JPS63254764A - Solid-state image sensing device - Google Patents

Solid-state image sensing device

Info

Publication number
JPS63254764A
JPS63254764A JP62088660A JP8866087A JPS63254764A JP S63254764 A JPS63254764 A JP S63254764A JP 62088660 A JP62088660 A JP 62088660A JP 8866087 A JP8866087 A JP 8866087A JP S63254764 A JPS63254764 A JP S63254764A
Authority
JP
Japan
Prior art keywords
region
photodiode
solid
implanting
smear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62088660A
Other languages
Japanese (ja)
Inventor
Hidenori Akiyama
英範 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP62088660A priority Critical patent/JPS63254764A/en
Publication of JPS63254764A publication Critical patent/JPS63254764A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14654Blooming suppression

Abstract

PURPOSE:To decrease dark current, to decrease defects in images and to suppress the occurrence of cross talk and smear, by forming a crystal defect layer in a region other than a photodiode part from the surface of a wafer at a depth, where optical carriers are formed from the surface. CONSTITUTION:One cell of this device comprises the following parts: a photodiode part 2, which is formed by implanting, e.g., n<+> type impurities in the surface of a p-type semiconductor 1; a charge transfer part 3, which is formed by implanting n<-> type impurities; and a transfer gate 4, which is formed between the photodiode part 2 and the charge transfer part 3 and performs the field shift of charge. The element is isolated from neighboring cells with channel stopper regions 5, which are formed by implanting p<+> impurities. Crystal defects are formed in a part of each p<+> type channel stopper region 5 in each element isolating region other than the photodiode part in the device, which is formed in this way before or after the formation of said region. Therefore, optical carriers, which are generated in the deep part of the photodiode part and cause cross talk and smear, are trapped and decreased by said defect layer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、暗電流低減とクロストーク及びスミア低減が
同時にはかれる固体撮像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a solid-state imaging device that simultaneously reduces dark current and reduces crosstalk and smear.

(従来技術) 従来より、固体撮像装置に見られる暗電流低減の方法と
して、イントリンシックゲッタリング法(IG法)、エ
クストリンシックゲッタリング法(EC法)及びエビウ
ェハー使用等が用いられている。
(Prior Art) Intrinsic gettering method (IG method), extrinsic gettering method (EC method), shrimp wafer use, etc. have been used as methods for reducing dark current found in solid-state imaging devices.

前記IG法は、Si基板のバルク中に、−面に微小欠陥
を形成し、これに汚染物質を吸収させて除去するもので
あり、前記EC法は、Si基板の裏面に同じ(高濃度結
晶欠陥、歪等を形成して基板の外から汚染物質を除去し
ている。
In the IG method, micro defects are formed on the negative side in the bulk of the Si substrate, and the contaminants are absorbed and removed by the micro defects, and in the EC method, micro defects are formed on the back surface of the Si substrate (highly concentrated crystals). Contaminants are removed from the outside of the substrate by forming defects, distortions, etc.

(発明が解決しようとする問題点) しかしながら、従来のゲッタリング法は、前述した何れ
の方法であっても、製造プロセス中に発生する汚染物質
の混入や結晶欠陥に伴って生じる暗電流の低減をはかる
ことはできたが、クロストーク及びスミアを同時に低減
するものではなかった。そのため、従来方法では、クロ
ストーク、スミアを低減するためには別の手段、例えば
フォトダイオード部深部で生成されたキャリアの拡散を
構造的に抑制したり、また、水平ブランキング期間にス
ミア成分を排出する外部回路等を必要とした。
(Problems to be Solved by the Invention) However, in any of the conventional gettering methods described above, it is difficult to reduce the dark current that occurs due to the contamination of contaminants or crystal defects that occur during the manufacturing process. However, it was not possible to reduce crosstalk and smear at the same time. Therefore, in conventional methods, it is necessary to take other measures to reduce crosstalk and smear, such as structurally suppressing the diffusion of carriers generated deep in the photodiode, or reducing smear components during the horizontal blanking period. An external circuit for discharging was required.

本発明の目的は、EG法を適用して暗電流の低滅による
画像欠陥の減少がはかれると同時に、クロストーク及び
スミアも低減される固体撮像装置を提供することにある
An object of the present invention is to provide a solid-state imaging device in which image defects are reduced by reducing dark current by applying the EG method, and crosstalk and smear are also reduced.

(問題点を解決するための手段) すなわち、本発明の上記目的は、半導体基板上に複数の
フォトダイオード部が形成される固体撮像装置において
、フォトダイオード部を除く領域に、エクストリンシソ
クゲフタリング法により、汚染物質を吸収する領域が基
板表面から光キャリアが生成される深さに形成されてお
り、また前記欠陥領域の界面に光キャリアをトラップす
る歪が設けられていることを特徴とする固体撮像装置に
より達成される。
(Means for Solving the Problems) That is, the above-mentioned object of the present invention is to provide a solid-state imaging device in which a plurality of photodiode sections are formed on a semiconductor substrate, in which an extrinsic gate is formed in an area other than the photodiode section. A region that absorbs contaminants is formed by the ring method at a depth where photocarriers are generated from the substrate surface, and a strain is provided at the interface of the defective region to trap photocarriers. This is achieved using a solid-state imaging device.

本発明は、チャンネルストッパー領域を形成するシリコ
ン領域の1部に、表面から光キャリアが生成される深さ
まで溝を明け、その溝中にシリコンと直接接触して歪み
を起こすもの、例えばポリシリコンを埋め込むことによ
り、前記シリコンとポリシリコンの界面の歪が後の熱工
程で欠陥領域となってゲッタリングする。また、前記溝
周辺に発生した薄い欠陥層による歪はクロストーク及び
スミアの原因となるキャリアのトラップとして働く。
In the present invention, a groove is formed in a part of the silicon region that forms the channel stopper region from the surface to a depth where photocarriers are generated, and a material that directly contacts the silicon and causes distortion, such as polysilicon, is placed in the groove. By embedding, the strain at the silicon-polysilicon interface becomes a defective region and gettered in a subsequent thermal process. Furthermore, the strain caused by the thin defect layer generated around the groove acts as a carrier trap that causes crosstalk and smear.

(実施例) 以下、図面により本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の1実施例によるCCD型デバイスの
1セル当りの水平方向断面図である。
FIG. 1 is a horizontal cross-sectional view of one cell of a CCD type device according to an embodiment of the present invention.

前記デバイスは、従来と略同−構造から成っている。す
なわち、前記デバイスは1セルが例えばp形半導体基板
1表面に、n°形不純物が注入されて形成されるフォト
ダイオード部2と、n−形不純物が注入されて形成され
る電荷転送部3と、前記フォトダイオード部2及び電荷
転送部3との間に形成されて電荷をフィールドシフトす
る転送ゲート部4と、から成り、隣接セルとは、p゛形
不純物を注入して形成されるチャンネルストッパー領域
5により素子間分離されている。
The device has substantially the same structure as the conventional one. That is, one cell of the device includes, for example, a photodiode section 2 formed by implanting n° type impurities into the surface of a p-type semiconductor substrate 1, and a charge transfer section 3 formed by implanting n-type impurities. , a transfer gate section 4 formed between the photodiode section 2 and the charge transfer section 3 to field shift charges, and the adjacent cell is a channel stopper formed by implanting p-type impurities. The elements are isolated by region 5.

本発明は、上述の如く形成されたデバイスのフォトダイ
オード部を除く素子間分離領域に、本実施例では前記P
゛チヤンネルストツパー領域の1部に、このN域の形成
前または形成後に結晶欠陥を形成した構造から成る。
In the present invention, in the device isolation region excluding the photodiode portion of the device formed as described above,
It has a structure in which crystal defects are formed in a part of the channel stopper region before or after the formation of this N region.

以下、製造プロセスに従って説明する。The manufacturing process will be explained below.

前記チャンネルストッパー領域5の1部に、反応性イオ
ンエツチング(RIE)により、ウェハの深さ方向の溝
をあける。前記溝の深さはウェハ表面から光キャリアが
生成される深さに対応して設けられている。前記溝を形
成後、CVD法により溝中にポリシリコンをデボジョン
して埋め込む。
A groove in the depth direction of the wafer is formed in a portion of the channel stopper region 5 by reactive ion etching (RIE). The depth of the groove is set to correspond to the depth at which optical carriers are generated from the wafer surface. After forming the trench, polysilicon is deposited and buried in the trench by CVD.

