JP2001524030A - Gold-containing catalyst for exhaust gas purification - Google Patents

Gold-containing catalyst for exhaust gas purification

Info

Publication number
JP2001524030A
JP2001524030A JP54862498A JP54862498A JP2001524030A JP 2001524030 A JP2001524030 A JP 2001524030A JP 54862498 A JP54862498 A JP 54862498A JP 54862498 A JP54862498 A JP 54862498A JP 2001524030 A JP2001524030 A JP 2001524030A
Authority
JP
Japan
Prior art keywords
catalyst
gold
oxide
weight
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP54862498A
Other languages
Japanese (ja)
Inventor
ラチェザール、アンゲロフ、ペトロフ
Original Assignee
レイマン、コンサルタンシィ、リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レイマン、コンサルタンシィ、リミテッド filed Critical レイマン、コンサルタンシィ、リミテッド
Publication of JP2001524030A publication Critical patent/JP2001524030A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • B01D53/8675Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

(57)【要約】 本発明は、環境の保護において用いられる、一酸化炭素および炭化水素の酸化、亜酸化窒素の還元およびオゾンの分解用の金触媒に関する。触媒の活性成分は、遷移金属族からの還元性酸化物と金との錯体からなる。触媒中の金の濃度は、0.1%〜2.5%であり、触媒の活性成分中の金属の総濃度は、総重量の0.1〜10%である。支持体は、セリウムとチタンの酸化物からなる。触媒の表面は、約80m2/g〜400m2/gの間にあり、触媒の使用温度は0℃〜400℃である。 (57) Abstract The present invention relates to a gold catalyst for the oxidation of carbon monoxide and hydrocarbons, the reduction of nitrous oxide and the decomposition of ozone, used in the protection of the environment. The active component of the catalyst consists of a complex of a reducing oxide from the transition metal group with gold. The concentration of gold in the catalyst is between 0.1% and 2.5% and the total concentration of metals in the active component of the catalyst is between 0.1 and 10% of the total weight. The support comprises cerium and titanium oxide. Surface of the catalyst is between about 80m 2 / g~400m 2 / g, the temperature use of the catalyst is 0 ° C. to 400 ° C..

