JPS6325468B2 - - Google Patents

Info

Publication number
JPS6325468B2
JPS6325468B2 JP56201554A JP20155481A JPS6325468B2 JP S6325468 B2 JPS6325468 B2 JP S6325468B2 JP 56201554 A JP56201554 A JP 56201554A JP 20155481 A JP20155481 A JP 20155481A JP S6325468 B2 JPS6325468 B2 JP S6325468B2
Authority
JP
Japan
Prior art keywords
heating element
temperature
carbon black
maleic acid
modified polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56201554A
Other languages
Japanese (ja)
Other versions
JPS5963688A (en
Inventor
Kunyuki Nakayama
Yasusato Ootaki
Masatsugu Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Cable Works Ltd
Original Assignee
Fujikura Cable Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Cable Works Ltd filed Critical Fujikura Cable Works Ltd
Priority to JP56201554A priority Critical patent/JPS5963688A/en
Publication of JPS5963688A publication Critical patent/JPS5963688A/en
Publication of JPS6325468B2 publication Critical patent/JPS6325468B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、カーボンブラツクを配合してなる導
電性樹脂組成物を発熱体素子とする面状発熱体に
関する。 従来、ポリエチレンあるいはポリプロピレンな
どの樹脂に、金属微粉末あるいはカーボンブラツ
クなどを配合した導電性樹脂組成物は、その抵抗
値が温度変化に対し正の温度係数、いわゆる
PTC特性を示し、特定の温度において抵抗値が
急激に増大することが知られている。そのため、
発熱体として使用すると、通電により昇温するが
特定の温度範囲において抵抗値が急激に増大して
発熱量を減少させる発熱体自体で、自己温度制御
作用を示し、サーモスタツトや温度ヒユーズ等の
温度制御素子を必要とせず、しかも安全であるた
めヒーター等に利用されている。従つて、前記の
ような導電性樹脂組成物を発熱体として利用する
場合には、長期通電においても定温を長期間自動
的に維持するとともに使用環境条件における耐熱
性等の安定性がすぐれたものでなければならな
い。 ところが、この種発熱体には、通電用導体とし
ての電極線が配設されるので、この発熱体と電極
線は密着がよくないと電流が発熱体に流れず、温
度上昇しない問題を生ずるにもかかわらず、従来
の発熱体の合成樹脂材料においては、電極線の材
料である銅やアルミニウム等の金属との接着性が
必ずしも良好でなく、また、電極の酸化等やヒー
トサイクルによつてだんだん両者の密着が悪くな
り、発熱体と電極線との接触抵抗が増大し発熱体
に電流が流れなくなり発熱しなくなる等の欠点が
あつた。 そこで本発明者等は、種々の樹脂材料について
鋭意研究の結果、マレイン酸変性ポリオレフイン
が、合成樹脂及び金属の両方に接着性良く、また
この種材料には従来材料よりも高温での使用可能
なグレードもあるので、目的によつて材料の選択
が容易であり、また発熱体素子上に設ける被覆材
料も熱膨脹の差を十分に考慮して組合せて使用で
きるのでこの種樹脂材料として好ましいものであ
ることを見出し、本発明に至つたもので、その要
旨は、少なくともマレイン酸変性ポリオレフイン
にカーボンブラツクを配合してなる導電性樹脂組
成物を成形して発熱体素子としたことを特徴とす
る面状発熱体の第1の発明と、マレイン酸変性ポ
リオレフインにカーボンブラツクを配合してなる
導電性樹脂組成物よりなる発熱体素子部とその上
に設ける絶縁被覆層とを同時押出することによつ
て面状発熱体を製造する方法の第2の発明とに係
るものである。 前記マレイン酸変性ポリオレフインは、ポリプ
ロピレンやポリエチレンに、ラジカル開始剤およ
びアルキル芳香族炭火水素溶媒の存在下でマレイ
ン酸類を反応させて得るもので、例えば、アドマ
ー(三井石油化学工業株式会社製)なる商品名で
知られるもので、アドマーNE050,アドマー
QE305等の種類がある。 このマレイン酸変性ポリオレフインには導電性
のカーボンブラツクを適当量均一に配合し導電性
合成樹脂とし、これを成形して発熱体素子とする
ものである。これに電極を設け通電したところ発
熱し、温度は漸次上昇すると共に電流値は減少
し、約10分間で発熱量と放熱量が均衡して定常値
に達し、そして、印加電圧を相当低下せしめても
この温度変化は少なく、印加電圧を高めると急激
に電流値は減少したが、その表面温度に大きな変
化はなかつた。 また、前記発熱体を外部より赤外線ランプで加
熱し、非通電状態で電極間の抵抗値を測定したと
ころ、裏面温度35℃前後において急激に抵抗値が
増大した。 このようにマレイン酸変性ポリオレフインに導
電性のカーボンブラツクを配合して得た発熱体素
子は、正の抵抗温度特性を示し、その電気抵抗の
温度変化は、第1図の通りであつた。同図におい
て、Aはマレイン酸変性ポリオレフインとして三
井石油化学工業株式会社製、アドマーNE050に
カーボンブラツクを30部配合したもの、Bは同じ
く同社製のアドマーQE305にカーボンブラツク30
部配合したもの、Cは同じく同社製のアドマー
NE050にカーボンブラツク50部配合したもの、
Dは同じく同社製のアドマーQE305にカーボンブ
ラツク50部配合したものをそれぞれ示す。 また、前記アドマー樹脂の軟化温度を調べたと
ころ、ベース材によつて異なり、低密度ポリエチ
レンベース材においては85℃、ポリプロピレンベ
ース材においては130〜150℃(何れも
ASTMD1525ビカツト法による測定値)を示し、
自己温度制御によつて前記の電気抵抗の顕著な増
大を示す温度はベースレジンの軟化点によつて自
己制御温度範囲をかえることができることも明ら
かになつた。 しかも、これ等アドマー樹脂の各種基材に対す
る接着性は、第1表及び第2表に示す通りで、金
属及び合成樹脂の両方に対し接着性がよい。
The present invention relates to a planar heating element whose heating element is a conductive resin composition containing carbon black. Conventionally, conductive resin compositions made by blending fine metal powder or carbon black with resin such as polyethylene or polypropylene have a resistance value that has a positive temperature coefficient with respect to temperature changes, so-called
It is known that it exhibits PTC characteristics and its resistance value increases rapidly at a certain temperature. Therefore,
When used as a heating element, the temperature rises when energized, but the resistance value rapidly increases in a specific temperature range and the amount of heat generated decreases.The heating element itself exhibits a self-temperature control function, and the temperature of thermostats, temperature fuses, etc. It does not require a control element and is safe, so it is used in heaters and the like. Therefore, when using a conductive resin composition as described above as a heating element, it should be one that automatically maintains a constant temperature for a long period of time even when energized for a long time, and has excellent stability such as heat resistance under the usage environmental conditions. Must. However, this type of heating element is equipped with electrode wires that act as current-carrying conductors, so if the heating element and