JPH09186310A - Solid-state image sensing device - Google Patents

Solid-state image sensing device

Info

Publication number
JPH09186310A
JPH09186310A JP7341650A JP34165095A JPH09186310A JP H09186310 A JPH09186310 A JP H09186310A JP 7341650 A JP7341650 A JP 7341650A JP 34165095 A JP34165095 A JP 34165095A JP H09186310 A JPH09186310 A JP H09186310A
Authority
JP
Japan
Prior art keywords
element isolation
layer
type
photodiode
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7341650A
Other languages
Japanese (ja)
Other versions
JP3105781B2 (en
Inventor
Tsunehiro Morimoto
倫弘 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP07341650A priority Critical patent/JP3105781B2/en
Priority to KR1019960074057A priority patent/KR970054294A/en
Publication of JPH09186310A publication Critical patent/JPH09186310A/en
Application granted granted Critical
Publication of JP3105781B2 publication Critical patent/JP3105781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76808Input structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76816Output structures

Abstract

PROBLEM TO BE SOLVED: To make it possible to increase the junction capacity between photodiodes without entailing a rise of a substrate shutter voltage by a method wherein the depth of second conductivity type element isolation layers is formed in a depth of a value larger than that of a depth, Which prevents an inversion layer from being formed in the surfaces of the element isolation layers and is required for performing an element isolation. SOLUTION: An N-type diffused layer 15 constituting a vertical CCD register 102 being adjacent to photodiodes is formed and a P-type diffused layer 16 is formed under the lower part of the layer 15. A P<+> element isolation layer 18 is formed on the periphery of each photodiode excluding a readout gate region 17. An insulating film 14, such as a silicon dioxide film, is formed on one main surface of an N-type silicon substrate 11 and transfer electrodes 20 and 21 consisting of a polysilicon film or the like are formed on the film 19. As the layers 18 are formed in a depth equal with that of an N-type diffused layer 13 for discharging an innate role in an element isolation, the P-N junction capacity between the photodiodes can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体撮像装置に関
し、特に基板シャッタ動作が可能な縦型オーバーフロー
ドレイン構造を有するCCD型の固体撮像装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device, and more particularly to a CCD type solid-state image pickup device having a vertical overflow drain structure capable of operating a substrate shutter.

【0002】[0002]

【従来の技術】図3は、一般的なインターラインCCD
型固体撮像装置の概略構成図である。インターラインC
CD型固体撮像装置は、複数のフォトダイオード101
と、フォトダイオードからの電荷を受け取って転送する
垂直CCDレジスタ102と、垂直CCDレジスタから
の電荷を受け取って転送する水平CCDレジスタ103
と、水平CCDレジスタにより転送されてきた電荷を検
出する電荷検出部104と、出力増幅器105とにより
構成される。破線で囲まれた部分は単位画素106であ
る。
2. Description of the Related Art FIG. 3 is a general interline CCD.
It is a schematic block diagram of a solid-state imaging device. Interline C
The CD type solid-state imaging device includes a plurality of photodiodes 101.
And a vertical CCD register 102 that receives and transfers the charge from the photodiode, and a horizontal CCD register 103 that receives and transfers the charge from the vertical CCD register.
And a charge detector 104 for detecting the charges transferred by the horizontal CCD register, and an output amplifier 105. The portion surrounded by the broken line is the unit pixel 106.

【0003】図4は、この従来の固体撮像装置における
単位画素の構造を説明するための図であり、図(a)は
平面図、図(b)は図(a)におけるA−A断面図、図
(c)は図(a)におけるB−B断面図である。まず、
画素の構成について説明する。N型シリコン基板111
の一主面上にP型ウェル領域112が形成されている。
その内部にフォトダイオード101を構成するN型拡散
層113、およびその表面に暗電流の発生を抑制するた
めのP+ 型拡散層114が形成されている。また、垂直
CCDレジスタ102を構成するN型拡散層115、お
よびその下部にP型拡散層116が形成されている。各
フォトダイオード101の周囲には、読み出しゲート領
域117を除いて、P+ 型素子分離層118が形成され
ている。なお、本図では省略されているが、読み出しゲ
ート領域117の基板表面近傍にはしきい値電圧調整の
ために追加の不純物層が形成される場合もある。シリコ
ン基板111の一主面上には、二酸化シリコン膜や窒化
シリコン膜などからなる絶縁膜119が形成されてお
り、その上にポリシリコン膜などからなる転送電極12
0および121が形成されている。転送電極120と転
送電極121との間にも二酸化シリコン膜などからなる
絶縁膜122が存在する。さらにその上には二酸化シリ
コン膜などからなる絶縁膜(図示しない)を介して、タ
ングステン膜やアルミニウム膜などからなる遮光膜(図
示しない)が形成されている。さらにその上には、二酸
化シリコン膜などからなるカバー膜(図示しない)が形
成されている。
4A and 4B are views for explaining the structure of a unit pixel in this conventional solid-state image pickup device. FIG. 4A is a plan view and FIG. 4B is a sectional view taken along line AA in FIG. FIG. 6C is a sectional view taken along line BB in FIG. First,
The configuration of the pixel will be described. N-type silicon substrate 111
A P-type well region 112 is formed on one main surface.
An N-type diffusion layer 113 that constitutes the photodiode 101 and a P + -type diffusion layer 114 for suppressing the generation of dark current are formed inside the photodiode. Further, an N-type diffusion layer 115 that constitutes the vertical CCD register 102 and a P-type diffusion layer 116 are formed below the N-type diffusion layer 115. A P + type element isolation layer 118 is formed around each photodiode 101 except for the read gate region 117. Although not shown in the figure, an additional impurity layer may be formed near the substrate surface of the read gate region 117 for adjusting the threshold voltage. An insulating film 119 made of a silicon dioxide film or a silicon nitride film is formed on one main surface of the silicon substrate 111, and a transfer electrode 12 made of a polysilicon film or the like is formed thereon.
0 and 121 are formed. An insulating film 122 made of a silicon dioxide film or the like exists between the transfer electrodes 120 and 121. Further, a light-shielding film (not shown) made of a tungsten film, an aluminum film or the like is formed on the insulating film (not shown) made of a silicon dioxide film or the like. Further thereon, a cover film (not shown) made of a silicon dioxide film or the like is formed.