Description

【発明の詳細な説明】 排ガス浄化用の金含有触媒 発明の背景 本発明は、一酸化炭素および炭化水素の酸化、亜酸化窒素の還元およびオゾン の分解のための金触媒に関する。内燃機関は、大気中の汚染レベルを増加させる 大きな要因である。このことは、地球規模の都市化に向かう強い傾向の中でいっ そう悪くなるであろう。今日の産業現場、オフィスビルで働く多くの人々に対す る作業環境は、一酸化炭素およびその他の有害ガスの許容できない高レベルの大 気汚染にさらされている。我々の日常業務でおびただしく用いられているコンピ ュータおよびレーザープリンタは、オゾン濃度を危険なレベルに増加させ、作業 環境をいっそう悪化させている。 環境保護と、産業、輸送および日常生活によって引き起こされる汚染を減少さ せることは、今日の世界が直面している主要な課題である。それを達成するため に、既存技術の改善、産業において新しく、より有効な方法の導入、汚染減少の ためのより厳しい法制化などの様々な方法が用いられている。 先行技術の触媒 燃焼エンジンからの有害ガスの排出の削減は、白金族金属(PGM触媒)の使 用によって達成することができる。しかし、この触媒は、300℃より高い温度 で満足に機能する。排ガスに対して一般的な水分および二酸化硫黄は、より低い 温度で白金族金属の性能に重大な影響を及ぼす。燃焼エンジンからの有害ガスの 80%が、従来の触媒が有効ではないエンジンコールドスタート中、すなわち、 最初の3〜5分中に排出されるという事実は知られている。白金族金属ベースの 触媒は、排ガスの温度がガソリン乗用車からの排ガスの温度より低いジーゼル車 の場合、いっそう効力が劣る。総微粒子物質、CO、HCおよびNOxの転化( 四方向触媒)は、将来におけるジーゼル車用途に対する重要な課題と考えられる 。さらに、白金族金属触媒の高い使用温度のために、白金族金属触媒は、ビル、 航空機および産業現場における大気汚染に対して適さない。 金は白金族金属(PGM)より触媒としてずっと活性が低い活性種と昔から考 えられてきた。最近の文献における刊行物によると、金は、還元性酸化物上に高 度に分散された時、COの低温酸化に対して活性でありうることが示された。し かし、文献において示された金含有触媒は、12%までの金濃度で高価すぎるか 、あるいは使用条件に対して一般的なより高いガス流速において転化が劣ること が示されている。従って、これらの触媒は、産業用途に適さず、商業的な真の価 値をもたない。 例えば、ドイツ特許第3914294号明細書において、アルミナおよびアル ミノ珪酸塩も含む酸化鉄含有支持体上に金を担持した触媒が記載されている。し かし、この触媒は、より速い空間速度において一酸化炭素の転化が劣っており、 水分および二酸化硫黄によって重大な影響を受ける。文献に記載され、酸化コバ ルト、酸化チタンおよび酸化鉄上に担持された金触媒の例は、M.Harutaらによ る”Mechnistic studies of CO oxidation on highly dispersed gold catalyst s for use in room temperature air purification”,Proceedings of the 10t h International Congress of Catalysts 19-24 July 1992,Budapest,Hungary (2657-2660)、およびH.Kageyamaらによる”XAFS studyies of ultra-fine gol d catalyst supported on hematite prepared from coprecipitated precursors ”,Physica B 158(1989)183-184である。 発明の要約 本発明によると、酸化および還元同時反応のための触媒は、クロム、銅、コバ ルト、マンガン、鉄またはこれらの金属の混合物から選択される遷移金属の還元 性酸化物と金とを含む錯体を上に取り込んだ多孔性混合酸化物支持体からなる。 金の濃度は、活性成分中の金属の総濃度が触媒の総重量の10%を超えてはなら ない時、0.1〜2.5%、好ましくは1.5%未満、である。 金−還元性酸化物錯体は、化学的および物理的結合を含み、混合酸化物支持体 に結合されている。 触媒組成物の支持体は、一般に80m2/g〜400m2/gの大きい表面積を 有する個々の酸化物または混合酸化物を含む。酸化物組成物は、酸化セリウムお よび酸化チタンから選択される。酸化セリウムの濃度は30〜95%であり、酸 化チタンの濃度は5〜25%である。触媒は、粉末、ペレットの形態をとっても よく、あるいは発泡体、ハニカム(セラミックまたは金属)として、適する担体 上に成形された形態、担持された形態であってもよい。 金−遷移金属酸化物粒子は、知られた技術、すなわち、含浸、沈殿、再沈、ウ ェット初期乾燥、またはこれらの技術の組合せの方法によって混合酸化物支持体 上に担持させる。活性成分の粒子は支持体全体を通して微細に分散され、40n m未満、好ましくは20nm未満、のサイズであるべきである。 金−金属酸化物触媒の調製プロセスのpHは重要であり、7.0〜12.0、 好ましくは8.0〜10.5、の範囲であるべきである。この規定された範囲内 のpH値の調節は、アルカリ化合物、例えば、炭酸ナトリウムまたはカリウム、 水酸化ナトリウムまたはカリウム、あるいはアンモニアの使用によって達成され る。金−金属酸化物構成を形成した後、触媒は、100℃〜500℃の範囲の温 度において加熱され、支持体の表面上に固定化された微細なクラスタ粒子を形成 させる。触媒の加熱は、酸化性雰囲気または酸化性空気で維持される。 触媒の使用温度は0℃〜500℃である。 触媒は、燃料電池技術においても用途を有するであろう。 本発明の利点は、以下の項目からなる。 1.本発明の触媒は、水分および二酸化硫黄の存在下で低温において一酸化炭素 および炭化水素の酸化に関して、先行技術の類似の触媒よりも有効である。 2.水分の存在は、触媒の酸化活性を高めさえする。 3.触媒は二酸化硫黄の存在に耐える。 4.触媒は、低温および高温において、亜酸化窒素の還元と一酸化炭素および炭 化水素の酸化を同時に行う能力をもつ。 5.触媒は、室温においてオゾンの分解に非常に有効である。 6.触媒は、室温および水分の存在において、一酸化炭素、炭化水素の酸化およ びオゾンの分解を同時に行う高い触媒活性をもつ。 7.触媒は、燃焼エンジンのコールドスタート中における白金族金属触媒の欠点 を処理するために白金族金属触媒と併せて用いることができよう。 例の記載 例1 触媒の調製 1.82gのHAuCl42Oおよび24.7gのCo(NO3)26H2Oを6 0℃に加熱された500cm3の蒸留水に溶解する。Ceo2およびTiO2から なる支持体混合物を溶液に添加する。温度を60℃に維持し、pHが8.0±0 .1に上昇するまで、50gNaCO3の蒸留水溶液500cm3を徐々に添加す る。攪拌しながら、系を60℃で60分にわたり維持する。その後、組成物を放 置して沈殿させ、さらに60分にわたり熟成させる。懸濁液を濾過し、Cl-お よびNO3 -イオンが完全に除去されるまで、触媒を蒸留水で洗浄する。焼成温度 に徐 々に達する。 図1は、活性クラスター中の、遷移金属の還元性酸化物、Co23と金との間 の結合を示している一方で、図2は支持体の酸化物とクラスターとの間の結合を 示している。 例2 触媒の活性に及ぼす支持体の効果 例1において得られた触媒およびAl23支持体を用いた以外は同じ方法で得 られた触媒を、1gの触媒を入れた反応器中で種々の温度において、45000 h-1の気体流速およびCO1%、O20.9%、C36350ppm、C383 50ppm、SO215ppm、残りが湿度95%N2の気体組成で試験する。