxidized and removed from the mixed gas containing hydrogen and CO with high selectivity, it is effectively used as a catalyst for removing CO from reformed gas for fuel cells, for example.

さらに、本発明のAu−Fe系触媒を用いてNO、CO、O、N等を含む燃焼ガスを処理することにより、NOをほぼ完全にNに還元し(NOは生成せず)、COをほぼ完全にCOに酸化できる。そのため、自動車の排ガス(特に、ディーゼルエンジンの排ガス)の浄化用触媒として有用である。 Further, by treating NO, CO, combustion gas containing O 2, N 2 or the like by using the Au-Fe 2 O 3 catalyst of the present invention to reduce NO almost completely in N 2 (N 2 O CO can be oxidized almost completely to CO 2 . Therefore, it is useful as a catalyst for purifying automobile exhaust gas (particularly diesel engine exhaust gas).

本発明の金ナノ粒子が酸化鉄に担持された触媒(Au−Fe系触媒)は、(1)3価の鉄の塩及び無機アルカリ成分を水中で混合して水性混合物を得る工程、(2)得られた水性混合物に金化合物を加えて沈殿物を析出させる工程、及び(3)得られた沈殿物を焼成する工程、を含む製造方法により製造される。 The catalyst (Au—Fe 2 O 3 -based catalyst) in which the gold nanoparticles of the present invention are supported on iron oxide includes (1) a step of obtaining an aqueous mixture by mixing a trivalent iron salt and an inorganic alkali component in water. And (2) a step of adding a gold compound to the obtained aqueous mixture to precipitate a precipitate, and (3) a step of firing the obtained precipitate.

工程(1):
工程(1)では、3価の鉄の塩及び無機アルカリ成分を水中で混合して水性混合物を得る。3価の鉄の塩としては、3価の鉄(Fe(III))の硝酸塩(硝酸鉄)、硫酸塩(硫酸鉄)、塩化物塩(塩化鉄)等が挙げられ、好ましくは硝酸鉄(Fe(NO・9HO)である。
Step (1):
In step (1), a trivalent iron salt and an inorganic alkali component are mixed in water to obtain an aqueous mixture. Examples of the trivalent iron salt include nitrate (iron nitrate), sulfate (iron sulfate), and chloride salt (iron chloride) of trivalent iron (Fe (III)), preferably iron nitrate (iron chloride). a Fe (NO 3) 3 · 9H 2 O).

無機アルカリ成分としては、アルカリ金属又はアルカリ土類金属の酸化物、水酸化物、炭酸塩等が挙げられる。具体的には、MgO、CaO、LiOH、NaOH、KOH、MgO、CaO、NaCO、KCO、NaHCO、KHCO等が挙げられ、好ましくはNaCO、KCO等のアルカリ金属の炭酸塩である。 Examples of the inorganic alkali component include alkali metal or alkaline earth metal oxides, hydroxides, carbonates, and the like. Specific examples include MgO, CaO, LiOH, NaOH, KOH, MgO, CaO, Na 2 CO 3 , K 2 CO 3 , NaHCO 3 , KHCO 3 and the like, preferably Na 2 CO 3 , K 2 CO 3. Alkali metal carbonates such as

3価の鉄の塩及び無機アルカリ成分を含む水性混合物の調製法は特に限定はないが、両者を混合した時のpHを5〜11の範囲に設定することが好ましい。より好ましくはpH7〜10、特に好ましくはpH8〜9である。この範囲にすると、担体として好適な酸化鉄の前駆体を形成することができるため好ましい。   The method for preparing the aqueous mixture containing the trivalent iron salt and the inorganic alkali component is not particularly limited, but the pH when the two are mixed is preferably set in the range of 5 to 11. More preferably, it is pH 7-10, Most preferably, it is pH 8-9. This range is preferable because an iron oxide precursor suitable as a carrier can be formed.

水性混合物の調製法は、3価の鉄の塩の水溶液及び無機アルカリ成分の水性混合物を混合する方法、3価の鉄の塩及び無機アルカリ成分を水に溶解する方法等いずれの方法も採用できる。水性混合物のpH調整の簡便さから、3価の鉄の塩(特に硝酸鉄)を含む水溶液に無機アルカリ成分(特にNaCO、KCO又はその水溶液)を加えて調製するのが好ましい。なお、水は、蒸留水、純水を用いることが好ましい。 As the method for preparing the aqueous mixture, any method such as a method of mixing an aqueous solution of a trivalent iron salt and an aqueous mixture of an inorganic alkali component, a method of dissolving a trivalent iron salt and an inorganic alkali component in water, etc. can be adopted. . From the simplicity of pH adjustment of the aqueous mixture, it is prepared by adding an inorganic alkali component (particularly Na 2 CO 3 , K 2 CO 3 or an aqueous solution thereof) to an aqueous solution containing a trivalent iron salt (particularly iron nitrate). preferable. In addition, it is preferable to use distilled water and pure water as water.

3価の鉄の塩及び無機アルカリ成分を含む水性混合物の混合は、例えば、常圧下、上記した混合手段を用いて、液温30〜80℃において、30分〜3時間程度混合することが好ましい。この混合過程を経ることより結晶構造が整った酸化鉄が形成され、その後の金化合物との接触により高活性かつ耐久性に優れるAu−Fe系触媒が得られる。混合手段は特に限定はなく、例えば、撹拌、超音波処理等が挙げられる。 The mixing of the aqueous mixture containing the trivalent iron salt and the inorganic alkali component is preferably performed for about 30 minutes to 3 hours at a liquid temperature of 30 to 80 ° C. using the mixing means described above under normal pressure. . Through this mixing process, iron oxide having a well-defined crystal structure is formed, and an Au—Fe 2 O 3 -based catalyst having high activity and excellent durability can be obtained by subsequent contact with a gold compound. The mixing means is not particularly limited, and examples thereof include stirring and ultrasonic treatment.