【0004】[0004]

【発明が解決しようとする課題】現在、固体撮像装置の
多画素化、高密度化に伴い、単位画素106の寸法は5
μm平方程度に縮小されている。これに伴い、フォトダ
イオード101の面積が減少してフォトダイオードの感
度や容量が減少している。これを改善するために、フォ
トダイオードを1μm以上の深さにまで深く形成するよ
うになってきた。一方、フォトダイオード周囲に形成さ
れているP+ 型素子分離層の深さは、垂直CCDレジス
タ102のN型拡散層115の側面を覆う程度の深さ、
すなわち0.3〜0.5μm程度の深さに形成されてい
た。
At present, with the increase in the number of pixels and the density of solid-state image pickup devices, the size of the unit pixel 106 is 5
The size is reduced to about μm square. Along with this, the area of the photodiode 101 is reduced, and the sensitivity and capacitance of the photodiode are reduced. In order to improve this, photodiodes have been deeply formed to a depth of 1 μm or more. On the other hand, the depth of the P + type element isolation layer formed around the photodiode is such that it covers the side surface of the N type diffusion layer 115 of the vertical CCD register 102.
That is, it was formed to a depth of about 0.3 to 0.5 μm.

【0005】ところで、最近のマルチメディア機器への
画像入力装置として用いられる固体撮像装置では、順次
走査と呼ばれる駆動方式を採用するものが主流となって
いる。この方式では、通常、各画素の信号が独立に読み
出されるので、最大信号電荷量は1画素のフォトダイオ
ード容量に対応する。一方、1転送段が2画素に対応す
る飛び越し走査方式の場合には、上下方向に隣接する2
画素のフォトダイオードの信号電荷を加算することが可
能であったため、比較的大きな信号電荷量を得ることが
できた。しかるに、順次走査方式の固体撮像装置を用い
たカメラにおいて、飛び越し走査方式の固体撮像装置を
用いたカメラと同等のS/Nを保つために標準信号電荷
量の設定を同一にした場合、ダイナミックレンジが小さ
くなってしまう。これを改善するためには、よりいっそ
うのフォトダイオード容量の拡大が必要となる。
By the way, in the recent solid-state image pickup device used as an image input device for multimedia equipment, the one which adopts a driving system called sequential scanning is predominant. In this method, since the signal of each pixel is usually read independently, the maximum amount of signal charge corresponds to the photodiode capacitance of one pixel. On the other hand, in the case of the interlaced scanning method in which one transfer stage corresponds to two pixels, two adjacent pixels are arranged in the vertical direction.
Since it was possible to add the signal charges of the photodiodes of the pixels, it was possible to obtain a relatively large amount of signal charges. However, in a camera using a progressive scan type solid-state imaging device, if the standard signal charge amount is set to be the same in order to maintain the same S / N as that of a camera using an interlace scanning type solid-state imaging device, the dynamic range Becomes smaller. To improve this, it is necessary to further increase the photodiode capacitance.