electrode wires are not in good contact, current will not flow to the heating element and the temperature will not rise. However, conventional synthetic resin materials for heating elements do not necessarily have good adhesion to metals such as copper and aluminum, which are the materials for electrode wires, and they gradually degrade due to oxidation of the electrodes and heat cycles. There were drawbacks such as poor adhesion between the two, increased contact resistance between the heating element and the electrode wire, and no current flowing through the heating element and no longer generating heat. As a result of intensive research on various resin materials, the present inventors found that maleic acid-modified polyolefin has good adhesion to both synthetic resins and metals, and can be used for this type of material at higher temperatures than conventional materials. Since there are different grades, it is easy to select the material depending on the purpose, and the coating material provided on the heating element can be used in combination with sufficient consideration of the difference in thermal expansion, so it is preferable as this type of resin material. This discovery led to the present invention, the gist of which is to provide a heating element formed by molding a conductive resin composition comprising at least maleic acid-modified polyolefin mixed with carbon black. The first invention of the heating element and the heating element part made of a conductive resin composition made of a maleic acid-modified polyolefin blended with carbon black and an insulating coating layer provided thereon are simultaneously extruded. This invention relates to a second invention of a method for manufacturing a shaped heating element. The maleic acid-modified polyolefin is obtained by reacting polypropylene or polyethylene with maleic acids in the presence of a radical initiator and an alkyl aromatic hydrocarbon solvent, and is, for example, a product called Admer (manufactured by Mitsui Petrochemical Industries, Ltd.). It is known as Admar NE050, Admar
There are types such as QE305. This maleic acid-modified polyolefin is uniformly blended with an appropriate amount of conductive carbon black to form a conductive synthetic resin, which is then molded into a heating element. When electrodes were attached to this and electricity was applied, it generated heat, the temperature gradually rose and the current value decreased, and in about 10 minutes, the amount of heat generated and the amount of heat dissipated were balanced and reached a steady value, and then the applied voltage was reduced considerably. However, this temperature change was small, and although the current value decreased rapidly when the applied voltage was increased, there was no major change in the surface temperature. Further, when the heating element was heated from the outside with an infrared lamp and the resistance value between the electrodes was measured in a non-energized state, the resistance value suddenly increased when the back surface temperature was around 35°C. The heating element thus obtained by blending conductive carbon black with maleic acid-modified polyolefin exhibited positive resistance-temperature characteristics, and the change in electrical resistance with temperature was as shown in FIG. In the figure, A is maleic acid-modified polyolefin made by Mitsui Petrochemical Industries, Ltd., Admer NE050 mixed with 30 parts of carbon black, and B is Admer QE305, also made by the same company, mixed with 30 parts of carbon black.
C is Admar, also made by the same company.
NE050 mixed with 50 parts of carbon black,
D indicates a mixture of Admar QE305, also made by the same company, with 50 parts of carbon black. In addition, when we investigated the softening temperature of the Admer resin, it differed depending on the base material, and it was 85 °C for low density polyethylene base material and 130 to 150 °C for polypropylene base material (both were
ASTMD1525 Vikatsu method)
It has also become clear that the self-control temperature range can be changed by changing the softening point of the base resin at a temperature at which the electrical resistance significantly increases as described above. Furthermore, the adhesion properties of these Admer resins to various base materials are as shown in Tables 1 and 2, and they have good adhesion properties to both metals and synthetic resins.