表 1の結果は、一酸化炭素および炭化水素の酸化における金触媒の活性に及ぼす支 持体の効果を示すものである。例3 金触媒による一酸化炭素の酸化に及ぼす水分の明白な効果 例1に記載された方法によって得られた触媒を、1gの触媒を入れた反応器中 で25℃の温度において、360000h-1の気体流速およびCO25ppm、 残りが乾燥空気および湿度95%の空気の気体組成で試験する 結果は表2に示すとおりである。 結果は、一酸化炭素の酸化用の金触媒の活性に及ぼす水分の明白な効果を示し ている。 例4 エンジンのコールドスタート(最初の180秒)中における本発明の金触媒の活 性と白金族金属の触媒の活性との間の比較 A. 本発明の支持体上に実施例1に記載された方法によって得られた触媒およ びAl23支持体上の白金族金属触媒を、1gの触媒を入れた反応器中で25℃ の温度において、60000h-1の気体流速およびCO1%、O20.9%、C3 6350PPm、C38350ppm、NOx1000ppm、SO215pp m、残りが湿度95%N2の気体組成で試験する。 結果は表3に示す通りである。その結果は、室温において内燃機関から排出さ れる気体の転化率における本発明の利点を実証している。 B. 商用の白金族金属触媒のコールドスタートの欠点を解決しうる、既存の自 動車触媒系の構成に金触媒を加える設計を図3に示している。発熱酸化反応から 発生する熱を隣接した白金族金属触媒に放出し、白金触媒の加熱を助ける。白金 族金属触媒の使用温度、300℃を得た時、金触媒への排ガスの流れのサーモス タットバルブスイッチを閉じ、浄化は白金族金属触媒表面上で続く。テールパイ プ一本の修正概略構成を図4に示す。 例5 燃焼サイクルの種々の温度における本発明の触媒の表面上の排ガスの比較 C. 本発明の支持体上に例1に記載された方法によって得られた触媒を、1g の触媒を入れた反応器中で種々の温度において、60000h-1の気体流速およ びCO1%、O20.7〜0.9%、C36350ppm、C38350ppm 、NOx1000ppm、SO215PPm、残りが湿度95%N2の気体組成で 試験する。 表4に示した結果は、特に燃焼エンジンのコールドスタートにおいて、本発明 の触媒の高い活性を実証している。例6 金触媒の表面上におけるオゾンの分解 例1に記載された方法によって得られた触媒を、1gの触媒を入れた反応器中 で25℃の温度において、120000h-1の気体流速および0.01%のオゾ ン、残りが空気の気体組成で試験する。 オゾンの完全な100%分解を記録した。 例7 金触媒の表面上におけるオゾンおよび一酸化炭素の同時転化 例1に記載された方法によって得られた触媒を、1gの触媒を入れた反応器中 で25℃の温度において、120000h-1の気体流速および0.01%のオゾ ン、0.1%のCO、残りが空気の気体組成で試験する。 オゾンおよび一酸化炭素の完全な100%転化率を記録した。DETAILED DESCRIPTION OF THE INVENTION                         Gold-containing catalyst for exhaust gas purification Background of the Invention   The present invention relates to the oxidation of carbon monoxide and hydrocarbons, the reduction of nitrous oxide and ozone. To a gold catalyst for the decomposition of Internal combustion engines increase atmospheric pollution levels It is a big factor. This is one of the strong trends towards global urbanization. It will be so bad. For today's industrial sites, many people working in office buildings Work environment can create unacceptably high levels of carbon monoxide and other harmful gases. Exposure to air pollution. Compilers frequently used in our daily work Computers and laser printers can increase ozone levels to dangerous levels The environment is getting worse.   Environmental protection and reduced pollution caused by industry, transport and daily life Is a major challenge facing the world today. To achieve it To improve existing technologies, introduce new and more effective methods in the industry and reduce pollution Various methods have been used, such as stricter legislation. Prior art catalyst   Reduction of harmful gas emissions from combustion engines is due to the use of platinum group metals (PGM catalysts). Can be achieved by using However, this catalyst has a temperature above 300 ° C. Works satisfactorily. Common moisture and sulfur dioxide in the exhaust gas are lower Temperature has a significant effect on the performance of platinum group metals. Of harmful gases from combustion engines 80% during engine cold start where conventional catalysts are not effective, ie The fact that it is expelled during the first 3-5 minutes is known. Platinum group metal based The catalyst is a diesel vehicle whose exhaust gas temperature is lower than the temperature of exhaust gas from gasoline passenger cars. In the case of, the effect is even worse. Conversion of total particulate matter, CO, HC and NOx ( Four-way catalyst) is considered a significant challenge for diesel vehicle applications in the future . In addition, due to the high operating temperatures of platinum group metal catalysts, platinum group metal catalysts Not suitable for air pollution in aircraft and industrial settings.   Gold has long been considered an active species that is much less active as a catalyst than platinum group metal (PGM). It has been obtained. According to recent publications in the literature, gold is highly It has been shown that when well dispersed, it can be active against low temperature oxidation of CO. I But are the gold-containing catalysts shown in the literature too expensive at gold concentrations of up to 12%? Or poorer conversion at higher gas flow rates typical of the conditions of use It is shown. Therefore, these catalysts are not suitable for industrial use and have real commercial value. Has no value.   For example, DE 39 14 294 describes alumina and aluminum. A catalyst is described in which gold is supported on an iron oxide-containing support that also contains a minosilicate. I However, this catalyst has poor carbon monoxide conversion at higher space velocities, Significantly affected by moisture and sulfur dioxide. Described in the literature, Examples of gold catalysts supported on titanium oxide, titanium oxide and iron oxide are described in M.E. Haruta et al. “Mechnistic studies of CO oxidation on highly dispersed gold catalyst s for use in room temperature air purification ”, Proceedings of the 10t h International Congress of Catalysts 19-24 July 1992, Budapest, Hungary  (2657-2660), and H.E. “XAFS studyies of ultra-fine gol by Kageyama et al. d catalyst supported on hematite prepared from coprecipitated precursors Physica B 158 (1989) 183-184. Summary of the Invention   According to the present invention, the catalyst for simultaneous oxidation and reduction is chromium, copper, copper, Reduction of transition metals selected from cobalt, manganese, iron or mixtures of these metals It consists of a porous mixed oxide support having a complex containing a volatile oxide and gold incorporated thereon. The concentration of gold must be such that the total concentration of metals in the active ingredient does not exceed 10% of the total weight of the catalyst. When not present, it is 0.1-2.5%, preferably less than 1.5%.   The gold-reducing oxide complex contains chemical and physical bonds and is a mixed oxide support Is joined to.   The support for the catalyst composition is generally 80 mTwo/ G ~ 400mTwo/ G large surface area Including individual oxides or mixed oxides. The oxide composition is composed of cerium oxide and And titanium oxide. The concentration of cerium oxide is 30-95%, The concentration of titanium oxide is 5 to 25%. The catalyst can be in the form of powder or pellets Suitable carrier, well or as foam, honeycomb (ceramic or metal) It may be in the form molded above or in the form carried.   Gold-transition metal oxide particles can be prepared by known techniques, namely impregnation, precipitation, reprecipitation, Mixed oxide supports by wet drying or a combination of these techniques Carry on top. The active ingredient particles are finely dispersed throughout the support, It should have a size of less than m, preferably less than 20 nm.   