【0006】フォトダイオード容量を拡大をするための
1つの方法として、公開特許公報昭60−1979号に
開示された方法がある。この公報に記載された発明は、
プラズマ結合素子を利用た固体撮像装置のフォトダイオ
ード周囲の拡散層の不純物濃度を局部的に高くすること
で、フォトダイオード周囲の接合容量を増加させるとい
うものである。この考え方を図4のフォトダイオードに
適用した場合、N型拡散層113の周囲に新たなP型拡
散層を形成することになる。ここで、公開特許公報昭6
0−1979号によれば、フォトダイオード周囲のP型
拡散層の濃度は、N型拡散層113の濃度より低く、か
つ、P型ウェル領域112の濃度より高く設定すること
になる。例えば、N型拡散層113の濃度が1×1016
cm-3で、その周囲のP型ウェル領域の濃度が5×10
15cm-3の場合、その接合部の空乏層幅は0.5μm程
度である。接合容量は接合部の空乏層幅の逆数に比例す
ることから、接合容量を大きくするには、フォトダイオ
ード周囲に設けるP型拡散層の濃度を高くすればよい。
例えば、その濃度を1×1017cm-3とした場合には、
接合部の空乏層幅は0.3μm程度になり、一段と接合
容量が増加する。しかし、同時に、フォトダイオード底
面のP型不純物濃度も高くなるため、フォトダイオード
内に蓄積された電荷をN型シリコン基板111に掃き出
す場合に基板に印加する基板シャッタ電圧が上昇する、
もしくは、基板シャッタ自体が機能しなくなるという問
題がある。
As one method for expanding the photodiode capacitance, there is a method disclosed in Japanese Patent Laid-Open No. 60-1979. The invention described in this publication is
The junction capacitance around the photodiode is increased by locally increasing the impurity concentration of the diffusion layer around the photodiode of the solid-state imaging device using the plasma coupling element. When this idea is applied to the photodiode of FIG. 4, a new P-type diffusion layer is formed around the N-type diffusion layer 113. Here, Japanese Patent Laid-Open Publication No. Sho 6
According to 0-1979, the concentration of the P-type diffusion layer around the photodiode is set to be lower than that of the N-type diffusion layer 113 and higher than that of the P-type well region 112. For example, the concentration of the N-type diffusion layer 113 is 1 × 10 16.
cm −3 , and the concentration of the P-type well region around it is 5 × 10
In the case of 15 cm −3 , the depletion layer width at the junction is about 0.5 μm. Since the junction capacitance is proportional to the reciprocal of the depletion layer width of the junction, the junction capacitance can be increased by increasing the concentration of the P-type diffusion layer provided around the photodiode.
For example, when the concentration is 1 × 10 17 cm −3 ,
The width of the depletion layer at the junction becomes about 0.3 μm, and the junction capacitance further increases. However, at the same time, since the P-type impurity concentration on the bottom surface of the photodiode also increases, the substrate shutter voltage applied to the substrate when sweeping the charges accumulated in the photodiode to the N-type silicon substrate 111 increases.
Alternatively, there is a problem that the substrate shutter itself does not function.

【0007】従って本発明の目的は、基板シャッタ電圧
の上昇を伴なうことなくフォトダイオードの接合容量を
大きくできる固体撮像装置を提供することにある。
Therefore, an object of the present invention is to provide a solid-state image pickup device capable of increasing the junction capacitance of a photodiode without increasing the substrate shutter voltage.

【0008】[0008]

【課題を解決するための手段】本発明の固体撮像装置
は、複数のフォトダイオードと、該フォトダイオードか
らの電荷を受け取って転送する垂直CCDレジスタと、
該垂直CCDレジスタからの電荷を受け取って転送する
水平CCDレジスタと、該水平CCDレジスタからの電
荷を検出する電荷検出部と、出力増幅器とからなる固体
撮像装置において、前記フォトダイオードが第1導電型
半導体基板表面部の第2導電型領域の表面部に選択的に
形成され、前記第2導電型領域より不純物濃度の高い第
2導電型素子分離層に接触して区画された第1導電型拡
散層を有し、前記第2導電型素子分離層の深さを表面に
反転層が形成されるのを防止して素子分離を行なうのに
必要な値より大きくしたというものである。
A solid-state image pickup device of the present invention includes a plurality of photodiodes, a vertical CCD register for receiving and transferring charges from the photodiodes,
In a solid-state imaging device including a horizontal CCD register that receives and transfers charges from the vertical CCD register, a charge detection unit that detects charges from the horizontal CCD register, and an output amplifier, the photodiode is of a first conductivity type. A first conductivity type diffusion which is selectively formed on the surface of the second conductivity type region of the surface of the semiconductor substrate and which is partitioned in contact with a second conductivity type element isolation layer having a higher impurity concentration than the second conductivity type region. A layer, and the depth of the second conductivity type element isolation layer is made larger than a value required to prevent formation of an inversion layer on the surface and perform element isolation.

【0009】更に、第2導電型素子分離層の幅を底部で
上部より狭くして第1導電型拡散層を底部で上部より広
くすることができる。
Further, the width of the second conductive type element isolation layer can be made narrower at the bottom than the upper part, and the first conductive type diffusion layer can be made wider at the bottom than the upper part.