【表】【table】

【表】 前記各種基材は、前記アドマーNE050のフイ
ルム(100μ厚)に、基材が金属の場合200℃で、
基材が金属以外の場合160℃で、加熱融着した場
合のもので、表の接着力は200mm/minのスピー
ドで剥離した時の値である。 このようにマレイン酸変性ポリオレフインにカ
ーボンブラツクを配合した導電性樹脂組成物より
なる発熱体素子は、特定の温度において抵抗値が
急激に増大し、温度を一定範囲に保つ自己温度制
御作用を示すとともに、自己制御温度範囲も変え
ることができ、しかも、このマレイン酸変性ポリ
オレフインは、金属及び合成樹脂の両方に接着性
がよいから、電極及び発熱体素子上に設ける絶縁
性被覆層との密着を強固に維持し安定性にも優れ
ているから、温度制御素子を必要としない面状発
熱体として最も好ましいものである。 また、面状発熱体としての構成も、特に限定さ
れず従来公知の種々の形態でよく、第2図乃至第
4図に示す如くである。第2図は断面まゆ形の帯
状のもの、第3図は板状のもので、1はマレイン
酸変性ポリオレフインにカーボンブラツクを配合
した導電性樹脂組成物よりなる発熱体素子、2は
絶縁性被覆層で、ポリエチレンやポリプロピレ
ン、マレイン酸変性ポリオレフイン等が使用され
る。この被覆層2は発熱体素子1との熱膨脹率が
少なくとも同等以上のものが特に好ましい。 3,4は銅やアルミニウム等よりなる電極であ
る。 第4図は、発熱体素子1に多数の電極3,4を
設けて発熱体素子1の面積を大にしたものであ
る。 いずれにしても本発明に於ては、少なくとも発
熱体素子がマレイン酸変性ポリオレフインにカー
ボンブラツク等を配合した導電性組成物によつて
形成されるものである。 実施例 1 電極線を配線した上に、アドマー樹脂(三井石
油化学工業株式会社製アドマーQE305)(軟化点
130℃)100部に対しアセチレンブラツク30部及び
少量の老化防止剤を混練して得たペレツト(導電
性樹脂組成物)を押出し、第2図に示す如く断面
まゆ型の帯状の発熱体素子1を得た。 実施例 2 アドマー樹脂(三井石油化学工業株式会社製ア
ドマーQE305)(軟化点130℃)100部に対してア
セチレンブラツク30部及び少量の老化防止剤を混
練して得たペレツト(導電性樹脂組成物)を、一
文字形のスリツトを有するTダイよりシート状の
成形体を得、この押出された樹脂が末だ溶融状態
もしくは軟化状態にある間に、樹脂温度に加熱し
た電極線を配設した後冷却し、厚さ0.2mm、巾500
mmの第3図に示す如く面状発熱体素子1を得た。
この発熱体素子は、第1図曲線Bに示す如く抵抗
特性を示した。 次に、前記のような発熱体素子1に、絶縁性被
覆層2を設けた面状発熱体の製造としては、従
来、発熱体素子1を押出等の適当な方法で成形し
た後、絶縁性被覆層2を別の工程で改めて被覆す
る方法で行なわれている。 ところが、カーボンブラツクを配合してなる導
電性樹脂組成物は、熱を加えるとその抵抗値が変
化する現象が生じ、ある条件のもとでは熱リレキ
前後の抵抗値が異なるという不都合が生ずる。 従つて、従来の如く第一工程で発熱体素子1を
押出成形した後、該押出物を常温まで冷却し、第
二工程で絶縁性被覆層2を改めて押出被覆する製
造方法では、第一工程で得られた発熱体素子に、
第二工程である熱リレキを加えることになり、熱
リレキ条件が発熱体素子の融点近傍で±40℃の範
囲内にあると、発熱体素子の抵抗値が大巾に上昇
してしまう欠点がある。 また、従来のように発熱体素子を押出成形した
後、別の工程で絶縁性被覆層を改めて被覆する方
法では、製造が二工程に分れるため手数がかかり
不能率で生産性の面でも好ましくない。 そこで、好ましくはマレイン酸変性ポリオレフ
インにカーボンブラツクを配合してなる導電性樹
脂組成物よりなる発熱体素子と、絶縁性被覆層を
同時押出で被覆して面状発熱体を得るものであ
る。このように絶縁性被覆層と発熱体素子とを同
時押出すると、発熱体素子に熱リレキが加わり抵
抗値が上昇することを防止できるし、抵抗値は押
出条件を選ぶことにより任意の値に設定できる
し、生産性の面でも好ましい。 しかして、安定かつ所望の抵抗値を有する面状
発熱体を簡単に製造できる。 実施例 3 電極線を配設した上に、アドマー樹脂(三井石
油化学工業株式会社製アドマーQE305)(軟化点
130℃)100部に対しアセチレンブラツク30部及び
少量の老化防止剤を混練して得たペレツト(導電
性樹脂組成物)を押出し発熱体素子を得ると同時
に、前記発熱体素子上に絶縁性被覆層としてポリ
プロピレン樹脂を押出被覆し、第2図に示す如く
発熱体を得た。 この発熱体に通電したところ、中心点の表面温
度は115℃、内部温度(120℃)であり、この時の
電流値より逆算した抵抗値は、3500万Ωであつ
て、室温20℃時の4倍であつた。
[Table] The various base materials mentioned above are the Admer NE050 film (100μ thick), and when the base material is metal, it is heated at 200℃.
If the base material is other than metal, it is heat-fused at 160°C, and the adhesive strength shown on the table is the value when peeled off at a speed of 200 mm/min. In this way, a heating element made of a conductive resin composition containing maleic acid-modified polyolefin and carbon black exhibits a self-temperature control function that rapidly increases the resistance value at a certain temperature and maintains the temperature within a certain range. The self-controlling temperature range can also be changed, and since this maleic acid-modified polyolefin has good adhesion to both metals and synthetic resins, it provides