The pH of the preparation process of the gold-metal oxide catalyst is important, from 7.0 to 12.0, It should preferably be in the range 8.0-10.5. Within this specified range Adjustment of the pH value of an alkali compound, such as sodium or potassium carbonate, Achieved by the use of sodium or potassium hydroxide, or ammonia You. After forming the gold-metal oxide composition, the catalyst is heated to a temperature in the range of 100C to 500C. To form fine cluster particles fixed on the surface of the support Let it. Heating of the catalyst is maintained in an oxidizing atmosphere or oxidizing air.   The operating temperature of the catalyst is between 0 ° C and 500 ° C.   Catalysts will also have applications in fuel cell technology.   The advantages of the present invention consist of the following items. 1. The catalyst of the present invention can be used to produce carbon monoxide at low temperatures in the presence of moisture and sulfur dioxide. And for the oxidation of hydrocarbons, is more effective than similar catalysts of the prior art. 2. The presence of moisture even enhances the oxidizing activity of the catalyst. 3. The catalyst withstands the presence of sulfur dioxide. 4. The catalyst is capable of reducing nitrous oxide and carbon monoxide and carbon at low and high temperatures. Has the ability to simultaneously oxidize hydrogen hydride. 5. The catalyst is very effective at decomposing ozone at room temperature. 6. The catalyst is capable of oxidizing carbon monoxide and hydrocarbons at room temperature and in the presence of moisture. It has high catalytic activity to simultaneously decompose ozone and ozone. 7. Catalyst is a disadvantage of platinum group metal catalyst during cold start of combustion engine Could be used in combination with a platinum group metal catalyst. Example description Example 1 Preparation of catalyst   1.82 g HAuClFourHTwoO and 24.7 g of Co (NOThree)Two6HTwoO to 6 500cm heated to 0 ° CThreeDissolve in distilled water. CeoTwoAnd TiOTwoFrom The resulting support mixture is added to the solution. Maintain the temperature at 60 ° C. and adjust the pH to 8.0 ± 0 . 50 g NaCO until it rises to 1.Three500cm of distilled waterThreeSlowly add You. With stirring, the system is maintained at 60 ° C. for 60 minutes. Then release the composition Allow to settle and mature for an additional 60 minutes. The suspension was filtered and the Cl-You And NOThree -The catalyst is washed with distilled water until the ions are completely removed. Firing temperature To Xu Reach each other.   FIG. 1 shows the transition metal reducing oxide, Co, in the active cluster.TwoOThreeBetween gold and FIG. 2 shows the bond between the support oxide and the cluster. Is shown. Example 2 The effect of the support on the activity of the catalyst   Catalyst and Al obtained in Example 1TwoOThreeThe same method was used except that the support was used. The resulting catalyst was added at various temperatures in a reactor containing 1 g of catalyst at 45000. h-1Gas flow rate and CO 1%, OTwo0.9%, CThreeH6350 ppm, CThreeH83 50 ppm, SOTwo15 ppm, the balance is 95% NTwoTest with the gas composition of table The results of 1 show that the effect of gold catalyst activity on the oxidation of carbon monoxide and hydrocarbons was This shows the effect of the holding body.Example 3 Distinct effects of moisture on the oxidation of carbon monoxide by gold catalysts   The catalyst obtained by the method described in Example 1 was placed in a reactor containing 1 g of catalyst. 