上記水性混合物中の3価の鉄の塩の濃度は、0.01〜20wt%、好ましくは0.1〜15wt%、より好ましくは1〜10wt%に調整される。また、上記水性混合物中の無機アルカリ成分の濃度は、0.1〜20wt%、好ましくは0.5〜10wt%、より好ましくは1〜5wt%に調整される。この範囲にすると、上記のpHに調整することが容易となり、好適な酸化鉄の前駆体を形成することができるため好ましい。   The concentration of the trivalent iron salt in the aqueous mixture is adjusted to 0.01 to 20 wt%, preferably 0.1 to 15 wt%, more preferably 1 to 10 wt%. Moreover, the density | concentration of the inorganic alkali component in the said aqueous mixture is adjusted to 0.1-20 wt%, Preferably it is 0.5-10 wt%, More preferably, it is adjusted to 1-5 wt%. This range is preferable because it is easy to adjust to the above pH and a suitable iron oxide precursor can be formed.

特に好ましい典型例としては、3価の鉄の塩として硝酸鉄、無機アルカリ成分としてNaCOを用い、水溶液中の硝酸鉄濃度が0.1〜15wt%、NaCO濃度が0.5〜10wt%として、50〜70℃において、30分〜90分程度混合することが挙げられる。 As a particularly preferable typical example, iron nitrate is used as a salt of trivalent iron, Na 2 CO 3 is used as an inorganic alkali component, the iron nitrate concentration in an aqueous solution is 0.1 to 15 wt%, and the Na 2 CO 3 concentration is 0.1. As 5-10 wt%, mixing at 30-90 minutes at 50-70 degreeC is mentioned.

工程(2):
工程(2)では、上記(1)で得られた水性混合物に金化合物を加えて沈殿物を析出させる。
Step (2):
In step (2), a gold compound is added to the aqueous mixture obtained in (1) to precipitate a precipitate.

金化合物としては水溶性の金塩が好ましく、具体例として塩化金酸(HAuCl・4H0)、塩化金、テトラクロロ金(III)アンモニウム、臭化金、シアン化金、水酸化金等が挙げられる。 Preferably water-soluble gold salts as the gold compound, (0 HAuCl 4 · 4H 2 ) chloroauric acid Examples, gold chloride, tetrachloroauric (III) ammonium, gold bromide, gold cyanide, gold hydroxide, etc. Is mentioned.

金化合物の水溶液の調製法は特に限定はなく、金化合物を水中に溶解すればよい。水は、蒸留水、純水を用いることが好ましい。水溶液中の金化合物の濃度は、0.01〜30wt%、好ましくは0.1〜20wt%、より好ましくは1〜15wt%である。   The method for preparing the aqueous solution of the gold compound is not particularly limited, and the gold compound may be dissolved in water. As the water, distilled water or pure water is preferably used. The concentration of the gold compound in the aqueous solution is 0.01 to 30 wt%, preferably 0.1 to 20 wt%, more preferably 1 to 15 wt%.

上記(1)で得られた水性混合物に金化合物の水溶液を加える条件は特に限定はないが、加える時の水溶液の温度は、例えば、30〜80℃程度であり、金化合物の水溶液を一度に加えてもよく、複数回に分けて加えてもよい。金化合物の水溶液を加えた後、液温30〜80℃で10分〜2時間程度混合する。これにより沈殿物が析出(共沈)する。この沈殿物を水で洗浄し、乾燥(例えば、30〜200℃程度で3〜48時間程度)して固形物とする。必要に応じこれを粉砕した後、工程(3)に供する。   The conditions for adding the aqueous gold compound solution to the aqueous mixture obtained in the above (1) are not particularly limited, but the temperature of the aqueous solution at the time of addition is, for example, about 30 to 80 ° C. You may add and may add in multiple times. After adding an aqueous solution of a gold compound, the mixture is mixed at a liquid temperature of 30 to 80 ° C. for about 10 minutes to 2 hours. As a result, a precipitate is deposited (co-precipitated). This precipitate is washed with water and dried (for example, at about 30 to 200 ° C. for about 3 to 48 hours) to obtain a solid. This is pulverized if necessary and then subjected to step (3).

工程(3):
工程(3)では、上記(2)で得られた沈殿物を焼成しAu−Fe系触媒を得る。
Step (3):
In step (3), the precipitate obtained in (2) above is fired to obtain an Au—Fe 2 O 3 -based catalyst.

焼成は、通常、常圧下、空気雰囲気下、100〜600℃、好ましくは150〜400℃、より好ましくは150〜250℃の温度で行うことができる。   Calcination can be usually performed at a temperature of 100 to 600 ° C., preferably 150 to 400 ° C., more preferably 150 to 250 ° C. under normal pressure and air atmosphere.

かくして、本発明のAu−Fe系触媒が製造される。本発明のAu−Fe系触媒は、担体であるFe上にAuのナノ粒子が担持された構造を有している。触媒中のAu担持量は、0.1〜10重量%、好ましくは0.1〜5重量%である。 Thus, the Au—Fe 2 O 3 catalyst of the present invention is produced. The Au—Fe 2 O 3 catalyst of the present invention has a structure in which Au nanoparticles are supported on Fe 2 O 3 as a support. The amount of Au supported in the catalyst is 0.1 to 10% by weight, preferably 0.1 to 5% by weight.

Fe上のAuナノ粒子の平均粒径は、1〜25nm程度である。Au−Fe系触媒の比表面積は、BET法による測定値として、20m/g以上、好ましくは150m/g以上である。 The average particle diameter of Au nanoparticles on Fe 2 O 3 is about 1 to 25 nm. The specific surface area of the Au—Fe 2 O 3 -based catalyst is 20 m 2 / g or more, preferably 150 m 2 / g or more as measured by the BET method.

Au−Fe系触媒の形態としては、その使用目的に応じて適宜選択可能であるが、例えば、粉末状、顆粒状、ペレット状、ハニカム状等が挙げられる。 The form of the Au—Fe 2 O 3 -based catalyst can be appropriately selected according to the purpose of use, and examples thereof include powder, granules, pellets, and honeycombs.

本発明のAu−Fe系触媒は、特許文献1〜3に記載されたAu−Fe系触媒の組成と近似するが、特許文献1〜3の触媒に比べて、高い活性と極めて優れた耐久性を有している。本発明の触媒がこのような優れた性質を発現する理由は、今のところ明らかではないがおそらく製造方法の相違に起因すると考えられる。 The Au—Fe 2 O 3 catalyst of the present invention approximates the composition of the Au—Fe 2 O 3 catalyst described in Patent Documents 1 to 3, but has a higher activity than the catalysts of Patent Documents 1 to 3. And extremely excellent durability. The reason why the catalyst of the present invention exhibits such excellent properties is not clear at present, but is probably due to a difference in production method.