strong adhesion to the insulating coating layer provided on the electrode and heating element. It is most preferable as a planar heating element that does not require a temperature control element because it maintains a constant temperature and has excellent stability. Furthermore, the structure of the planar heating element is not particularly limited and may be of various conventionally known forms, as shown in FIGS. 2 to 4. Figure 2 shows a belt-shaped one with a cocoon-shaped cross section, and Figure 3 shows a plate-shaped one. 1 is a heating element made of a conductive resin composition containing carbon black in maleic acid-modified polyolefin, and 2 is an insulating coating. The layer is made of polyethylene, polypropylene, maleic acid-modified polyolefin, or the like. It is particularly preferable that the coating layer 2 has a coefficient of thermal expansion at least equal to or higher than that of the heating element 1. 3 and 4 are electrodes made of copper, aluminum, or the like. In FIG. 4, a large number of electrodes 3 and 4 are provided on the heating element 1 to increase the area of the heating element 1. In any case, in the present invention, at least the heating element is formed from a conductive composition prepared by blending carbon black or the like with maleic acid-modified polyolefin. Example 1 After wiring the electrode wires, Admar resin (Admar QE305 manufactured by Mitsui Petrochemical Industries, Ltd.) (softening point
A pellet (conductive resin composition) obtained by kneading 100 parts of acetylene black (130°C) and a small amount of anti-aging agent is extruded to form a band-shaped heating element element 1 with a cocoon-shaped cross section as shown in FIG. I got it. Example 2 Pellet (conductive resin composition) obtained by kneading 100 parts of Admer resin (Admer QE305 manufactured by Mitsui Petrochemical Industries, Ltd.) (softening point 130°C) with 30 parts of acetylene black and a small amount of anti-aging agent. ) is obtained from a T-die with a single-letter-shaped slit, and while the extruded resin is still in a molten or softened state, an electrode wire heated to the resin temperature is placed. Cooled, thickness 0.2mm, width 500
A planar heating element 1 was obtained as shown in FIG.
This heating element exhibited resistance characteristics as shown by curve B in FIG. Next, in order to manufacture a planar heating element in which the heating element element 1 as described above is provided with an insulating coating layer 2, conventionally, the heating element element 1 is formed by an appropriate method such as extrusion, and then an insulating coating layer is formed. This is done by re-coating the coating layer 2 in a separate process. However, a conductive resin composition containing carbon black has a phenomenon in which its resistance value changes when heat is applied, and under certain conditions, the resistance value before and after thermal relaxation differs. Therefore, in the conventional production method in which the heating element 1 is extruded in the first step, the extrudate is cooled to room temperature, and the insulating coating layer 2 is re-extruded in the second step, the first step is The heating element obtained by