【0010】又、加速電圧を変化させてイオン注入を行
なうことによって第2導電型素子分離層の深さ方向の不
純物濃度分布を均一化することができる。
Further, the impurity concentration distribution in the depth direction of the second conductivity type element isolation layer can be made uniform by changing the acceleration voltage and performing ion implantation.

【0011】第2導電型素子分離層が素子分離層として
本来必要な値より深くなっているのでこれと接触してい
るフォトダイオードの第1導電型拡散層の接合容量を大
きくとれる。
Since the second-conductivity-type element isolation layer is deeper than the value originally required for the element-isolation layer, the junction capacitance of the first-conductivity-type diffusion layer of the photodiode in contact therewith can be increased.

【0012】[0012]

【発明の実施の形態】図1は、本発明の第1の実施の形
態における単位画素の構造を説明するための図であり、
図(a)は平面図、図(b)は図(a)のA−A線断面
図、図(c)は図(a)のB−B線断面図である。
FIG. 1 is a diagram for explaining the structure of a unit pixel in the first embodiment of the present invention.
FIG. 6A is a plan view, FIG. 6B is a sectional view taken along the line AA of FIG. 6A, and FIG. 6C is a sectional view taken along the line BB of FIG.

【0013】この実施の形態は、1×1014cm-3程度
の不純物濃度のN型シリコン基板11の一主表面部に形
成されたP型ウェル領域12(不純物濃度5×1014
5×1015cm-3)を有している。P型ウェル領域12
の表面部にはN型拡散層13(不純物濃度5×1015
5×1016cm-3、深さ1μm程度)が選択的に形成さ
れてフォトダイオード(図3の101)を構成してい
る。なおN型拡散層14の表面部には、暗電流の発生を
抑制するためのP+ 型拡散層14(不純物濃度1017
1018cm-3)が形成されている。
In this embodiment, a P-type well region 12 (impurity concentration of 5 × 10 14 to 5 × 10 14-) formed on one main surface portion of an N-type silicon substrate 11 having an impurity concentration of about 1 × 10 14 cm -3.
5 × 10 15 cm −3 ). P-type well region 12
N-type diffusion layer 13 (impurity concentration 5 × 10 15
5 × 10 16 cm −3 and a depth of about 1 μm) are selectively formed to form a photodiode (101 in FIG. 3). In addition, on the surface portion of the N-type diffusion layer 14, the P + -type diffusion layer 14 (impurity concentration 10 17-
10 18 cm −3 ) are formed.

【0014】また、フォトダイオードに隣接して垂直C
CDレジスタ102を構成する1016〜1017cm-3
度の濃度を有するN型拡散層15、およびその下部に5
×1015〜5×1016cm-3程度の濃度を有するP型拡
散層16が形成されている。各フォトダイオード101
の周囲には、読み出しゲート領域17を除いて、1017
〜1019cm-3程度の濃度を有するP+ 型素子分離層1
8が形成されている。ここで、P+ 型素子分離層18の
深さは、N型拡散層13の深さと同等であり、例えば1
μm程度である。N型シリコン基板11の一主面上に
は、二酸化シリコン膜や窒化膜などからなる絶縁膜19
が形成されており、その上にポリシリコン膜などからな
る転送電極20および21(N型拡散層15とともに垂
直CCDレジスタを構成する。)が形成されている。転
送電極20と転送電極21との間にも二酸化シリコン膜
などからなる絶縁膜(図示しない)を介して、タングス
テン膜やアルミニウム膜などからなる遮光膜(図示しな
い)が形成されている。さらにその上には、二酸化シリ
コン膜などからなるカバー膜(図示しない)が形成され
ている。
Further, a vertical C is provided adjacent to the photodiode.
The N-type diffusion layer 15 having a concentration of about 10 16 to 10 17 cm −3, which constitutes the CD register 102, and 5 below the N-type diffusion layer 15.
A P-type diffusion layer 16 having a concentration of about × 10 15 to 5 × 10 16 cm −3 is formed. Each photodiode 101
Except for the readout gate region 17, 10 17
P + type element isolation layer 1 having a concentration of about 10 19 cm −3
8 are formed. Here, the depth of the P + type element isolation layer 18 is equal to the depth of the N type diffusion layer 13, and for example, 1
It is about μm. An insulating film 19 made of a silicon dioxide film, a nitride film, or the like is formed on one main surface of the N-type silicon substrate 11.
Are formed, and transfer electrodes 20 and 21 (which constitute a vertical CCD register together with the N-type diffusion layer 15) made of a polysilicon film or the like are formed thereon. A light-shielding film (not shown) made of a tungsten film, an aluminum film or the like is also formed between the transfer electrode 20 and the transfer electrode 21 via an insulating film (not shown) made of a silicon dioxide film or the like. Further thereon, a cover film (not shown) made of a silicon dioxide film or the like is formed.