これによって形成されるシリコンとポリシリコンとの界
面はその後の熱処理工程、例えば酸化工程により欠陥領
域6となって働き、外部から混入する汚染物質を吸収す
る。また、このシリコンとポリシリコンとの界面の歪は
製造プロセス終了後も界面周辺に欠陥層7を残す。従っ
て、フォトダイオード部の深部で発生したクロストーク
、スミアの原因となる光キャリアは前記欠陥層によりト
ラップされて低減される。
The interface between silicon and polysilicon thus formed acts as a defect region 6 during a subsequent heat treatment process, for example, an oxidation process, and absorbs contaminants mixed in from the outside. Moreover, this strain at the interface between silicon and polysilicon leaves a defective layer 7 around the interface even after the manufacturing process is completed. Therefore, optical carriers that cause crosstalk and smear generated deep in the photodiode portion are trapped and reduced by the defect layer.

前記実施例はCCD型デバイスについて述べたが本発明
はMO3型デバイスにも適用できることは明らかである
。また、第2図に図示するように、素子間分離が厚い酸
化膜によって設けられるフィールド酸化膜8と、この酸
化股下のp9イオン注入領域5によって構成されている
デバイスであっても同様に適用できる。更にまた、本発
明は第3図に図示した、n形基板の表面に作られたp形
拡散領域(p−ウェル)の中にフォトダイオード部2を
構成し、p−ウェルとn形基板間の逆バイアス電圧によ
り、pウェルを完全に空乏化して過剰電荷を吸収する縦
形オーバーフロードレイン構造を有するデバイスにも適
用でき、画素間分離領域に欠陥領域6を設けることがで
きる。特にこのようなデバイスでは、ブルーミングの抑
制もできて好ましいデバイスとなる。
Although the above embodiments have been described with respect to CCD type devices, it is clear that the present invention can also be applied to MO3 type devices. Furthermore, as shown in FIG. 2, the device can be similarly applied to a device in which element isolation is formed by a field oxide film 8 provided by a thick oxide film and a p9 ion implantation region 5 under this oxide film. . Furthermore, the present invention configures the photodiode section 2 in a p-type diffusion region (p-well) formed on the surface of an n-type substrate, as shown in FIG. The present invention can also be applied to a device having a vertical overflow drain structure in which the p-well is completely depleted to absorb excess charge by using a reverse bias voltage of , and a defect region 6 can be provided in the pixel isolation region. Particularly in such a device, blooming can be suppressed, making it a desirable device.

(発明の効果) 以上記載したとおり、本発明の固体撮像装置によれば、
フォトダイオード部以外の領域に、表面から光キャリア
が生成される深さの結晶欠陥層をウェハ表面から形成す
ることにより、暗電流を低減して画像欠陥も低減でき、
しかも同時にクロストーク及びスミアの発生も抑制でき
る。
(Effects of the Invention) As described above, according to the solid-state imaging device of the present invention,
By forming a crystal defect layer from the wafer surface to a depth where photocarriers are generated from the surface in areas other than the photodiode area, dark current can be reduced and image defects can also be reduced.
Moreover, the occurrence of crosstalk and smear can be suppressed at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例による固体撮像装置の水平方
向断面図、第2図及び第3図は他の実施例による固体撮
像装置の水平断面図である。 1・・・半導体基板、 2・・・フォトダイオード部、
3・・・電荷転送部、 4・・・転送ゲート、訃・・チ
ャンネルストッパー、 6・・・欠陥領域、7・・・欠
陥層、    8・・・フィールド酸化膜箱  1  
図 第2図
FIG. 1 is a horizontal sectional view of a solid-state imaging device according to one embodiment of the present invention, and FIGS. 2 and 3 are horizontal sectional views of solid-state imaging devices according to other embodiments. 1... Semiconductor substrate, 2... Photodiode section,
3...Charge transfer part, 4...Transfer gate, end...Channel stopper, 6...Defect region, 7...Defect layer, 8...Field oxide film box 1
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に複数のフォトダイオード部が形成される
固体撮像装置において、フォトダイオード部を除く領域
に、エクストリンシックゲッタリング法により汚染物質
を吸収する領域が基板表面から光キャリアが生成される
深さに形成されており、また前記欠陥領域の界面に光キ
ャリアをトラップする歪が設けられていることを特徴と
する固体撮像装置。
In a solid-state imaging device in which multiple photodiode sections are formed on a semiconductor substrate, a region other than the photodiode section that absorbs contaminants using the extrinsic gettering method has a depth at which photocarriers are generated from the substrate surface. What is claimed is: 1. A solid-state imaging device characterized in that the interface of the defective region is provided with a strain that traps optical carriers.
JP62088660A 1987-04-13 1987-04-13 Solid-state image sensing device Pending JPS63254764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62088660A JPS63254764A (en) 1987-04-13 1987-04-13 Solid-state image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62088660A JPS63254764A (en) 1987-04-13 1987-04-13 Solid-state image sensing device

Publications (1)

Publication Number Publication Date
JPS63254764A true JPS63254764A (en) 1988-10-21

Family

ID=13948978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62088660A Pending JPS63254764A (en) 1987-04-13 1987-04-13 Solid-state image sensing device

Country Status (1)

Country Link
JP (1) JPS63254764A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086826A (en) * 2001-09-12 2003-03-20 Hamamatsu Photonics Kk Photodiode array, solid image pickup unit and radiation detector
KR100841208B1 (en) * 2002-07-19 2008-06-24 매그나칩 반도체 유한회사 A fabricating method of image sensor with decreased dark signal
JP2009302349A (en) * 2008-06-13 2009-12-24 Sharp Corp Amplification type solid-state imaging element, and electronic information apparatus
US9704909B2 (en) 2015-03-25 2017-07-11 Canon Kabushiki Kaisha Image sensor and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086826A (en) * 2001-09-12 2003-03-20 Hamamatsu Photonics Kk Photodiode array, solid image pickup unit and radiation detector
JP4482253B2 (en) * 2001-09-12 2010-06-16 浜松ホトニクス株式会社 Photodiode array, solid-state imaging device, and radiation detector
KR100841208B1 (en) * 2002-07-19 2008-06-24 매그나칩 반도체 유한회사 A fabricating method of image sensor with decreased dark signal
JP2009302349A (en) * 2008-06-13 2009-12-24 Sharp Corp Amplification type solid-state imaging element, and electronic information apparatus
US9704909B2 (en) 2015-03-25 2017-07-11 Canon Kabushiki Kaisha Image sensor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR0168902B1 (en) Solid state image pick-up device
KR101093926B1 (en) Method of producing solid-state imaging device
KR100461975B1 (en) Method for forming trench isolation layer in image sensor
US9087757B2 (en) Semiconductor device, solid-state imaging device, method for manufacturing semiconductor device, method for manufacturing solid-state imaging device, and electronic apparatus
JPH1070263A (en) Solid state image sensor
JP2001177086A (en) Image pickup element and its manufacturing method
US4947224A (en) Solid state image sensing device with photodiode to reduce smearing
JPS63254764A (en) Solid-state image sensing device
US20080160731A1 (en) Method for fabricating cmos image sensor
KR100748318B1 (en) Image sensor and method for fabricating the same
KR100893054B1 (en) Imase sensor with improved capability of protection against crosstalk and method for fabricating thereof
KR20050039167A (en) Cmos image sensor and method for fabricating the same
JPS63312669A (en) Solid-state image sensor
JP2573582B2 (en) Method for manufacturing solid-state image sensor
KR100329770B1 (en) image sensor with photodiode of hemisphere shape
KR20040058689A (en) Fabricating method of cmos image sensor
JP4667030B2 (en) Semiconductor substrate for solid-state imaging device and manufacturing method thereof
JPH06163971A (en) Manufacture of solid-state image pickup device
JPH06275809A (en) Solid-state image pickup device
KR20000041453A (en) Image sensor having photodiode of large charge capacity and fabrication method thereof
JPH07120773B2 (en) Interline solid-state image sensor
JPH09186310A (en) Solid-state image sensing device
JPH05145056A (en) Solid state image sensor
JPH03289173A (en) Charge transfer type solid state image sensor
JPH0774336A (en) Solid-state image sensing device