The second step, thermal relief, is added, and if the thermal relief conditions are close to the melting point of the heating element and within a range of ±40℃, the resistance value of the heating element will increase significantly. be. In addition, the conventional method of extruding the heating element element and then recoating it with an insulating coating layer in a separate process is not preferable in terms of productivity since the manufacturing process is divided into two processes, which is labor-intensive and has a failure rate. do not have. Therefore, preferably, a planar heating element is obtained by coating a heating element element made of a conductive resin composition prepared by blending carbon black with maleic acid-modified polyolefin and an insulating coating layer by coextrusion. By extruding the insulating coating layer and the heating element at the same time in this way, it is possible to prevent the resistance value from increasing due to the heat radiation applied to the heating element, and the resistance value can be set to any value by selecting the extrusion conditions. It's possible, and it's also good in terms of productivity. Therefore, a planar heating element having a stable and desired resistance value can be easily manufactured. Example 3 On top of the electrode wires, Admar resin (Admar QE305 manufactured by Mitsui Petrochemical Industries, Ltd.) (softening point
A heating element is obtained by extruding pellets (conductive resin composition) obtained by kneading 100 parts of acetylene black (130°C) with a small amount of anti-aging agent, and at the same time an insulating coating is applied on the heating element. A layer of polypropylene resin was extrusion coated to obtain a heating element as shown in FIG. When electricity was applied to this heating element, the surface temperature at the center point was 115℃, and the internal temperature (120℃).The resistance value calculated backward from the current value at this time was 35 million Ω, which was at room temperature of 20℃. It was four times as hot.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は使用したアドマー樹脂発熱体素子の電
気抵抗の温度変化を示す図表、第2図、第3図及
び第4図はそれぞれ本発明の別の実施例を示す斜
視図である。 1……発熱体素子、2……絶縁性被覆層、3,
4……電極線。
FIG. 1 is a chart showing temperature changes in electrical resistance of the Admer resin heating element used, and FIGS. 2, 3, and 4 are perspective views showing other embodiments of the present invention. 1... Heat generating element, 2... Insulating coating layer, 3,
4... Electrode wire.