【0015】P+ 型素子分離層18は、素子分離本来の
役割をはたすためには、前述したように0.3〜〜0.
5μm程度の深さであれば十分であるが、本実施の形態
ではそれより深くN型拡散層13の深さと同等になって
いる。これにより、フォトダイオードのPN接合容量を
大きくできる。この容量増加の程度はフォトダイオード
の大きさによる。単位画素の寸法5μm平方,フォトダ
イオードの面積2μm×3.5μmの場合,約20%の
増加と見積ることができる。多画素化が更に進むと一層
の増加が可能となる。一方、フォトダイオード底面は、
従来と同程度の不純物濃度を有するP型ウェル領域12
と接しているため、基板シャッタ電圧も従来と同程度の
値に維持することが可能となる。
The P + type element isolation layer 18 has a function of 0.3 to 0.
A depth of about 5 μm is sufficient, but in the present embodiment, it is deeper than that and equal to the depth of the N-type diffusion layer 13. As a result, the PN junction capacitance of the photodiode can be increased. The degree of this capacitance increase depends on the size of the photodiode. When the unit pixel size is 5 μm square and the photodiode area is 2 μm × 3.5 μm, an increase of about 20% can be estimated. If the number of pixels is further increased, the number can be further increased. On the other hand, the bottom of the photodiode is
P-type well region 12 having the same impurity concentration as the conventional one
Therefore, the substrate shutter voltage can be maintained at the same level as the conventional one.

【0016】P+ 型素子分離層18の深さ方向の不純物
濃度分布はできるだけ均一であることが望しい。そのた
めには、イオン注入を利用する場合、加速電圧を変化さ
せて注入を行えばよい。ここでは、1μm程度の深さを
有するP+ 型素子分離層18の形成方法の一例について
説明する。P+ 型素子分離層18のフォトレジスト工程
直前までは従来と同様に形成され、N型シリコン基板1
1上に20nm程度の熱酸化膜が形成されているとす
る。熱酸化膜上に塗布された3μm程度の厚さを有する
レジスト膜をパターニングし、それをマスクとして45
0keV程度、250keV程度、100keV程度、
および30keV程度の注入エネルギーでそれぞれ10
13cm-2程度のドーズ量で4回のボロンイオン注入を行
ない、アニールを行なう。複数回の異なる注入エネルギ
ーのイオン注入を行なうのは、より均一な不純物濃度分
布となるようにするためである。この結果、素子分離層
は、基板表面から1μm程度の深さまでは、少なくとも
1017cm-3の不純物濃度にすることができる。ここで
は注入エネルギーの異なる4回のイオン注入により形成
する場合を示したが、3回もしくは5回以上のイオン注
入により形成されてもかまわない。更には、連続的に注
入エネルギーを変化させてもよい。なお、注入エネルギ
ーの異なる2回のイオン注入を利用して、0.8μm程
度の深さを有する少なくとも不純物濃度が1017cm-3
のP+ 型素子分離層18を形成可能である。
The impurity concentration distribution in the depth direction of the P + type element isolation layer 18 is desired to be as uniform as possible. For that purpose, when using ion implantation, the acceleration voltage may be changed to perform the implantation. Here, an example of a method of forming the P + type element isolation layer 18 having a depth of about 1 μm will be described. The P + type element isolation layer 18 is formed in the same manner as before until just before the photoresist process, and the N type silicon substrate 1 is formed.
It is assumed that a thermal oxide film having a thickness of about 20 nm is formed on the first layer. The resist film having a thickness of about 3 μm coated on the thermal oxide film is patterned, and the resist film is used as a mask to form a mask.
0 keV, 250 keV, 100 keV,
And 10 at an implantation energy of about 30 keV
Boron ion implantation is performed four times at a dose of about 13 cm -2 and annealing is performed. Ion implantation with different implantation energies is performed a plurality of times in order to obtain a more uniform impurity concentration distribution. As a result, the element isolation layer can have an impurity concentration of at least 10 17 cm −3 at a depth of about 1 μm from the substrate surface. Although the case where the ion implantation is performed four times with different implantation energies is shown here, the ion implantation may be performed three times or five times or more. Furthermore, the implantation energy may be changed continuously. By using two times of ion implantation with different implantation energies, the impurity concentration is at least 10 17 cm −3 having a depth of about 0.8 μm.
The P + type element isolation layer 18 can be formed.

【0017】なお、本実施の形態は、P+ 型素子分離層
の形成工程を修正するだけでその他の製造工程に変更す
ることなく従来例と同様に製造できる。
The present embodiment can be manufactured in the same manner as in the conventional example, only by modifying the formation process of the P + type element isolation layer and without changing to other manufacturing processes.