つまり、本発明の触媒は、上記のように工程(1)〜(3)を経て(即ち、硝酸第二鉄と炭酸ナトリウムを含む水性混合物を得た後これに塩化金酸を加えて)製造されるが、特許文献1及び3の触媒は硝酸第二鉄と塩化金酸の水溶液を炭酸ナトリウム水溶液に添加して製造され、また、特許文献2の触媒は単離された酸化鉄の水性懸濁液に塩化金酸の水溶液及び炭酸ナトリウムの水溶液を加えて製造されるものであり、製造方法において明確に相違する。本発明の触媒は、このような製造方法の相違により、従来にないFe担体への金ナノ粒子の担持形態をとることになり、より高活性かつ高耐久性が発揮されるに至ったと考えられる。 That is, the catalyst of the present invention is produced through steps (1) to (3) as described above (that is, an aqueous mixture containing ferric nitrate and sodium carbonate is obtained, and chloroauric acid is added thereto). However, the catalysts of Patent Documents 1 and 3 are prepared by adding an aqueous solution of ferric nitrate and chloroauric acid to an aqueous solution of sodium carbonate, and the catalyst of Patent Document 2 is an aqueous suspension of isolated iron oxide. It is produced by adding an aqueous solution of chloroauric acid and an aqueous solution of sodium carbonate to a turbid liquid, and the production method is clearly different. The catalyst according to the present invention takes an unsupported form of gold nanoparticles on an Fe 2 O 3 carrier due to such a difference in the production method, leading to higher activity and higher durability. It is thought.

また、本発明のAu−Fe系触媒は、水素及びCOを含む混合ガスから高選択的にCOを酸化除去することができる。そのため、例えば、燃料電池用の改質ガスからのCO除去用触媒として有効に用いられる。 Further, the Au—Fe 2 O 3 catalyst of the present invention can oxidize and remove CO from a mixed gas containing hydrogen and CO with high selectivity. Therefore, for example, it is effectively used as a catalyst for removing CO from reformed gas for fuel cells.

また、本発明のAu−Fe系触媒は、比較的少ないAu担持量で高い触媒活性が発揮されるため、高価なAuの担持量を減らすことができ、コストパフォーマンスにも優れている。 Moreover, since the Au—Fe 2 O 3 catalyst of the present invention exhibits high catalytic activity with a relatively small amount of supported Au, the amount of expensive Au supported can be reduced and the cost performance is excellent. .

本発明のAu−Fe系触媒は、上記のような優れた特性を有しているため、例えば、家庭用空気浄化装置、ガス湯沸かし器への付属機器(不完全燃焼時のCO除去)、防毒マスク、タバコのCO除去用等のフィルター、ストーブ、ファンフィーター等の暖房器具への付属器具(不完全燃焼時のCO除去)等に用いる触媒として有用である。 Since the Au—Fe 2 O 3 -based catalyst of the present invention has the above-described excellent characteristics, for example, a domestic air purifier, an accessory to a gas water heater (CO removal at the time of incomplete combustion) It is useful as a catalyst for use in gas masks, filters for removing CO from cigarettes, heaters such as heaters and fan heaters (CO removal during incomplete combustion), and the like.

例えば、フィルター加工の例として、粉体状のAu−Fe系触媒を、接着剤等を介して基材表面に担持してフィルターを製造することができる。基材としてはフィルター用途に用いることができるものであれば特に限定はなく、例えば、材質とてしては、樹脂、セラミック、ガラス、金属、紙、天然繊維等が、構造としては不織布、網、ハニカム、焼結体、発泡体、布、等が挙げられる。 For example, as an example of filter processing, a powdered Au—Fe 2 O 3 -based catalyst can be supported on the surface of a substrate via an adhesive or the like to produce a filter. The substrate is not particularly limited as long as it can be used for filters. For example, the material is resin, ceramic, glass, metal, paper, natural fiber, etc., and the structure is nonwoven fabric or mesh. , Honeycombs, sintered bodies, foams, cloths, and the like.

さらに、本発明のAu−Fe系触媒を用いてNO、CO、O、N等を含む燃焼ガスを処理することにより、NOをほぼ完全にNに還元し(NOは生成せず)、COをほぼ完全にCOに酸化できる。そのため、自動車の排ガス(特に、ディーゼルエンジンの排ガス)の浄化用触媒、火力発電所の排ガス浄化用触媒等として有用である。 Further, by treating NO, CO, combustion gas containing O 2, N 2 or the like by using the Au-Fe 2 O 3 catalyst of the present invention to reduce NO almost completely in N 2 (N 2 O CO can be oxidized almost completely to CO 2 . Therefore, it is useful as a catalyst for purifying automobile exhaust gas (particularly exhaust gas from a diesel engine), a catalyst for purifying exhaust gas from a thermal power plant, and the like.

本発明を、実施例を用いて更に詳述するが、これに限定されるものではない。
[実施例1](本発明の触媒)
15.17 gのFe(NO3)3・9H2Oを純水100 mLに溶かした水溶液を60℃水浴中に浸し、0.3MのNa2CO3水溶液加えてpH = 8.3に調整した。その後同温で1時間撹拌した後、HAuCl4・4H2O 0.45 gを純水100 mLに溶かした水溶液(Au 20wt%溶液)を加えて混合し、更に同温で30分攪拌して沈殿物を析出させた。
The present invention will be described in more detail with reference to examples, but is not limited thereto.
Example 1 (Catalyst of the Present Invention)
An aqueous solution in which 15.17 g of Fe (NO 3 ) 3 · 9H 2 O was dissolved in 100 mL of pure water was immersed in a 60 ° C. water bath, and a 0.3 M Na 2 CO 3 aqueous solution was added to adjust the pH to 8.3. Then, after stirring at the same temperature for 1 hour, an aqueous solution (Au 20wt% solution) in which 0.45 g of HAuCl 4 · 4H 2 O was dissolved in 100 mL of pure water was added and mixed, and further stirred at the same temperature for 30 minutes to precipitate. Was precipitated.

該沈殿物をろ紙でろ過し、ろ紙上の沈殿物を水で念入りに洗浄した。これを80℃で12時間真空乾燥した後,空気雰囲気下200℃で2時間焼成してAu-Fe2O3系触媒を得た。触媒の金担持量は3wt%(仕込重量より)であった。 The precipitate was filtered with a filter paper, and the precipitate on the filter paper was carefully washed with water. This was vacuum dried at 80 ° C. for 12 hours and then calcined at 200 ° C. for 2 hours in an air atmosphere to obtain an Au—Fe 2 O 3 catalyst. The amount of gold supported on the catalyst was 3 wt% (from the charged weight).

なお、HAuCl4・4H2O水溶液を一度に加えてもゆっくり滴下しても、得られるAu-Fe2O3系触媒の物性にほとんど変化は見られなかった。 Even if also slowly dropwise added HAuCl 4 · 4H 2 O aqueous solution at a time, little change in the physical properties of the Au-Fe 2 O 3 catalyst obtained was not observed.

実施例1で得られた触媒のTEM写真を図2に示す。
[比較例1]
15.17 gのFe(NO3)3・9H2Oを純水100 mLに溶かした水溶液、及び0.45 gのHAuCl4・4H2Oを純水100 mLに溶かした水溶液(Au 20wt%溶液)を加え、これを60℃水浴で加温し、これに0.3MのNa2CO3水溶液を加えてpH = 8.3に調整した。混合液を同温で1時間撹拌して沈殿物を析出させた。
A TEM photograph of the catalyst obtained in Example 1 is shown in FIG.
[Comparative Example 1]
Add 15.17 g Fe (NO 3 ) 3 • 9H 2 O in 100 mL pure water and 0.45 g HAuCl 4 • 4H 2 O in 100 mL pure water (Au 20 wt% solution) This was heated in a 60 ° C. water bath, and 0.3 M Na 2 CO 3 aqueous solution was added thereto to adjust the pH to 8.3. The mixture was stirred at the same temperature for 1 hour to precipitate a precipitate.

該沈殿物をろ紙でろ過し、ろ紙上の沈殿物を水で念入りに洗浄した。これを80℃で12時間真空乾燥した後、空気雰囲気下200℃で2時間焼成してAu-Fe2O3系触媒を得た。触媒の金担持量は3wt%(仕込重量より)であった。
[比較例2]
0.3MのNa2CO3水溶液(pH = 8.3)を60℃水浴中に浸し、これに撹拌しながら15.17 gのFe(NO3)3・9H2O及び0.45 gのHAuCl4・4H2Oを純水200 mLに溶かした水溶液を滴下して沈殿物を析出させた。滴下の間、0.3MのNa2CO3水溶液を適宜加えて水溶液のpHを8.3に調製した。
The precipitate was filtered with a filter paper, and the precipitate on the filter paper was carefully washed with water. This was vacuum dried at 80 ° C. for 12 hours and then calcined at 200 ° C. for 2 hours in an air atmosphere to obtain an Au—Fe 2 O 3 catalyst. The amount of gold supported on the catalyst was 3 wt% (from the charged weight).
[Comparative Example 2]
Immerse a 0.3M Na 2 CO 3 aqueous solution (pH = 8.3) in a 60 ° C water bath and stir it with 15.17 g Fe (NO 3 ) 3 · 9H 2 O and 0.45 g HAuCl 4 · 4H 2 O. An aqueous solution dissolved in 200 mL of pure water was added dropwise to precipitate a precipitate. During the dropwise addition, a 0.3 M Na 2 CO 3 aqueous solution was appropriately added to adjust the pH of the aqueous solution to 8.3.

該沈殿物をろ紙でろ過し、ろ紙上の沈殿物を水で念入りに洗浄した。これを80℃で12時間真空乾燥した後,空気雰囲気下200℃で2時間焼成してAu-Fe2O3系触媒を得た。触媒の金担持量は3wt%(仕込重量より)であった。 The precipitate was filtered with a filter paper, and the precipitate on the filter paper was carefully washed with water. This was vacuum dried at 80 ° C. for 12 hours and then calcined at 200 ° C. for 2 hours in an air atmosphere to obtain an Au—Fe 2 O 3 catalyst. The amount of gold supported on the catalyst was 3 wt% (from the charged weight).

なお、上記実施例1及び比較例1,2における製造工程の模式図を図1に示す。   In addition, the schematic diagram of the manufacturing process in the said Example 1 and Comparative Examples 1 and 2 is shown in FIG.

上記実施例比較例で得られたAu-Fe2O3系触媒について、細孔分布及び比表面積を自動比表面積・細孔分布測定装置(BELSORP-mini、日本ベル株式会社製)を用いて測定した。細孔分布はBJH法,比表面積はBET法に基づいて算出した。その結果を表1に示す。 For the Au-Fe 2 O 3 catalyst obtained in the above comparative example, the pore distribution and specific surface area were measured using an automatic specific surface area / pore distribution measuring apparatus (BELSORP-mini, manufactured by Bell Japan Co., Ltd.). did. The pore distribution was calculated based on the BJH method, and the specific surface area was calculated based on the BET method. The results are shown in Table 1.

Figure 2008279439
Figure 2008279439

[試験例1]触媒活性試験(CO酸化)
上記実施例1及び比較例1,2で得られた粉末状の触媒0.1g(かさ密度=1.02g/cm3)を、内径4mmのステンレス管に隙間なく充填し、触媒充填管型反応器とした。CO、空気の流量をMass flow controllerにより調整し、CO濃度500ppmを含む空気を触媒充填管型反応器に流量60mL/minで供給した。反応温度は室温から200℃まで変化させ、反応ガス中のCO濃度をマイクロガスクロマトグラフにより定量・分析した。なお、標準の反応条件は空間速度;SV=37,000 h-1、接触時間;W/F= 81.5kg-cat min mol-1であった。図3に各触媒によるCO酸化反応の結果を示す。
[Test Example 1] Catalytic activity test (CO oxidation)
0.1 g of powdered catalyst obtained in Example 1 and Comparative Examples 1 and 2 (bulk density = 1.02 g / cm 3 ) was filled into a stainless steel tube having an inner diameter of 4 mm without any gap, and a catalyst-filled tube reactor It was. The flow rates of CO and air were adjusted by a Mass flow controller, and air containing a CO concentration of 500 ppm was supplied to the catalyst packed tube reactor at a flow rate of 60 mL / min. The reaction temperature was changed from room temperature to 200 ° C., and the CO concentration in the reaction gas was quantitatively analyzed by a micro gas chromatograph. The standard reaction conditions were space velocity; SV = 37,000 h −1 , contact time; W / F = 81.5 kg-cat min mol −1 . FIG. 3 shows the results of the CO oxidation reaction with each catalyst.

実施例1により作製した触媒では、室温から200℃までほぼ100%の反応率を得ることができた。これに対し、比較例1,2により作製した触媒では、いずれも室温から200℃未満の温度範囲では充分な反応率が得られないことが分かった。これから、実施例1及び比較例1,2の触媒は、ほとんど同程度の細孔径を有するにもかかわらず、触媒の調製条件によりCO酸化活性が大きく異なることがわかる。これは触媒の表面積や細孔径よりも、Fe2O3上へのAu担持状態の寄与が大きいと考えられる。 With the catalyst prepared in Example 1, a reaction rate of almost 100% was obtained from room temperature to 200 ° C. On the other hand, it was found that the catalysts prepared according to Comparative Examples 1 and 2 could not obtain a sufficient reaction rate in the temperature range from room temperature to less than 200 ° C. From this, it can be seen that the catalysts of Example 1 and Comparative Examples 1 and 2 have substantially the same pore size, but the CO oxidation activity varies greatly depending on the catalyst preparation conditions. This is thought to be due to the contribution of the Au-supported state on Fe 2 O 3 over the surface area and pore diameter of the catalyst.

本発明の実施例1の触媒が、比較例1,2の触媒よりも高活性である理由は、今のところ明らかではない。おそらく、実施例1の製法では、比較例1,2の製法と比較して、酸化鉄の結晶構造のより整った状態で塩化金酸と混合されて製造されている。そのため、実施例1の触媒では、金粒子がCOを化学吸着しやすい部分(つまり、Fe2O3の表面)により多く担持されて活性が高くなっていると考えられる。
[試験例2]改質ガス中のCO選択的除去
上記実施例1で得られた粉末状の触媒0.1g(かさ密度=1.02g/cm3)を、試験例1と同様に内径4mmのステンレス管に隙間なく充填し、触媒充填管型反応器とした。改質ガス組成に相当するCO、H2及び空気の混合ガス(ガス中の水素濃度10%)の流量をMass flow controllerによりCO濃度が500ppmになるように調整し、触媒を充填した管型反応器に流量60mL/minで供給した。反応ガス中のCO濃度を、マイクロガスクロマトグラフを用いて定量・分析した。尚、空間速度SV = 37,000 h-1、接触時間W/F = 81.5 kg-cat・min・mol-1で実験を行った。
The reason why the catalyst of Example 1 of the present invention is higher in activity than the catalysts of Comparative Examples 1 and 2 is not clear at present. Probably, the production method of Example 1 is produced by mixing with chloroauric acid in a more ordered state of the crystal structure of iron oxide than the production methods of Comparative Examples 1 and 2. For this reason, in the catalyst of Example 1, it is considered that the gold particles are more supported by the portion where CO is easily chemisorbed (that is, the surface of Fe 2 O 3 ) and the activity is high.
[Test Example 2] Selective removal of CO in reformed gas As in Test Example 1, 0.1 g (bulk density = 1.02 g / cm 3 ) of the powdered catalyst obtained in Example 1 above was used as a stainless steel having an inner diameter of 4 mm. The tube was filled without any gaps to obtain a catalyst-filled tube reactor. A tubular reaction filled with catalyst by adjusting the flow rate of the mixed gas of CO, H 2 and air (hydrogen concentration in the gas 10%) corresponding to the reformed gas composition so that the CO concentration becomes 500 ppm by Mass flow controller. The vessel was supplied at a flow rate of 60 mL / min. The CO concentration in the reaction gas was quantified and analyzed using a micro gas chromatograph. The experiment was conducted at a space velocity SV = 37,000 h −1 and a contact time W / F = 81.5 kg-cat · min · mol −1 .

反応温度範囲を30〜70℃として、CO酸化反応を検討した。結果を図4に示す。この結果から、30〜70℃の範囲で実施例1の触媒はCOを選択的に酸化できることが示された。
[試験例3]CO酸化及びNO還元
上記実施例1で得られた触媒を用いて、燃焼ガス組成に近いCO及びNOを含む混合ガスの処理を行った。試験条件、試験方法及び測定器は下記の通り。
(試験条件)
触媒:Au担持酸化鉄(Au/Fe2O3)(実施例1)
触媒担持濃度:3wt%(仕込み量)
触媒形状:粉末
充填触媒量: 0.73g (かさ密度1.20g/cm3)
反応器内の触媒の占める体積:0.6cm3
反応器系:内径 10mm
試験ガス:CO 約500ppm、O2 約7.5%、N2Balance
測定温度:常温(24℃程度)
流量:100 ml/min
SV値:10,000/h
(測定器)
MicroGC「CP-2003」(GLサイエンス)
NOx-ANALYZER「ECA-88A」(YANACO)
(試験方法)
各ガスボンベからマスフローメーターで流量調節を行いながら、上記試験ガスを混合し、ブランクガス濃度をCO測定器およびNOx測定器にて測定した。恒温槽(触媒)を所定温度まで加熱した後、試験ガスを装置に流し、パージを行った後、同測定器にて測定し、除去率を算出した。装置の模式図を図5に示す。
The CO oxidation reaction was examined at a reaction temperature range of 30 to 70 ° C. The results are shown in FIG. From this result, it was shown that the catalyst of Example 1 can selectively oxidize CO in the range of 30 to 70 ° C.
[Test Example 3] CO oxidation and NO reduction Using the catalyst obtained in Example 1 above, a mixed gas containing CO and NO close to the combustion gas composition was treated. Test conditions, test methods and measuring instruments are as follows.
(Test conditions)
Catalyst: Au-supported iron oxide (Au / Fe 2 O 3 ) (Example 1)
Catalyst loading concentration: 3wt% (preparation amount)
Catalyst shape: Powder Filled catalyst amount: 0.73 g (bulk density 1.20 g / cm 3 )
Volume occupied by catalyst in the reactor: 0.6 cm 3
Reactor system: Inner diameter 10mm
Test gas: CO approx. 500ppm, O 2 approx. 7.5%, N 2 Balance
Measurement temperature: Room temperature (about 24 ℃)
Flow rate: 100 ml / min
SV value: 10,000 / h
(Measuring instrument)
MicroGC “CP-2003” (GL Sciences)
NOx-ANALYZER “ECA-88A” (YANACO)
(Test method)
While adjusting the flow rate from each gas cylinder with a mass flow meter, the test gas was mixed, and the blank gas concentration was measured with a CO measuring device and a NOx measuring device. After heating the thermostat (catalyst) to a predetermined temperature, the test gas was flowed through the apparatus, purged, and then measured with the same measuring device to calculate the removal rate. A schematic diagram of the apparatus is shown in FIG.