Claims (1)

【特許請求の範囲】 1 電極、発熱体素子および絶縁体からなる面状
発熱体に於て、少なくとも発熱体素子をマレイン
酸変性ポリオレフインにカーボンブラツクを配合
してなる導電性樹脂組成物によつて構成したこと
を特徴とする面状発熱体。 2 マレイン酸変性ポリオレフインにカーボンブ
ラツクを配合してなる導電性樹脂組成物よりなる
発熱体素子部とその上に設ける絶縁被覆層とを同
時押出によつて形成することを特徴とする面状発
熱体の製造方法。
[Scope of Claims] 1. In a planar heating element comprising an electrode, a heating element, and an insulator, at least the heating element is made of a conductive resin composition made of a maleic acid-modified polyolefin blended with carbon black. A planar heating element characterized by comprising: 2. A planar heating element characterized in that a heating element element portion made of a conductive resin composition prepared by blending carbon black with maleic acid-modified polyolefin and an insulating coating layer provided thereon are formed by co-extrusion. manufacturing method.
JP56201554A 1981-12-16 1981-12-16 Panel heater and method of producing same Granted JPS5963688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56201554A JPS5963688A (en) 1981-12-16 1981-12-16 Panel heater and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201554A JPS5963688A (en) 1981-12-16 1981-12-16 Panel heater and method of producing same

Publications (2)

Publication Number Publication Date
JPS5963688A JPS5963688A (en) 1984-04-11
JPS6325468B2 true JPS6325468B2 (en) 1988-05-25

Family

ID=16442965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201554A Granted JPS5963688A (en) 1981-12-16 1981-12-16 Panel heater and method of producing same

Country Status (1)

Country Link
JP (1) JPS5963688A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014791A (en) * 1983-07-04 1985-01-25 松下電器産業株式会社 Heater
JPS6028195A (en) * 1983-07-27 1985-02-13 松下電器産業株式会社 Heater
JPS6229085A (en) * 1985-07-31 1987-02-07 菱和産資株式会社 Surface heat generating body
JP2534054B2 (en) * 1987-03-02 1996-09-11 三菱電機株式会社 Self-temperature control type flat heater
JPS6427892U (en) * 1987-08-04 1989-02-17

Also Published As

Publication number Publication date
JPS5963688A (en) 1984-04-11

Similar Documents

Publication Publication Date Title
US4543474A (en) Layered self-regulating heating article
CA1062755A (en) Layered self-regulating heating article
US3793716A (en) Method of making self limiting heat elements
US4314230A (en) Devices comprising conductive polymers
US4314231A (en) Conductive polymer electrical devices
US4334351A (en) Novel PTC devices and their preparation
JPS5818722B2 (en) Self-regulating electrical article and method of manufacturing the same
US4400614A (en) PTC Devices and their preparation
JP4666760B2 (en) Electrical device using conductive polymer
EP0140893B1 (en) Self-limiting heater and resistance material
EP0826223A1 (en) Ptc circuit protection device and manufacturing process for same
JPH0437557B2 (en)
US4876440A (en) Electrical devices comprising conductive polymer compositions
JPS6325468B2 (en)
CA1106890A (en) Electrical devices comprising conductive polymer compositions
US3952116A (en) Process for forming electrical resistance heaters
JPS63302501A (en) Ptc conductive polymer composition
JPS5918804B2 (en) heat sensitive element
WO1999044391A1 (en) Heating unit
JPH03143938A (en) Conductive resin composition and use thereof
JPH05217711A (en) Ptc composition
US3469224A (en) Printed thermistor on a metal sheet
JPH0130264B2 (en)
JPS59226493A (en) Self-temperature controllable heater
JPS6230793Y2 (en)