【0018】図2は、本発明の第2の実施の形態におけ
る単位画素の構造を説明するための図であり、図(a)
は平面図、図(b)は図(a)におけるA−A線断面
図、図(c)は図(a)におけるB−B線断面図であ
る。なお、図1と同様の構成要素については同じ符合を
付しており、その説明は省略する。各フォトダイオード
101の周囲には、読み出しゲート領域17を除いて、
+ 型素子分離層18AおよびP+ 型素子分離層23が
形成されている。ここで、P+ 型素子分離層18Aの深
さは0.3〜0.6μm程度であり、P+ 型素子分離層
23の深さはN型拡散層13Aと同等であり、例えば1
μm程度である。また、P+ 型素子分離層23は、P+
型素子分離層18AよりもN型拡散層13Aの中心から
離れた領域に形成される。なお、N型拡散層13Aを形
成するためのイオン注入領域は、P+型素子分離層23
と接触するように、第1の実施の形態のN型拡散層13
を形成する場合よりも多少広げればよい。
FIG. 2 is a diagram for explaining the structure of a unit pixel according to the second embodiment of the present invention, and FIG.
Is a plan view, FIG. 6B is a sectional view taken along line AA in FIG. 6A, and FIG. 6C is a sectional view taken along line BB in FIG. The same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. Around each photodiode 101, except for the read gate region 17,
A P + type element isolation layer 18A and a P + type element isolation layer 23 are formed. Here, the depth of the P + -type element isolation layer 18A is about 0.3 to 0.6 μm, and the depth of the P + -type element isolation layer 23 is equivalent to that of the N-type diffusion layer 13A.
It is about μm. In addition, the P + type element isolation layer 23 is formed of P +
It is formed in a region farther from the center of the N-type diffusion layer 13A than the mold element isolation layer 18A. The ion implantation region for forming the N-type diffusion layer 13A is the P + -type element isolation layer 23.
So as to come into contact with the N-type diffusion layer 13 of the first embodiment.
It may be a little wider than the case of forming.

【0019】このようにP+ 型素子分離層18A、P+
型素子分離層23、およびN型拡散層13Aを形成する
ことで、結果的にN型拡散層13Aは深さ方向に向かっ
て幅の広がった形となる。これにより、接合容量を一層
大きくできるばかりでなくフォトダイオード101内に
蓄積されている電荷をN型シリコン基板11に掃き出す
際に導通するNPNトランジスタ(N型拡散層13A−
P型ウェル領域12−N型シリコン基板でなる)の電流
通路が広くなるので狭チャネル効果が緩和され第1の実
施の形態に比べてより低い基板シャッタ電圧で電荷の掃
き出しが行なえるという利点がある。
As described above, the P + type element isolation layers 18A, P +
By forming the type element isolation layer 23 and the N-type diffusion layer 13A, the width of the N-type diffusion layer 13A becomes wider in the depth direction as a result. As a result, not only the junction capacitance can be further increased, but also an NPN transistor (N-type diffusion layer 13A- that conducts when the charge accumulated in the photodiode 101 is swept out to the N-type silicon substrate 11).
Since the current path of the P-type well region 12 (made of the N-type silicon substrate) is widened, the narrow channel effect is alleviated, and there is an advantage that the charge can be swept out with a lower substrate shutter voltage as compared with the first embodiment. is there.

【0020】第2の実施の形態を製造するにあたって
は、P+ 型素子分離層23の形成には、例えば450k
eV、および250keV程度の注入エネルギーで、そ
れぞれドーズ量1017cm-2のボロンイオン注入を行な
い、P+ 型素子分離層18Aの形成には、100keV
および30keV程度の注入エネルギーで、ドーズ量1
1017cm-2のボロンイオン注入を行ない、アニールを
行えばよい。なお、両者のイオン注入時のマスクは、図
2(b)、(c)に示された注入幅となるように、それ
ぞれ個別のものを用いることは言うまでもない。
In manufacturing the second embodiment, the P + -type element isolation layer 23 is formed by, for example, 450 k
Boron ion implantation with a dose amount of 10 17 cm −2 is performed with an implantation energy of about eV and about 250 keV, and 100 keV is used to form the P + -type element isolation layer 18A.
And an implant energy of about 30 keV and a dose of 1
Annealing may be performed by implanting boron ions of 10 17 cm -2 . Needless to say, the masks for both ion implantations are individually used so as to have the implantation widths shown in FIGS. 2B and 2C.