360,000 h at a temperature of 25 ° C.-1Gas flow rate and CO 25 ppm, Test with gas composition of dry air and 95% humidity air The results are as shown in Table 2.   The results show a clear effect of moisture on the activity of the gold catalyst for carbon monoxide oxidation. ing. Example 4 Activity of the gold catalyst of the present invention during the cold start (first 180 seconds) of the engine Comparison between activity and activity of platinum group metal catalysts A. The catalyst obtained by the method described in Example 1 on a support according to the invention and And AlTwoOThreeThe platinum group metal catalyst on the support was placed at 25 ° C. in a reactor containing 1 g of the catalyst. At a temperature of 60,000 h-1Gas flow rate and CO 1%, OTwo0.9%, CThree H6350PPm, CThreeH8350 ppm, NOx1000 ppm, SOTwo15pp m, remaining 95% humidityTwoTest with the gas composition of   The results are as shown in Table 3. The result is that the emissions from the internal combustion engine at room temperature Demonstrates the advantages of the present invention in the conversion of the gases used. B. Existing autonomous systems that can solve the cold start disadvantages of commercial platinum group metal catalysts FIG. 3 shows a design in which a gold catalyst is added to the configuration of the vehicle catalyst system. Exothermic oxidation reaction The generated heat is released to the adjacent platinum group metal catalyst, which helps to heat the platinum catalyst. platinum Thermos of the flow of exhaust gas to the gold catalyst when the working temperature of the group III metal catalyst, 300 ° C, is obtained Close the tat valve switch and purification continues on the platinum group metal catalyst surface. Tail pie FIG. 4 shows a schematic configuration of a single correction. Example 5 Comparison of exhaust gas on the surface of the catalyst of the present invention at various temperatures of the combustion cycle C. 1 g of the catalyst obtained by the method described in Example 1 on a support according to the invention 60000 h at various temperatures in a reactor containing-1Gas flow velocity and And CO1%, OTwo0.7-0.9%, CThreeH6350 ppm, CThreeH8350 ppm , NOx1000 ppm, SOTwo15PPm, remaining 95% NTwoGas composition test.   The results shown in Table 4 show that the present invention is particularly effective in cold start of a combustion engine. Demonstrates the high activity of the catalyst.Example 6 Decomposition of ozone on the surface of gold catalyst   The catalyst obtained by the method described in Example 1 was placed in a reactor containing 1 g of catalyst. At a temperature of 25 ° C. for 120000 h-1Gas flow rate and 0.01% ozone The balance is tested with the gas composition of air.   Complete 100% decomposition of ozone was recorded. Example 7 Simultaneous conversion of ozone and carbon monoxide on the surface of a gold catalyst   The catalyst obtained by the method described in Example 1 was placed in a reactor containing 1 g of catalyst. At a temperature of 25 ° C. for 120000 h-1Gas flow rate and 0.01% ozone Test with a gas composition of 0.1% CO, balance air.   Complete 100% conversion of ozone and carbon monoxide was recorded.

Claims (1)

【特許請求の範囲】 1. セリウムおよびチタンの酸化物からなる多孔性支持体上に担持された還 元性遷移金属酸化物および金を含有する活性錯体と、前記多孔性支持体とを含み 、一酸化炭素および炭化水素(特にC36およびC38)の酸化、亜酸化窒素の 還元ならびにオゾンの分解を同時に行う金触媒であって、 金−遷移金属酸化物活性錯体は、100〜500℃の温度に触媒を加熱後に形成 される担体表面上に強く固定された微細クラスターの形態をとり、 表面積は80〜400m2/gの間にあり、 使用温度は0℃〜400℃であり、 触媒担体中の酸化セリウムの含有率は30.0重量%〜95.0重量%の間にあ り、且つ触媒担体中の酸化チタンの含有率は5重量%〜25重量%の間にあり、 金属の総濃度は触媒の重量の0.1重量%〜10重量%の間にあり、 金含有率は触媒の重量の0.1重量%〜2.5重量%である金触媒。 2. 前記還元性遷移金属酸化物の内容物は、銅、クロム、コバルト、マンガ ンおよび鉄の酸化物の1つまたはこれらの混合物である、請求項1に記載の金触 媒。 3. 活性錯体中の金含有率は0.1重量%〜1.5重量%の間にあることが 好ましい、請求項1に記載の金触媒。[Claims] 1. An active complex containing a reducing transition metal oxide and gold supported on a porous support comprising an oxide of cerium and titanium; and the porous support, wherein the active complex comprises carbon monoxide and hydrocarbon (particularly C A gold catalyst which simultaneously oxidizes 3 H 6 and C 3 H 8 ), reduces nitrous oxide and decomposes ozone. The gold-transition metal oxide active complex heats the catalyst to a temperature of 100 to 500 ° C. In the form of fine clusters firmly fixed on the surface of the support to be formed later, the surface area is between 80 and 400 m 2 / g, the operating temperature is between 0 ° C. and 400 ° C. and the cerium oxide in the catalyst support is The content is between 30.0% to 95.0% by weight, and the content of titanium oxide in the catalyst support is between 5% to 25% by weight, and the total concentration of metal is the weight of the catalyst. 0.1% to 10% by weight of A gold catalyst, wherein the gold content is between 0.1% and 2.5% by weight of the weight of the catalyst. 2. The gold catalyst according to claim 1, wherein the content of the reducing transition metal oxide is one of oxides of copper, chromium, cobalt, manganese, and iron or a mixture thereof. 3. The gold catalyst according to claim 1, wherein the gold content in the active complex is preferably between 0.1% and 1.5% by weight.
JP54862498A 1997-05-15 1998-05-15 Gold-containing catalyst for exhaust gas purification Pending JP2001524030A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BG101490 1997-05-15
BG101490A BG62687B1 (en) 1997-05-15 1997-05-15 Gold catalyst for the oxidation of carbon oxide and hydrocarbons, reduction of nitrogen oxides and ozone decomposition
PCT/BG1998/000010 WO1998051401A1 (en) 1997-05-15 1998-05-15 Gold based catalyst for exhaust gas purification

Publications (1)

Publication Number Publication Date
JP2001524030A true JP2001524030A (en) 2001-11-27

Family

ID=3927016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54862498A Pending JP2001524030A (en) 1997-05-15 1998-05-15 Gold-containing catalyst for exhaust gas purification

Country Status (5)

Country Link
EP (1) EP0981402A1 (en)
JP (1) JP2001524030A (en)
AU (1) AU7201398A (en)
BG (1) BG62687B1 (en)
WO (1) WO1998051401A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217970A (en) * 2011-04-13 2012-11-12 Toyota Motor Corp Catalyst for exhaust purification
WO2014010012A1 (en) 2012-07-09 2014-01-16 トヨタ自動車株式会社 Catalyst for emission gas purification and production method thereof
JP2015016394A (en) * 2013-07-09 2015-01-29 株式会社豊田中央研究所 N2o decomposition catalyst and method for decomposing n2o-containing gas using the same
JP2016138056A (en) * 2015-01-27 2016-08-04 トヨタ自動車株式会社 METHOD FOR PRODUCING DISSIMILAR METAL POLYNUCLEAR COMPLEX COMPRISING Ni AND Au

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BG62723B1 (en) * 1997-09-29 2000-06-30 "Ламан-Консулт"Оод Gold catalyst and its application in fuel components
AU5382799A (en) * 1998-09-07 2000-03-27 Anglo American Research Laboratories (Proprietary) Limited Gold catalyst for fuel cell
CA2368378A1 (en) * 1999-04-01 2000-10-12 Bojidara Grigorova Selective catalytic oxidation of co in presence of h2
US7243658B2 (en) 2003-06-13 2007-07-17 Philip Morris Usa Inc. Nanoscale composite catalyst to reduce carbon monoxide in the mainstream smoke of a cigarette
US7165553B2 (en) 2003-06-13 2007-01-23 Philip Morris Usa Inc. Nanoscale catalyst particles/aluminosilicate to reduce carbon monoxide in the mainstream smoke of a cigarette
US7152609B2 (en) 2003-06-13 2006-12-26 Philip Morris Usa Inc. Catalyst to reduce carbon monoxide and nitric oxide from the mainstream smoke of a cigarette
US9107452B2 (en) 2003-06-13 2015-08-18 Philip Morris Usa Inc. Catalyst to reduce carbon monoxide in the mainstream smoke of a cigarette
US7677254B2 (en) 2003-10-27 2010-03-16 Philip Morris Usa Inc. Reduction of carbon monoxide and nitric oxide in smoking articles using iron oxynitride
US7712471B2 (en) 2003-10-27 2010-05-11 Philip Morris Usa Inc. Methods for forming transition metal oxide clusters and smoking articles comprising transition metal oxide clusters
US20050197244A1 (en) * 2004-03-05 2005-09-08 L'vovich Moroz B. Exhaust treatment system and catalyst system
US7569510B2 (en) * 2006-02-27 2009-08-04 Philip Morris Usa Inc. Catalysts to reduce carbon monoxide such as in the mainstream smoke of a cigarette
CZ2008630A3 (en) * 2008-10-17 2010-06-02 Univerzita Karlova V Praze Metal-CeO2 based catalyst for use particularly in fuel elements and process for preparing thereof
US8765085B2 (en) 2012-04-26 2014-07-01 Basf Corporation Base metal catalyst and method of using same
US8668890B2 (en) * 2012-04-26 2014-03-11 Basf Corporation Base metal catalyst composition and methods of treating exhaust from a motorcycle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1581628A (en) * 1976-03-18 1980-12-17 Johnson Matthey Co Ltd Catalytic purification of automobile exhaust gases
JPH02290251A (en) * 1989-01-24 1990-11-30 Nkk Corp Gold-containing catalyst for contact combustion
IL108635A (en) * 1993-02-18 1997-09-30 Grigorova Bojidara Catalyst for use in an oxidation reaction
IL112414A (en) * 1994-01-25 1998-08-16 Anglo American Res Lab Pty Ltd Method of preparing a catalyst by impregnating a porous support with a solution
DE69506105T2 (en) * 1994-06-17 1999-04-15 Anglo American Res Lab Pty Ltd OXIDATION CATALYST
ES2132728T3 (en) * 1994-11-02 1999-08-16 Anglo American Res Lab Pty Ltd CATALYST WITH ZIRCONIUM OXIDE / CERIUM OXIDE SUPPORT.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217970A (en) * 2011-04-13 2012-11-12 Toyota Motor Corp Catalyst for exhaust purification
WO2014010012A1 (en) 2012-07-09 2014-01-16 トヨタ自動車株式会社 Catalyst for emission gas purification and production method thereof
US9358527B2 (en) 2012-07-09 2016-06-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst and production method thereof
JP2015016394A (en) * 2013-07-09 2015-01-29 株式会社豊田中央研究所 N2o decomposition catalyst and method for decomposing n2o-containing gas using the same
JP2016138056A (en) * 2015-01-27 2016-08-04 トヨタ自動車株式会社 METHOD FOR PRODUCING DISSIMILAR METAL POLYNUCLEAR COMPLEX COMPRISING Ni AND Au

Also Published As

Publication number Publication date
AU7201398A (en) 1998-12-08
BG62687B1 (en) 2000-05-31
BG101490A (en) 1999-04-30
EP0981402A1 (en) 2000-03-01
WO1998051401A1 (en) 1998-11-19

Similar Documents

Publication Publication Date Title
JP2001524030A (en) Gold-containing catalyst for exhaust gas purification
JP4501012B2 (en) Combustion catalyst for diesel exhaust gas treatment and diesel exhaust gas treatment method
US4678770A (en) Three-way catalyst for lean exhaust systems
JPH0459049A (en) Catalyst for diesel engine exhaust gas cleanup
GB2248194A (en) Catalyst for cleaning exhaust gases
KR20010053142A (en) Exhaust gas catalyst comprising rhodium, zirconia and rare earth oxide
ZA200503956B (en) Exhaust gas purifying catalyst and method for purifying exhaust gas
JP4703818B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
CN112023986B (en) Automobile exhaust purification catalyst and preparation method thereof
JP6348110B2 (en) Catalyst composition
EP0589393A2 (en) Method for purifying oxygen rich exhaust gas
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
JP4512691B2 (en) Catalyst for selective reduction of nitrogen oxides by carbon monoxide and its preparation
JP2006346605A (en) Exhaust gas cleaning filter and exhaust gas cleaning device for internal engine
CN111939905B (en) Preparation method of catalyst for automobile exhaust, product and application thereof
JPS5915020B2 (en) Engine exhaust gas detoxification catalyst
JP3251009B2 (en) Exhaust gas purification catalyst
JP4324018B2 (en) Combustion catalyst for diesel exhaust gas treatment and diesel exhaust gas treatment method
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
CN113244949A (en) High-durability BEA molecular sieve catalyst with core-shell structure, preparation method and application thereof
JPH0435744A (en) Catalytic body for purification of exhaust gas
JP4697506B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2007007606A (en) Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JPS61209045A (en) Catalyst for purifying exhaust gas
JP2001058131A (en) Catalyst for exhaust gas treatment