測定結果を図6に示す。これより、常温(24℃)において、NOをほぼ完全にNに還元し(NOは生成せず)、COをほぼ完全にCOに酸化できることが分かった。もちろん、測定温度がこれよりも高い場合には、より高い活性を示す。
[試験例4]触媒耐久性試験(CO酸化)
上記実施例1で得られた触媒を用いて、試験例3の装置を用いて触媒耐久性試験を行った。
The measurement results are shown in FIG. This, at room temperature (24 ° C.), almost completely reduced to N 2 and NO (N 2 O is not generated), it was found to be almost completely oxidized to CO 2 and CO. Of course, when the measured temperature is higher than this, higher activity is exhibited.
[Test Example 4] Catalyst durability test (CO oxidation)
Using the catalyst obtained in Example 1 above, a catalyst durability test was performed using the apparatus of Test Example 3.

なお、試験ガス:CO 約500ppm、NO2 約100ppm、O2約7.5%、N2 Balanceを用いた。 Test gas: CO about 500 ppm, NO 2 about 100 ppm, O 2 about 7.5%, N 2 Balance was used.

測定結果を図7に示す。これより、常温(24℃)において、2000時間を経過してもCOをほぼ完全にCOに酸化できることが分かった。実施例1で得られた触媒は、長期間高い活性が維持されることが明らかとなった。
[試験例5]参照金触媒との比較試験
実施例1の触媒と参照金触媒(Gold reference catalyst Type C、ズードケミー触媒(株)製造、World Gold Council提供)についてCO処理の比較試験を行った。参照金触媒のスペックは、組成はAu−Fe、金担持量は4.4wt%のものを使用した。試験は、試験例3の装置を用いたが、触媒の占める体積のみ試験例3の10分の1すなわち0.06 cm3とし、他の条件を試験例3と同じとし、空間速度を10倍のSV=100,000 h-1として試験を行った。触媒充填量は、実施例1の触媒が0.073g(かさ密度=1.20g/cm3)、参照金触媒が0.085g(かさ密度=1.39g/cm3)とした。また、試験時間は6時間(360分)とした。
The measurement results are shown in FIG. From this, it was found that CO can be almost completely oxidized to CO 2 even after 2000 hours at room temperature (24 ° C.). It was revealed that the catalyst obtained in Example 1 maintains high activity for a long time.
[Test Example 5] Comparative Test with Reference Gold Catalyst A comparative test of CO treatment was performed on the catalyst of Example 1 and the reference gold catalyst (Gold reference catalyst Type C, manufactured by Sud Chemie Catalyst Co., Ltd., provided by World Gold Council). As the specifications of the reference gold catalyst, the composition was Au—Fe 2 O 3 , and the gold loading was 4.4 wt%. In the test, the apparatus of Test Example 3 was used, but only the volume occupied by the catalyst was set to 1/10 of Test Example 3, that is, 0.06 cm 3 , the other conditions were the same as in Test Example 3, and the space velocity was 10 times SV. The test was conducted at = 100,000 h- 1 . The catalyst loading was 0.073 g (bulk density = 1.20 g / cm 3 ) for the catalyst of Example 1 and 0.085 g (bulk density = 1.39 g / cm 3 ) for the reference gold catalyst. The test time was 6 hours (360 minutes).

本比較試験ではSVを基準に測定を行っているため、充填する触媒のかさ密度が異なれば触媒充填量が異なる。即ち、実施例1の触媒よりかさ密度が大きい参照金触媒のほうが、触媒充填量を基準とすれば有利な条件で比較試験を行っている。   In this comparative test, the measurement is based on SV, so the amount of catalyst filling differs if the bulk density of the catalyst to be filled is different. In other words, the reference gold catalyst having a bulk density higher than that of the catalyst of Example 1 is subjected to a comparative test under advantageous conditions based on the catalyst loading.

実施例1の触媒及び参照金触媒の結果を、それぞれ図8(a)及び図8(b)に示す。   The results of the catalyst of Example 1 and the reference gold catalyst are shown in FIG. 8 (a) and FIG. 8 (b), respectively.

図8(a)より、実施例1の触媒では、開封直後と3日間空気中放置後のいずれも90%以上のCO除去率を示した。   From FIG. 8 (a), the catalyst of Example 1 showed a CO removal rate of 90% or more both after opening and after standing in the air for 3 days.

これに対し、図8(b)より、参照金触媒では、開封直後では初期は高活性(除去率100%)であったが時間と共に劣化し6時間後には80%をきる除去率となった。また、3日空気中放置後では初期に30%の除去率を示した後、6時間後には10%を下回る除去率に低下した。   On the other hand, from FIG. 8 (b), the reference gold catalyst was initially highly active (removal rate 100%) immediately after opening, but deteriorated with time and reached a removal rate of 80% after 6 hours. . In addition, after leaving in the air for 3 days, the removal rate initially showed 30%, and after 6 hours, the removal rate fell below 10%.

このことから、実施例1の触媒が、既存の金触媒に対し、非常に高い活性をおよび、耐久性を示すことが示された。
[試験例6]高濃度CO試験
実施例1の粉体状の触媒0.73g (かさ密度1.20g/cm3)を内径4mmの管に充填し、管内で触媒がφ4mm、高さ4.77cmの円筒形になるようにし、触媒の占める体積が0.6cm3であるような触媒充填管型反応器とした。この反応器に、CO 5000ppmを含む空気を流量100ml/minで流すことで、空間速度;SV=10000hr−1の条件とし、反応器の出口でCO濃度の測定をおこなったところCOの処理率は100%であった。
From this, it was shown that the catalyst of Example 1 showed very high activity and durability with respect to the existing gold catalyst.
[Test Example 6] High-concentration CO test 0.73 g (bulk density 1.20 g / cm 3 ) of the powdered catalyst of Example 1 was filled into a tube with an inner diameter of 4 mm, and the catalyst was φ4 mm and a cylinder with a height of 4.77 cm. The catalyst packed tube reactor was such that the volume occupied by the catalyst was 0.6 cm 3 . By flowing air containing 5000 ppm of CO into the reactor at a flow rate of 100 ml / min, the space velocity; SV = 10000 hr −1 , and the CO concentration was measured at the outlet of the reactor. 100%.

このように高濃度COであっても、高いCO除去活性を示すことが分かった。
[試験例7]フィルター加工試験
実施例1の粉体状の触媒を、100mm×100mm×5mmのウレタンフォーム不織布表面に担持した。担持方法は、不織布表面に粘着剤をつけた後、触媒をふりかけることにより、ウレタンフォーム表面に担持させた。余分な触媒は払い落とし、ウレタンフォーム表面に実施例1の触媒が担持された触媒フィルターを作成した。担持量は、0.75g/cm2であった。このフィルターを直径10mmの大きさに切りだし、これを内径10mmの管型反応器に充填し触媒充填型反応器とした。この反応器に、CO約500ppm、O2約7.5ppm、Nバランスの試験ガスを100mL/minで送気し触媒活性試験を行った。その結果を図10に示す。
Thus, it was found that even at high concentration CO, high CO removal activity was exhibited.
[Test Example 7] Filter processing test The powdery catalyst of Example 1 was supported on a urethane foam nonwoven fabric having a size of 100 mm x 100 mm x 5 mm. As a supporting method, an adhesive was applied to the surface of the nonwoven fabric, and then the catalyst was sprinkled to support the surface of the urethane foam. Excess catalyst was removed, and a catalyst filter in which the catalyst of Example 1 was supported on the urethane foam surface was prepared. The supported amount was 0.75 g / cm 2 . This filter was cut into a size of 10 mm in diameter, and this was packed into a tubular reactor having an inner diameter of 10 mm to obtain a catalyst-packed reactor. A catalytic activity test was conducted by feeding a test gas of about 500 ppm CO, about 7.5 ppm O 2 and N 2 balance into this reactor at 100 mL / min. The result is shown in FIG.

この結果から、実施例1の触媒を不織布に担持しフィルター化した場合でも、触媒粉体のみの場合と同様、COの常温酸化活性を有すことが示された。   From these results, it was shown that even when the catalyst of Example 1 was supported on a non-woven fabric and filtered, it had a normal temperature oxidation activity of CO as in the case of the catalyst powder alone.

実施例1及び比較例1,2の各触媒の製造工程の模式図を示す。The schematic diagram of the manufacturing process of each catalyst of Example 1 and Comparative Examples 1 and 2 is shown. 実施例1の触媒のTEM写真である。2 is a TEM photograph of the catalyst of Example 1. 試験例1における、実施例1及び比較例1,2の各触媒の活性試験(CO酸化)結果を示すグラフである。4 is a graph showing the results of activity tests (CO oxidation) of the catalysts of Example 1 and Comparative Examples 1 and 2 in Test Example 1; 試験例2における、実施例1の触媒の改質ガス中のCO選択的除去の結果を示すグラフである。6 is a graph showing the result of selective CO removal in the reformed gas of the catalyst of Example 1 in Test Example 2. FIG. 試験例3で用いた装置の模式図である。10 is a schematic diagram of an apparatus used in Test Example 3. FIG. 試験例3における、実施例1の触媒を用いたCO及びNOを含む混合ガスの処理試験の結果を示すグラフである。6 is a graph showing the results of a test for treating a mixed gas containing CO and NO using the catalyst of Example 1 in Test Example 3. FIG. 試験例4における、実施例1の触媒を用いた触媒耐久性試験(CO酸化)の結果を示すグラフである。6 is a graph showing the results of a catalyst durability test (CO oxidation) using the catalyst of Example 1 in Test Example 4. 試験例5における、実施例1の触媒及び参照金触媒のCO処理の比較試験結果を示す。図8(a)が実施例1の触媒の結果であり、図8(b)が参照金触媒の結果である。The comparative test result of the CO treatment of the catalyst of Example 1 and the reference gold catalyst in Test Example 5 is shown. FIG. 8A shows the result of the catalyst of Example 1, and FIG. 8B shows the result of the reference gold catalyst. 試験例6における、高濃度COガス(CO 5000 ppm)の処理試験の結果を示す。The result of the processing test of high concentration CO gas (CO 5000 ppm) in Test Example 6 is shown. 試験例7における、COガス(CO 500 ppm)の処理試験の結果を示す。The result of the processing test of CO gas (CO 500 ppm) in Test Example 7 is shown.

Claims (12)

金ナノ粒子が酸化鉄に担持された触媒の製造方法であって、(1)3価の鉄の塩及び無機アルカリ成分を水中で混合して水性混合物を得る工程、(2)得られた水性混合物に金化合物を加えて沈殿物を析出させる工程、及び(3)得られた沈殿物を焼成する工程、を含む製造方法。   A method for producing a catalyst in which gold nanoparticles are supported on iron oxide, (1) a step of mixing a trivalent iron salt and an inorganic alkali component in water to obtain an aqueous mixture, (2) the obtained aqueous solution The manufacturing method including the process of adding a gold compound to a mixture, and depositing a deposit, and the process of (3) baking the obtained deposit. 工程(1)において、3価の鉄の塩を含む水溶液に無機アルカリ成分を加えてpHを5〜11に調整して混合する請求項1に記載の製造方法。   The production method according to claim 1, wherein in step (1), an inorganic alkali component is added to an aqueous solution containing a trivalent iron salt, and the pH is adjusted to 5 to 11 and mixed. 工程(3)において、焼成温度が100〜600℃である請求項1又は2に記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein in the step (3), the baking temperature is 100 to 600 ° C. 前記3価の鉄の塩が硝酸鉄、硫酸鉄又は塩化鉄であり、無機アルカリ成分がMgO、CaO、LiOH、NaOH、KOH、MgO、CaO、NaCO、KCO、NaHCO又はKHCOであり、金化合物が塩化金酸、塩化金、テトラクロロ金(III)アンモニウム、臭化金、シアン化金又は水酸化金である請求項1〜3のいずれかに記載の製造方法。 The trivalent iron salt is iron nitrate, iron sulfate or iron chloride, and the inorganic alkali component is MgO, CaO, LiOH, NaOH, KOH, MgO, CaO, Na 2 CO 3 , K 2 CO 3 , NaHCO 3 or The method according to any one of claims 1 to 3, which is KHCO 3 and the gold compound is chloroauric acid, gold chloride, tetrachlorogold (III) ammonium, gold bromide, gold cyanide or gold hydroxide. 請求項1〜4のいずれかに記載される製造方法により製造された、金ナノ粒子が酸化鉄に担持された触媒。   A catalyst produced by the production method according to claim 1, wherein gold nanoparticles are supported on iron oxide. 請求項5に記載される触媒を用いてCOを含有するガスからCOを除去する方法。   A method for removing CO from a gas containing CO using the catalyst according to claim 5. 請求項5に記載される触媒を用いて窒素酸化物を含有するガスから窒素酸化物を除去する方法。   A method for removing nitrogen oxides from a gas containing nitrogen oxides using the catalyst according to claim 5. 請求項2に記載される触媒を含む改質ガス処理用触媒。   A reformed gas treatment catalyst comprising the catalyst according to claim 2. 請求項5に記載される触媒を用いて改質ガスからCOを除去する方法。   A method for removing CO from a reformed gas using the catalyst according to claim 5. 請求項5に記載される触媒を含む燃焼ガス処理用触媒。   A combustion gas treatment catalyst comprising the catalyst according to claim 5. 請求項5に記載される触媒を用いて燃焼ガスからCO及びNOを除去する方法。   A method for removing CO and NO from combustion gas using the catalyst according to claim 5. 請求項5に記載される触媒を基材に担持してなるフィルター。   A filter formed by supporting the catalyst according to claim 5 on a base material.
JP2008103001A 2007-04-13 2008-04-11 Catalyst for removing carbon monoxide and/or nitrogen oxide and its production method Pending JP2008279439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008103001A JP2008279439A (en) 2007-04-13 2008-04-11 Catalyst for removing carbon monoxide and/or nitrogen oxide and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007106322 2007-04-13
JP2008103001A JP2008279439A (en) 2007-04-13 2008-04-11 Catalyst for removing carbon monoxide and/or nitrogen oxide and its production method

Publications (1)

Publication Number Publication Date
JP2008279439A true JP2008279439A (en) 2008-11-20

Family

ID=40140713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008103001A Pending JP2008279439A (en) 2007-04-13 2008-04-11 Catalyst for removing carbon monoxide and/or nitrogen oxide and its production method

Country Status (1)

Country Link
JP (1) JP2008279439A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049245A1 (en) * 2009-10-23 2011-04-28 トヨタ自動車株式会社 Catalyst for nox removal
JP2011240307A (en) * 2010-05-21 2011-12-01 Toyota Motor Corp Nitrogen oxide cleaning system
JP2014100638A (en) * 2012-11-19 2014-06-05 Dainippon Printing Co Ltd Method for manufacturing carbon monoxide purging filter, carbon monoxide purging filter, and carbon monoxide purging apparatus
US9084988B2 (en) 2011-02-07 2015-07-21 Toyota Jidosha Kabushiki Kaisha NOX purification catalyst
CN112672822A (en) * 2018-09-11 2021-04-16 公立大学法人首都大学东京 Supported gold catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049245A1 (en) * 2009-10-23 2011-04-28 トヨタ自動車株式会社 Catalyst for nox removal
JP2011088093A (en) * 2009-10-23 2011-05-06 Toyota Motor Corp Catalyst for nox cleaning
CN102858454A (en) * 2009-10-23 2013-01-02 丰田自动车株式会社 Catalyst for NOX removal
JP2011240307A (en) * 2010-05-21 2011-12-01 Toyota Motor Corp Nitrogen oxide cleaning system
US9084988B2 (en) 2011-02-07 2015-07-21 Toyota Jidosha Kabushiki Kaisha NOX purification catalyst
JP2014100638A (en) * 2012-11-19 2014-06-05 Dainippon Printing Co Ltd Method for manufacturing carbon monoxide purging filter, carbon monoxide purging filter, and carbon monoxide purging apparatus
CN112672822A (en) * 2018-09-11 2021-04-16 公立大学法人首都大学东京 Supported gold catalyst
US11931726B2 (en) 2018-09-11 2024-03-19 Tokyo Metropolitan University Gold-supporting catalyst

Similar Documents

Publication Publication Date Title
JP4165661B2 (en) Ammonia oxidation catalyst
JP5864444B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JPH0534284B2 (en)
JPH0549338B2 (en)
EP1946834A1 (en) Catalyst carrier particle, exhaust gas purifying catalyst, and methods for producing those
JP2005262201A (en) Exhaust gas-cleaning catalyst and method for manufacturing the same
JP2008542018A (en) Improved high selective oxidation catalyst containing platinum, copper and iron
JP2002282689A (en) Catalyst carrier and catalyst, and method for producing them
JP2008279439A (en) Catalyst for removing carbon monoxide and/or nitrogen oxide and its production method
JP2011045840A (en) Catalyst composition
JP2010017707A (en) Oxidation catalyst
JP5116276B2 (en) Powder comprising oxide microcrystal particles, catalyst using the same, and method for producing the same
JP2007136339A (en) Catalytic particle and its manufacturing method
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JP2001347167A (en) Exhaust gas cleaning catalyst
JPWO2017094688A1 (en) Hydrocarbon steam reforming catalyst
CN114100604B (en) LaMnO 3 Catalyst, preparation method and application thereof
JP2007313451A (en) Structure for clarifying diesel exhaust gas and method for clarifying exhaust gas by using the same
JP2002210369A (en) Catalyst for cleaning exhaust gas and its production method
JPH0620559B2 (en) Catalyst for catalytic combustion reaction and method for producing the same
JP5956377B2 (en) Method for producing hydrocarbon reforming catalyst
JP2004009011A (en) Catalyst for water-gas-shift reaction
JP2022061257A (en) Ammonia synthesis catalyst, method for producing ammonia synthesis catalyst, and method for producing ammonia
CN106944094B (en) Catalyst for exhaust gas purification
JP5345063B2 (en) Cerium-containing composite oxide and method for producing the same, PM combustion catalyst, and diesel particulate filter