【0021】[0021]

【発明の効果】本発明によれば、フォトダイオードの第
1導電型拡散層の側面に接触する第2導電型素子分離を
行なうに本来必要とされるより深くまですることで、フ
ォトダイオードの接合容量を大きくすることができ、ダ
イナミックレンズを改善できる。しかも、フォトダイオ
ード底面の第2導電型領域の濃度を素子分離層に比べて
従来例と同様に1桁以上低く設定できるので、基板への
電子の引き抜きを行なう基板シャッタ電圧も低く維持で
きる。
According to the present invention, the junction of the photodiodes can be formed by making the depth deeper than is originally necessary to perform the isolation of the second conductivity type element in contact with the side surface of the first conductivity type diffusion layer of the photodiode. The capacity can be increased and the dynamic lens can be improved. In addition, the concentration of the second conductivity type region on the bottom surface of the photodiode can be set lower than that of the element isolation layer by one digit or more as in the conventional example, so that the substrate shutter voltage for extracting electrons to the substrate can be kept low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示す平面図(図1
(a)),図1(a)のA−A線断面図(図1(b))
及びB−B線断面図(図1(c))である。
FIG. 1 is a plan view (FIG. 1) showing a first embodiment of the present invention;
(A)), a sectional view taken along line AA of FIG. 1 (a) (FIG. 1 (b))
It is a BB line sectional view (FIG.1 (c)).

【図2】本発明の第2の実施の形態を示す平面図(図2
(a)),図2(a)のA−A線断面図(図2(b))
及びB−B線断面図(図2(c))である。
FIG. 2 is a plan view (FIG. 2) showing a second embodiment of the present invention;
2 (a)) and a sectional view taken along line AA of FIG. 2 (a) (FIG. 2 (b)).
It is a BB line sectional view (FIG. 2 (c)).

【図3】一般的なインターラインCCD型固体撮像装置
の概略構成図である。
FIG. 3 is a schematic configuration diagram of a general interline CCD solid-state imaging device.

【図4】従来の固体撮像装置を示す平面図(図4
(a)),図4(a)のA−A線断面図(図4(b))
及びB−B線断面図(図4(c))である。
FIG. 4 is a plan view showing a conventional solid-state imaging device (see FIG.
(A)), AA line sectional view of FIG. 4 (a) (FIG. 4 (b))
FIG. 4 is a sectional view taken along line BB (FIG. 4C).

【符号の説明】[Explanation of symbols]

11,111 N型シリコン半導体基板 12,112 P型ウェル領域 13,13A,113 N型拡散層 14,14A,114 P+ 型拡散層 15,115 N型拡散層 16,116 P型拡散層 17,117 読み出しゲート領域 18,18A,23 P+ 型素子分離層 19,22,119,122 絶縁膜 20,21,120,121 転送電極 101 フォトダイオード 102 垂直CCDレジスタ 103 水平CCDレジスタ 104 電荷検出部 105 出力増幅器 106 単位画素11,111 N-type silicon semiconductor substrate 12,112 P-type well region 13,13A, 113 N-type diffusion layer 14,14A, 114 P + -type diffusion layer 15,115 N-type diffusion layer 16,116 P-type diffusion layer 17, 117 Read Gate Area 18, 18A, 23 P + Type Element Separation Layer 19, 22, 119, 122 Insulating Film 20, 21, 120, 121 Transfer Electrode 101 Photodiode 102 Vertical CCD Register 103 Horizontal CCD Register 104 Charge Detector 105 Output Amplifier 106 Unit pixel

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数のフォトダイオードと、該フォトダ
イオードからの電荷を受け取って転送する垂直CCDレ
ジスタと、該垂直CCDレジスタからの電荷を受け取っ
て転送する水平CCDレジスタと、該水平CCDレジス
タからの電荷を検出する電荷検出部と、出力増幅器とか
らなる固体撮像装置において、前記フォトダイオードが
第1導電型半導体基板表面部の第2導電型領域の表面部
に選択的に形成され、前記第2導電型領域より不純物濃
度の高い第2導電型素子分離層に接触して区画された第
1導電型拡散層を有し、前記第2導電型素子分離層の深
さを表面に反転層が形成されるのを防止して素子分離を
行なうのに必要な値より大きくすることによって前記フ
ォトダイオードの接合容量を大きくしたことを特徴とす
る固体撮像装置。
1. A plurality of photodiodes, a vertical CCD register that receives and transfers charges from the photodiodes, a horizontal CCD register that receives and transfers charges from the vertical CCD register, and a horizontal CCD register from the horizontal CCD register. In a solid-state imaging device including a charge detection unit that detects charges and an output amplifier, the photodiode is selectively formed on a surface portion of a second conductivity type region of a surface portion of a first conductivity type semiconductor substrate, A first conductivity type diffusion layer is formed in contact with the second conductivity type element isolation layer having an impurity concentration higher than that of the conductivity type region, and an inversion layer is formed on the surface of the depth of the second conductivity type element isolation layer. A solid-state image pickup device, characterized in that the junction capacitance of the photodiode is increased by increasing the value larger than a value required for element isolation to prevent the occurrence of damage.
【請求項2】 第2導電型素子分離層の幅を底部で上部
より狭くして第2導電型拡散層を底部で上部より広くし
た請求項1記載の固体撮像装置。
2. The solid-state imaging device according to claim 1, wherein the width of the second-conductivity-type element isolation layer is narrower at the bottom than at the top, and the second-conductivity-type diffusion layer is wider at the bottom than at the top.
【請求項3】 加速電圧を変化させてイオン注入を行な
うことによって第2導電型素子分離層の深さ方向の不純
物濃度分布が均一化されている請求項1又は2記載の固
体撮像装置。
3. The solid-state imaging device according to claim 1, wherein the impurity concentration distribution in the depth direction of the second conductivity type element isolation layer is made uniform by changing the acceleration voltage and performing ion implantation.
JP07341650A 1995-12-26 1995-12-27 Solid-state imaging device Expired - Fee Related JP3105781B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07341650A JP3105781B2 (en) 1995-12-27 1995-12-27 Solid-state imaging device
KR1019960074057A KR970054294A (en) 1995-12-26 1996-12-27 CCD solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07341650A JP3105781B2 (en) 1995-12-27 1995-12-27 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH09186310A true JPH09186310A (en) 1997-07-15
JP3105781B2 JP3105781B2 (en) 2000-11-06

Family

ID=18347738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07341650A Expired - Fee Related JP3105781B2 (en) 1995-12-26 1995-12-27 Solid-state imaging device

Country Status (2)

Country Link
JP (1) JP3105781B2 (en)
KR (1) KR970054294A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165462A (en) * 2002-11-14 2004-06-10 Sony Corp Solid-state imaging device and its manufacturing method
JP2011003931A (en) * 2010-09-21 2011-01-06 Sony Corp Solid-state imaging device and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044778B2 (en) * 2013-02-26 2016-12-14 忠博 眞鍋 Special nose strap for insoles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316367A (en) * 1991-04-16 1992-11-06 Matsushita Electron Corp Solid-state image sensing device and manufacture thereof
JPH04372170A (en) * 1991-06-21 1992-12-25 Fujitsu Ltd Solid state image sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316367A (en) * 1991-04-16 1992-11-06 Matsushita Electron Corp Solid-state image sensing device and manufacture thereof
JPH04372170A (en) * 1991-06-21 1992-12-25 Fujitsu Ltd Solid state image sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165462A (en) * 2002-11-14 2004-06-10 Sony Corp Solid-state imaging device and its manufacturing method
US7642614B2 (en) 2002-11-14 2010-01-05 Sony Corporation Solid-state imaging device and method for manufacturing the same
KR101044562B1 (en) * 2002-11-14 2011-06-28 소니 주식회사 Solid-state imaging device and method for manufacturing the same
US8115268B2 (en) 2002-11-14 2012-02-14 Sony Corporation Solid-state imaging device with channel stop region with multiple impurity regions in depth direction and method for manufacturing the same
US8431976B2 (en) 2002-11-14 2013-04-30 Sony Corporation Solid-state imaging device with channel stop region with multiple impurity regions in depth direction
JP2011003931A (en) * 2010-09-21 2011-01-06 Sony Corp Solid-state imaging device and method of manufacturing the same

Also Published As

Publication number Publication date
KR970054294A (en) 1997-07-31
JP3105781B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
US8354699B2 (en) Method and apparatus providing CMOS imager device pixel with transistor having lower threshold voltage than other imager device transistors
KR0168902B1 (en) Solid state image pick-up device
EP1034570B1 (en) Dark current reducing guard ring
US7141836B1 (en) Pixel sensor having doped isolation structure sidewall
US20050001248A1 (en) Pinned photodiode structure and method of formation
US7361527B2 (en) Image sensor with improved charge transfer efficiency and method for fabricating the same
US7005315B2 (en) Method and fabricating complementary metal-oxide semiconductor image sensor with reduced etch damage
US8541825B2 (en) Image sensor with improved charge transfer efficiency and method for fabricating the same
JPH1070263A (en) Solid state image sensor
WO2005031874A1 (en) Supression of dark current in a photosensor for imaging
JP2003188367A (en) Solid-state imaging device
JP2005072236A (en) Semiconductor device and method for manufacturing same
US7241671B2 (en) CMOS image sensor and method for fabricating the same
KR100562668B1 (en) A fabricating method of image sensor with decreased dark signal
KR100561003B1 (en) Image sensor and method for fabricating the same
JP3322341B2 (en) Photoelectric conversion element, solid-state imaging device using the same, and method of manufacturing the same
JP2003101004A (en) Solid-state image pickup device and manufacturing method therefor
JP3105781B2 (en) Solid-state imaging device
KR100893054B1 (en) Imase sensor with improved capability of protection against crosstalk and method for fabricating thereof
JP2002134731A (en) Photoelectric conversion element and solid-stage image pickup element
KR20050039167A (en) Cmos image sensor and method for fabricating the same
KR100868646B1 (en) Image sensor and method for manufacturing thereof
KR100390836B1 (en) Image sensor capable of improving capacitance of photodiode and charge transport and method for forming the same
KR100677044B1 (en) Fabricating method of Image sensor
JPH07142696A (en) Solid-state image sensing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees