JPS5818722B2 - Self-regulating electrical article and method of manufacturing the same - Google Patents

Self-regulating electrical article and method of manufacturing the same

Info

Publication number
JPS5818722B2
JPS5818722B2 JP48101001A JP10100173A JPS5818722B2 JP S5818722 B2 JPS5818722 B2 JP S5818722B2 JP 48101001 A JP48101001 A JP 48101001A JP 10100173 A JP10100173 A JP 10100173A JP S5818722 B2 JPS5818722 B2 JP S5818722B2
Authority
JP
Japan
Prior art keywords
composition
carbon black
self
resistance
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48101001A
Other languages
Japanese (ja)
Other versions
JPS4968296A (en
Inventor
スミス ヨハンセン ロバ−ト
マツクリ−ン ウオ−カ− ジヤツク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raychem Corp
Original Assignee
Raychem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raychem Corp filed Critical Raychem Corp
Publication of JPS4968296A publication Critical patent/JPS4968296A/ja
Publication of JPS5818722B2 publication Critical patent/JPS5818722B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49083Heater type

Description

【発明の詳細な説明】 本発明は自己調節性電気物品およびその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to self-regulating electrical articles and methods of making the same.

導電性熱可塑性組成物を、重合体基質に導電性カーボン
ブラックを加えることによって得ていた。
Conductive thermoplastic compositions have been obtained by adding conductive carbon black to a polymer matrix.

そのような組成物の1つの範吟に入るものについて、特
別の材料によって表われる非線状の正の温度抵抗係数を
示利点を利用して、自己調節性即ち電流制限性半導性製
品を得ていた。
One class of such compositions takes advantage of the nonlinear positive temperature resistance coefficient exhibited by a particular material to create self-regulating or current-limiting semiconductor products. I was getting it.

コーレル(Kohler)による米国特許第3,243
,753号には、そのような組成物の一つで、重合体マ
トリックスをその場での重合によって、含有される25
ないし75係のカーボンブラックの周りに形成した組成
物が記載されている。
U.S. Patent No. 3,243 by Kohler
, 753 discloses one such composition in which a polymer matrix containing 25
Compositions formed around carbon blacks having grades 75 to 75 are described.

周囲の温度の上昇によっであるいは電流の通過によって
起る抵抗熱によって、そのような組成物の温度が増加す
るにつれて重合体マトリックスが、相互に結合した伝導
路の列として導電性を与えるカーボンブラック粒子より
も大きい速度で膨張する。
Carbon black whose polymeric matrix becomes electrically conductive as an array of interconnected conductive paths as the temperature of such composition increases, either by increasing the ambient temperature or by resistive heating caused by the passage of electric current. It expands at a faster rate than the particles.

電流を流す伝導路の数の低下はI2Rに従う力ロ熱によ
って生ずる熱量を減少する。
Reducing the number of conductive paths that carry current reduces the amount of heat generated by force heating according to I2R.

この自己制限性特徴を、たとえば、管の凍結防止用の化
学プラントにおける熱トレーシング(tracing)
管で、粘稠なシロップの流動特性を維持するのに利用で
きる。
This self-limiting feature can be used, for example, in thermal tracing in chemical plants for pipe deicing.
Can be used in tubes to maintain the flow properties of viscous syrups.

そのような用途の場合、導電性組成物から形成した製品
は、理想的には周囲への熱移動によって失われるエネル
ギーが電流から得たエネルギーに等しくなる温度に達し
、その温度を維持する。
For such applications, articles formed from conductive compositions ideally reach and maintain a temperature at which the energy lost by heat transfer to the surroundings is equal to the energy gained from the electrical current.

もし環境温度が低下すると、製品の温度低下に伴って抵
抗値が減少するため熱発生量が増加し、周囲への熱移動
が増加する。
If the environmental temperature decreases, the resistance value decreases as the temperature of the product decreases, increasing the amount of heat generated and increasing heat transfer to the surroundings.

速やかに、熱移動と熱発生量が再び同じになる。Immediately, heat transfer and heat generation become equal again.

逆に、環境温度が上昇すると、導電性製品からの熱移動
が減少し、そして温度増力口から生じた抵抗の上昇が■
2Rに従う加熱を減じまたは停止する。
Conversely, as the environmental temperature increases, the heat transfer from the conductive product decreases, and the increase in resistance generated from the temperature intensifier increases.
Reduce or stop heating according to 2R.

もちろん、自己調節性(sel f−regulati
ng)導電性組成物を抵抗加熱以外の用途、たとえば熱
感応および回路開閉の用途に用いることもできる。
Of course, self-regulation
ng) The conductive compositions can also be used for applications other than resistive heating, such as heat sensing and circuit switching applications.

然し、どの場合でも、大抵の従来技術の組成物の特徴と
して、カーボンブラック含量が高いことは欠点である。
However, in any case, the high carbon black content, which is characteristic of most prior art compositions, is a disadvantage.

カーボンブラック含量が高いと延伸性および耐応力亀裂
性が悪くなり低温脆化性をもたらす。
High carbon black content results in poor stretchability and stress cracking resistance, resulting in low temperature embrittlement.

さらに、高いカーボンブラック含量は導電性組成物の電
流調節特性に悪影響を与えるようである。
Furthermore, high carbon black content appears to adversely affect the current regulating properties of the conductive composition.

もし半導性熱可塑性組成物を外部加熱し、そしてその抵
抗値を温度(横座標)に対してプロットすると、得られ
た曲線は低い室温値(Ri )から゛ピーク抵抗”(R
p)の点までで、温度による抵抗増大を示し、それに続
いてさらに温度が上昇すると重合体マトリックスの溶融
相に伴う急激な抵抗の低下が起る。
If a semiconducting thermoplastic composition is externally heated and its resistance is plotted against temperature (abscissa), the curve obtained changes from the low room temperature value (Ri) to the ``peak resistance'' (R
Up to point p) it shows an increase in resistance with temperature, followed by a sharp drop in resistance with further increase in temperature due to the melt phase of the polymer matrix.

その付随する抵抗特性の不可逆的変化による抵抗の低下
を避けるために、重合体マトリックスを架橋すると、今
度は抵抗がピーク温度で横ばいになりそして環境温度が
さらに増力口しても一定値のままである。
To avoid a decrease in resistance due to its concomitant irreversible change in resistance properties, cross-linking the polymer matrix will in turn cause the resistance to level off at the peak temperature and remain at a constant value even as the ambient temperature increases further. be.

カーボンブラック含量の高い架橋した半導性製品は、非
常に高いまたは低い環境温度に曝らすことによってピー
ク温度にもってきたとき、望ましくない低い抵抗を示す
Crosslinked semiconducting articles with high carbon black content exhibit undesirably low resistance when brought to peak temperature by exposure to very high or low ambient temperatures.

そのような場合、製品からの熱移動特性が低いため、■
2RPで発生した熱の逸散を妨げ、焼けを起すことにな
る。
In such cases, due to poor heat transfer properties from the product, ■
This prevents the heat generated by 2RP from dissipating and causes burns.

実質的に低いカーボンブラック含量をもち、とりわけ、
可塑性および他の物理的性質が改良されかつ実質的にR
p/Riを増力口した半導性自己調節性製品を製造する
ことが望ましいであろう。
with a substantially low carbon black content, inter alia:
Plasticity and other physical properties are improved and substantially R
It would be desirable to produce p/Ri boosted semiconducting self-regulating products.

然し、低いカーボンブラック含量の重量体ではきわめて
高い室温抵抗性を示すのでこの目的を達成することは不
可能である。
However, it is not possible to achieve this objective with heavy bodies having a low carbon black content, since they exhibit a very high room temperature resistance.

キャボット・コーポレーション(Cabot Corp
、)のピグメント・ブラック・テクニカル・リポート(
P igment B 1ackTechnical
Report) S−8の°゛導電性プラスチチク
ス用カーボンブラック″という表題の雑文には、パバル
カン(Vulcan ) X C−72”油ファネスブ
ラックを含有する種々の重合体の炭素含有率(イ))−
抵抗曲線が100,000オーム−儂またはそれ以上の
抵抗性を示し、約15%のカーボンブラック含量で漸近
線に近づくように増大することが示されている。
Cabot Corp.
Pigment Black Technical Report (
Pigment B 1ackTechnical
Report) S-8's miscellaneous text titled ``Carbon black for conductive plastics'' describes the carbon content of various polymers containing Vulcan X C-72'' oil furnace black. −
It is shown that the resistance curve exhibits a resistance of 100,000 ohms or more and increases toward an asymptote at about 15% carbon black content.

他の文献にも同様に低いカーボンブラック含量で高い抵
抗性が報告されている。
Other publications have similarly reported high resistance at low carbon black contents.

従来、自己制限性組成物はたとえばエプステイン(Ep
stein)による米国特許第3,435,401号に
記載のように押出していたが、カーボンブラック含量を
低くしたときには、押出物は本質的に重合体マトリック
ス自体の値である、107オームー儂あるいはそれ以上
の室温抵抗を示していた。
Traditionally, self-limiting compositions have been used, such as Epstein (Ep
3,435,401, but when the carbon black content was lowered, the extrudate was essentially at the value of the polymer matrix itself, 107 ohms or less. It showed a room temperature resistance of

実際、英国特許第1,201,166号は、約20%よ
りも少ないカーボンブラックでかなりの導電性が望まれ
る場合に、熱溶融法を使わないことをすす、めでいる。
In fact, British Patent No. 1,201,166 recommends not using the thermal fusing process when significant electrical conductivity is desired with less than about 20% carbon black.

カーボンブラック含量が低い利点をもちしかも約5ない
し約100.000オーム−αの有用な範囲の室温(今
後21°C(70°F))抵抗を示す自己制限性押出物
が今後初めて得られた。
For the first time ever, self-limiting extrudates have been obtained which have the advantage of low carbon black content and yet exhibit room temperature (hereinafter 21°C (70°F)) resistances in the useful range of about 5 to about 100,000 ohms-α. .

この場合、カーボンブラック含量および室温抵抗の関係
が式:%式% (ただし、Lは押出組成物中のカーボンブラックの重量
係である)をみたしている。
In this case, the relationship between carbon black content and room temperature resistance satisfies the formula: % (where L is the weight factor of the carbon black in the extrusion composition).

慣用の仕方で押出した後、従来歪除去または電極湿潤性
の改良に用いられていた関係よりもかなり苛酷な時間一
温度関係、たとえば149°C(300°F)に24時
間位の時間曝すことによって、また未架橋の製品中のカ
ーボンブラックの構造組織を熱的に変化させることによ
って抵抗を著しく減少することができる。
After extrusion in a conventional manner, exposure to a time-temperature relationship that is considerably more severe than that previously used for strain relief or improving electrode wettability, such as 149°C (300°F) for a period on the order of 24 hours. The resistance can be significantly reduced by thermally altering the structure of the carbon black in the uncrosslinked product.

得られた製品は凍結保護及びその他の自己制限性用途に
適し、高いRp/Riを示し、その他力−ボンブラック
含量が低い利点を有する。
The resulting product is suitable for cryoprotection and other self-limiting applications, exhibits a high Rp/Ri, and has other advantages of a low carbon black content.

とくに、高いカーボンブラック含量の押出物とは異って
、抵抗一温度特性が保存に対して安定性であり、然も温
度のくり返しによる影響はうけない。
In particular, unlike extrudates with high carbon black content, the resistance-temperature properties are stable on storage, yet are not affected by repeated temperature cycling.

自己制限性組成物をうるために、導電性カーボンブラッ
クをどんな割合で分散させた重合体マトリックスでも、
非線状の熱膨張係数を全般的に適当に示さねばならず、
そのために結晶化度は重要であると考えられる。
A polymer matrix in which conductive carbon black is dispersed in any proportion to obtain a self-limiting composition.
The non-linear coefficient of thermal expansion must be generally appropriately indicated,
For this reason, crystallinity is considered to be important.

一般に、X線回折で測定して少なくとも約20%の結晶
化度を示す重合体が本発明の実施に適する。
Generally, polymers exhibiting a degree of crystallinity of at least about 20% as determined by X-ray diffraction are suitable for the practice of this invention.

本発明を行うのに用いられる多くの重合体の中には、低
密度、中密度および高密度ポリエチレンおよびポリプロ
ピレン、ポリブテン−1の如きポリオレフィン、ポリ(
ドデカメチレンピロメリットイミド)、エチレン−プロ
ピレン共重合体および非共役ジエンとの三元重合体、ポ
リ弗化ビニリデン、ポリ弗化ビニリデン−テトラフルオ
ロエチレン共重合体などがある。
Among the many polymers used in carrying out this invention are low, medium and high density polyethylene and polypropylene, polyolefins such as polybutene-1, poly(
dodecamethylene pyromellitimide), terpolymers of ethylene-propylene copolymers and nonconjugated dienes, polyvinylidene fluoride, and polyvinylidene fluoride-tetrafluoroethylene copolymers.

当業者によって認められるように、意図せる用途に(た
とえば凍結防止、恒温など)合った制限温度を、重合体
マトリックス材料を適切に選択することによってうろこ
とができる。
As will be recognized by those skilled in the art, limiting temperatures to suit the intended application (eg, antifreeze, isothermal, etc.) can be determined by appropriate selection of the polymeric matrix material.

たとえば、37.80G (100°F)、54.4°
G(130°F)、65.6’C(150°F)、82
.2°C(180°F)および121°C(250°P
)位の温度で自己制限する素子を、夫々、ワックス−ポ
リ(エチレン−酢酸ビニル)配合物、低密度ポリエチレ
ン、高密度ポリエチレン、ポリプロピレンおよびポリ弗
化ビニリデンを用いて製造することができる。
For example, 37.80G (100°F), 54.4°
G (130°F), 65.6'C (150°F), 82
.. 2°C (180°F) and 121°C (250°P
Elements that are self-limiting at temperatures as low as ) can be made using wax-poly(ethylene-vinyl acetate) blends, low density polyethylene, high density polyethylene, polypropylene, and polyvinylidene fluoride, respectively.

重合体を選択する他の規準には特別の場合として、よく
知られているように、望ましい伸び、環境抵抗性、押出
の容易さなどが含まれる。
Other criteria for selecting a polymer include, in particular cases, desirable elongation, environmental resistance, ease of extrusion, etc., as is well known.

とくに好ましいマトリックス材料はカーボンブラックを
第1の配合物成分と混合してマスターバッチを形成し、
それを今後は主要な重合体成分と混合した多成分配合物
である。
A particularly preferred matrix material is carbon black mixed with the first formulation component to form a masterbatch;
It is now a multi-component formulation mixed with the main polymer component.

第1および第2の重合体配合物成分を、それら相互の混
合の自由エネルギーが正になるように選択する。
The first and second polymer blend components are selected such that their free energy of mixing with each other is positive.

それに伴われる非相溶性は、明らかに重合体マトリック
ス中の一般に環境のある領域中に含有カーボンブラック
を分離する作用を示し、そしてそのような配合物は使用
時の温度のくり返しに対しきわめて安定であることが判
明している。
The associated incompatibility apparently acts to segregate the carbon black contained within the polymer matrix into certain regions of the general environment, and such formulations are extremely stable to temperature cycling during use. It turns out that there is.

単一成分のマトリックスの場合には、温度のくり返しで
同一のワット数を与えるのに、次第に高い温度に到達さ
せなければならなくなるという結果が時々得られていた
With single-component matrices, the result has sometimes been that progressively higher temperatures must be reached to deliver the same wattage at temperature cycles.

もちろん、単一成分のマI−IJワックス場合ですら、
本発明に従って得られた低いカーボンブラック含量で温
度循環に対して満足すべき安定性が得られている。
Of course, even in the case of single-component MAI-IJ wax,
Satisfactory stability against temperature cycling is achieved with the low carbon black content obtained according to the invention.

典型的には、多量に存在する配合物成分に対してカーボ
ンブラックとのすぐれた相溶性を与えるために少量の重
合体配合物成分を選択するが、全押出物に望ましい特別
の物理的性質についてはその多量成分を選択する。
Typically, minor amounts of polymeric formulation components are selected to provide good compatibility with carbon black for the formulation components present in large amounts, but not for specific physical properties desired in the total extrudate. selects the major component.

主要な配合物成分は好ましくは、カーボンブラックを初
めに混合する少量成分に対して少なくとも約3:1の重
量比で存在する。
The major formulation components are preferably present in a weight ratio of at least about 3:1 to the minor components with which the carbon black is initially mixed.

現在、もつとも好ましい配合物は主要成分としてポリエ
チレンであり、他のものとしてはエチレン−酢酸ビニル
またはエチレン−アクリル酸エチル共重合体の如きエチ
レン−ビニルエステル共重合体がある。
Presently, the most preferred formulations have polyethylene as the primary component, others include ethylene-vinyl ester copolymers such as ethylene-vinyl acetate or ethylene-ethyl acrylate copolymers.

とくに好ましい押出物は約70:20重量のポリエチレ
ン:エチレン−酢酸エチル共重合体を含有する。
A particularly preferred extrudate contains about 70:20 by weight polyethylene:ethylene-ethyl acetate copolymer.

使用されるカーボンブラックは導電性カーボンブラック
に慣用的に用いられるもの、たとえば、ファネスブラッ
クのよびチャネルブラックの如きストラフチャ=(s
t ructure )の高い種類のものである。
The carbon blacks used are those conventionally used for conductive carbon blacks, such as furnace blacks and channel blacks.
It is of a high type (structure).

抗酸化剤などの如き他の慣用の添加剤を、その量および
特性が本発明の目的をくつがえさない限り用いてもよい
Other conventional additives such as antioxidants and the like may be used as long as their amount and properties do not defeat the purpose of the invention.

とくに興味ある級の有利な添カロ剤は主要な配合物成分
と相溶性であって、より低温で溶融するワックスの如き
材料であることが見出されている。
A particularly interesting class of advantageous color additives has been found to be materials such as waxes that are compatible with the main formulation components and melt at lower temperatures.

その結果、ワックスの存在によってそのワックスの融点
近辺の組成物の抵抗を増大することになるため、より低
温で特定のワット数を得ることができる。
As a result, certain wattages can be obtained at lower temperatures because the presence of the wax increases the resistance of the composition near the melting point of the wax.

配合方法は慣用のものでよく、一般に、溶融物から自己
制限性素子を圧力押出する前の、バンバリー処理、ミル
かけおよびペレット化が含まれる。
Compounding methods may be conventional and generally include Banbury processing, milling and pelletizing before pressure extruding the self-limiting elements from the melt.

好ましい具体例として、カーボンブラック含有マトリッ
クスを1対の間をへだてた長い電極上に押出して、断面
が棒状またはもつとも好ましくは亜鈴状の素子を形成し
、押出した熱可塑性プラスチックが電極を被覆しかつそ
れらを連結するようにする。
In a preferred embodiment, the carbon black-containing matrix is extruded onto a pair of spaced elongated electrodes to form elements rod-shaped or, most preferably, dumbbell-shaped in cross-section, and the extruded thermoplastic covers the electrodes and Try to connect them.

さて、自己制限性加熱器のもつとも普通の用途の一つで
ある管の凍結防止を行うためには、加熱器からその周囲
へ少なくとも約13〜26 w 7m(4〜8ワツト/
フイート)の熱を伝えることができる熱出力を加熱器が
もっていることが望ましい 120〜480ボルトに亘
る普通に用いられる電圧で、13w/m(4ワツト/フ
イート)を発生するためには抵抗値は約6,000ない
し100.000オーム−αでなければならないが、も
ちろん、26w/m(8ワツト/フイート)位の大きい
値をうるためには特定の電圧で抵抗は一層低くなる。
Now, to provide one of the most common uses for self-limiting heaters, which is to protect pipes from freezing, at least about 13-26 watts (13-26 watts/7 m) from the heater to its surroundings must be used.
It is desirable for the heater to have a heat output capable of transferring heat of 13 W/m (4 watts/foot) at commonly used voltages ranging from 120 to 480 volts. should be about 6,000 to 100,000 ohms-α, but of course, to obtain values as large as 8 watts/foot, the resistance will be lower at a particular voltage.

然し、約15%以下より多くない炭素を含有する配合物
の押出の後、室温抵抗性は約107オームー儂よりも大
きく、もつとも普通には誘電体重合体マトリックス自体
の抵抗値のオーダーにある。
However, after extrusion of formulations containing no more than about 15% carbon, the room temperature resistance is greater than about 107 ohms, but usually on the order of the resistance of the dielectric polymer matrix itself.

そのような抵抗値では、電圧下で利用できるワット数は
本質的に零である。
At such resistance values, the wattage available under voltage is essentially zero.

自己制限性製品を他の方法で得た場合に従来電極の濡れ
性などを改良するのに用いていた時間よりも実質的に長
い時間押出物を重合体の溶融点より高い温度にかけるこ
とによって、上記押出物の導電性を非常に大きく増大さ
せることができることが分つたそうすることによって、
約15%以下の炭素含量で5〜約100,000オーム
−儂の範囲内の抵抗値が得られ、実際約10係よりも少
ないカーボンブラック含量ですら10,000オーム−
儂より低い室温抵抗値が普通得られている。
By subjecting the extrudate to a temperature above the melting point of the polymer for a substantially longer period of time than would previously be used to improve electrode wettability etc. if a self-limiting product were obtained by other methods. It has been found that the electrical conductivity of the extrudate can be greatly increased by doing so.
Resistance values in the range of 5 to about 100,000 ohms can be obtained with carbon contents of less than about 15%, and in fact even with carbon black contents of less than about 10%, resistances of 10,000 ohms can be obtained.
Lower room temperature resistance values than mine are usually obtained.

熱による構造組織の形成は明かに、普通゛アニーリング
″には伴われない種類の炭素粒子の微視的運動を含むも
のであるが、便宜上その用語をここで用いる。
Although thermal texturing obviously involves microscopic movement of carbon particles of a type not normally associated with "annealing," that term is used here for convenience.

アニーリングを約121°C(250°F)よりも高く
、好ましくは少なくとも約149°C(300°F )
の温度で行い、どの場合でも、カーボンブラックが分散
された重合体マトリックスの融点または溶融範囲以上の
温度で行なう。
Annealing above about 121°C (250°F), preferably at least about 149°C (300°F)
and in any case at a temperature above the melting point or melting range of the polymer matrix in which the carbon black is dispersed.

アニーリングを行う時間は特定のマl−IJワックス性
質およびそこに含有されるカーボンブラックの量により
変化することが認められるであろう。
It will be appreciated that the time for conducting the annealing will vary depending on the nature of the particular Mal-IJ wax and the amount of carbon black contained therein.

どの場合でも、アニーリングはアニーリングされる素子
の抵抗値が式2 L + 5 l og 10 R<
45、好ましくは<40をみたすまで減少させるのに充
分な時間桁われ、特定の場合についての必要な時間は実
験的に容易に決定することができる。
In all cases, annealing is performed so that the resistance of the annealed element is determined by the formula 2 L + 5 l og 10 R<
45, preferably <40, and the required time for a particular case can be readily determined experimentally.

典型的には、アニーリングは15時間を超える時間に亘
って行われ、普通少なくとも約24時間のアニーリング
が行なわれる。
Typically, annealing is performed for a period of time in excess of 15 hours, and usually at least about 24 hours of annealing is performed.

素子を必要な時間中連続的にアニーリング温度に保つ場
合には、アニーリングの完了時に、室温に戻るのに少な
くとも約11/2 時間かかるように、冷却を調節する
のがよい。
If the device is held at the annealing temperature continuously for the required period of time, cooling may be adjusted so that upon completion of the annealing, it takes at least about 11/2 hours to return to room temperature.

然し、必要な全アニーりング滞留時間を少なくとも約3
つの大兄等しい段階に分け、然も素子を各アニーリング
段階の間で室温に戻すならば、冷却の調節はそれ程重要
ではなくなることが判明している。
However, the total annealing residence time required is at least about 3
It has been found that if the annealing is divided into two equal steps, but the device is returned to room temperature between each annealing step, the cooling adjustment becomes less important.

カーボンブラック含有押出物の重合体マトリックスはア
ニーリング中溶融状態にあるから、アニーリング温度に
したときに形状を保持している熱可塑性材料の押出した
絶縁性被覆を、アニーリングする前に押出物につけるの
が好ましい。
Because the polymer matrix of the carbon black-containing extrudate is in a molten state during annealing, an extruded insulating coating of thermoplastic material that retains its shape when brought to the annealing temperature is applied to the extrudate before annealing. is preferred.

アニーリングを完了し、かつさらに別のたとえばポリエ
チレンの絶縁被覆を任意的に附加した場合、自己制限性
素子を望ましくはカーボンブラック含有芯体を架橋する
のに充分な強度でイオン化照射に付すことができる。
Once annealing has been completed and a further insulating coating, such as polyethylene, is optionally applied, the self-limiting element can be subjected to ionizing radiation at an intensity sufficient to desirably crosslink the carbon black-containing core. .

重合体マI−IJワックス結晶性を不当に減少させるこ
となく、特に目的とした用途に必要な熱安定度を与える
のに充分な架橋を達成するように目で見て照射量を選択
する。
The dose is visually selected to achieve sufficient crosslinking to provide the thermal stability required for the particular intended application without unduly reducing the polymer Ma I-IJ wax crystallinity.

即ち架橋したカーボンブラック含有マトリックスの全結
晶度が約20%よりも少なくなるようなことは避けるべ
きである。
That is, the total crystallinity of the crosslinked carbon black-containing matrix should be avoided to be less than about 20%.

この方針で、照射量は特別の場合に約2〜15メガラド
またはそれ以上の範囲になってもよく、好ましくは約1
2メガラドである。
Along these lines, the irradiation dose may range from about 2 to 15 megarads or more in special cases, preferably about 1
It is 2 megarads.

本発明をその好ましい実施態様について次の実施例でさ
らに記述する。
The invention is further described in the following examples with respect to preferred embodiments thereof.

実施例中、すべての部および係は重量に基いており、す
べての抵抗値は他に示さない限り室温でかつホイートス
トーンブリッジ(Wheatstone bridg
e)で測定した。
In the examples, all parts and references are by weight and all resistance values are measured at room temperature and on a Wheatstone bridge unless otherwise indicated.
Measured in e).

実施例 1 34.5ky(76ボンド)のポリエチレン(0,92
9g/ccの密度)及び、34%のパルカンXC−72
とエチレン−アクリル酸エチル共重合体(0,930g
/ccの密度、18係のアクリル酸エチル)の混合物1
4.5kg(32ポンド)をバンバリー混合機に1ポン
ドの抗酸化剤と共に入れた。
Example 1 34.5ky (76 bond) polyethylene (0.92
density of 9 g/cc) and 34% Palcan XC-72
and ethylene-ethyl acrylate copolymer (0,930g
/cc density, ratio 18 ethyl acrylate) mixture 1
4.5 kg (32 lb) was placed in a Banbury mixer along with 1 lb of antioxidant.

ラム(ram)を閉鎖し、そして混合を開始した。The ram was closed and mixing started.

温度が約116°C(240°F)−1218C(25
0°F)に達したときに、バッチをあけ、2本ロールミ
ルに入れ、そして帯状に切断し、ペレット化押出機に送
り込んだ。
The temperature is approximately 116°C (240°F) - 1218°C (25
When the temperature (0°F) was reached, the batch was opened, placed in a two-roll mill, cut into strips, and fed into a pelletizing extruder.

ペレット化した配合物を次に2本の平行な細い錫引き銅
の電極(各電極は19本の線からなるワイヤーであり、
直径が0.09zである)上に押出して、全体的に断面
が亜鈴状の押出物を形成した。
The pelletized formulation was then applied to two parallel thin tinned copper electrodes (each electrode was a wire consisting of 19 wires;
(diameter 0.09z) to form an extrudate with a generally dumbbell-shaped cross section.

電極は6.99mrn(0,275インチ)はなれ(中
心から中心まで)、相互に連結するウェブは電極を囲む
半導性組成物で、約0.13mm(15ミル)少なくと
も0.20 mm(8ミル)の厚みをもっていた。
The electrodes are separated (center to center) by 6.99 mrn (0.275 in.) and the interconnecting web is a semiconducting composition surrounding the electrodes, approximately 0.13 mm (15 mils) apart and at least 0.20 mm (8 mil) thickness.

電極の周りに組成物が押し出されるように、クロスヘッ
ドダイスが取付けられた可塑化押出機で組成物の押出を
行った。
Extrusion of the composition was carried out in a plasticizing extruder fitted with a crosshead die so that the composition was extruded around the electrodes.

その後、同一の押出機を操作して0.20mm(8ミル
)の厚さのポリウレタン〔テキシン(Texin )
591−A、モベソーml−ポレーション(Mobay
Corp、 )から市販されている〕の絶縁被覆を押
出した。
The same extruder was then operated to produce 0.20 mm (8 mil) thick polyurethane (Texin).
591-A, Mobeso ml-poration (Mobay
An insulating coating (commercially available from Co., Ltd.) was extruded.

任意の幾何学的形態に対し、慣用の管押出法を用い、そ
の場合、約3インチの押出ヘッド内の半導性芯体の周り
につぶれるように溶融管の中を真空〔例えば127〜5
08朋H20(5〜201nH20)〕にひいた。
For any geometry, a conventional tube extrusion process may be used, in which a vacuum [e.g.
08 H20 (5-201 nH20)].

被覆した生成物を次にアルミニウム円板(660mm2
6〃の径)上に巻付け、そして循環空気炉中で24時間
149°G(300°F)に曝した。
The coated product was then placed on an aluminum disk (660 mm2
6 diameter) and exposed to 149°G (300°F) for 24 hours in a circulating air oven.

この熱による構造組織の変化後、約11/2時間に亘っ
て室温に冷却してから、試料の抵抗を種々の温度で測定
した。
After this thermal change in structure, the sample was cooled to room temperature for about 11/2 hours, and then the resistance of the sample was measured at various temperatures.

下記のデータをえた。実施例 2〜9 以下に記載の条件を除き実施例1の方法に従って、種々
の重合体およびカーボンブラック含量を用いて更に別の
押出物を製造した。
I got the following data. Examples 2-9 Further extrudates were made using various polymers and carbon black contents according to the method of Example 1 except for the conditions described below.

種々の実施例についての重合体マトリックスは下記の通
りであった;(2)低密度ポリエチレン:エチレン−ア
クリル酸エチル共重合体の3=1の配合物;(3)低密
度ポリエチレン:エチレン−酢酸ビニル共重合体の5:
1の配合物;(4)ポリ弗化ビニリデン;(5)中密度
ポリエチレン:エチレン−アクリル酸エチル共重合体の
3:1配合物;(6)高密度ポリエチレン:エチレン−
アクリル酸エチル共重合体の3:1の配合物;(7)エ
チレン/プロピレン共重合体〔イーストマン・ケミカル
社(Eastman ChemicalCo、)の゛ポ
リアロマー(Polyallomer)” );(8)
ポリブテン−1;および(9)ポリ弗化ビニリデン/テ
トラフルオロエチレン共重合体〔ヘンワルト0ケミカル
社(Pennwalt Chemical Co、)
の゛キナール(Kynar ) 5200 ” 〕。
The polymer matrices for the various examples were as follows; (2) a 3=1 blend of low density polyethylene: ethylene-ethyl acrylate copolymer; (3) low density polyethylene: ethylene-acetic acid. Vinyl copolymer 5:
(4) polyvinylidene fluoride; (5) medium density polyethylene: 3:1 blend of ethylene-ethyl acrylate copolymer; (6) high density polyethylene: ethylene-
3:1 blend of ethyl acrylate copolymer; (7) ethylene/propylene copolymer (Polyallomer from Eastman Chemical Co.); (8)
Polybutene-1; and (9) polyvinylidene fluoride/tetrafluoroethylene copolymer [Pennwalt Chemical Co.]
``Kynar 5200''].

各配合物に対し、カーボンブラックを初めに重合体配合
物の少量成分と混合し、そして得られたマスターバッチ
を他の重合体成分と混合した。
For each formulation, the carbon black was first mixed with a minor component of the polymer formulation, and the resulting masterbatch was mixed with the other polymer components.

各組成物の被覆押出物は非線状の正の抵抗温度係数を示
した。
Coated extrudates of each composition exhibited nonlinear positive temperature coefficients of resistance.

第2表に得られたデータを示す。Table 2 shows the data obtained.

実施例 10 実施例1の方法を繰返して同一のポリウレタン被覆の押
出物をえた。
Example 10 The procedure of Example 1 was repeated to obtain identical polyurethane coated extrudates.

その後、1期間を3時間とし、期間と期間の間で室温に
冷却するやり方で9期間149℃(300下)に押出物
を曝した。
The extrudates were then exposed to 149° C. (below 300° C.) for nine periods with each period of 3 hours and cooling to room temperature between periods.

その後、前押出法によって最終のポリエチレン絶縁被覆
(0,30mm(12ミル)の厚さ〕をもアニーリング
製品に与え、そして12メガラドの全照射量で1−Me
v の電子線に当てることによって全体を架橋した。
Thereafter, a final polyethylene insulation coating (0.30 mm (12 mils) thick) was also applied to the annealed product by a pre-extrusion process and 1-Me was applied at a total dose of 12 megarads.
The whole was crosslinked by exposure to an electron beam of v.

製造した帯は第3表に示した温度でそこに記載の抵抗値
を示した。
The produced strips exhibited the resistance values indicated therein at the temperatures indicated in Table 3.

Claims (1)

【特許請求の範囲】 1 平行な間隔をおいた細長い一対の電極、この電極を
電気的に結合する融解押出しされた導電性重合体組成物
で、非直線的な正の抵抗温度係数を有し、かつ導電性の
カーボンブラックとX線回折により決定して少くとも2
0%の全結晶度を有する結晶性熱可塑性重合体とからな
る組成物のウェブ、及び導電性重合体組成物の前記ウェ
ブを取囲み、かつ前記導電性重合体組成物中の結晶性熱
可塑性重合体の結晶融点でその形状を保持する融解押出
しされた重合体の絶縁性被覆からなる自己調節性電気物
品において、前記導電性重合体組成物が導電性カーボン
ブラックを15重重量上でを含有し、式 %式% (式中、Lは組成物中のカーボンブラックの重量係であ
り、そしてRは組成物のオーム・ぼでの室温抵抗率であ
る)を満足する室温抵抗率を有することを特徴とする自
己調節性電気物品。 2 イ)平行な間隔をおいた細長い一対の電極のまわり
に導電性重合体組成物を融解押出し、然もその導電性重
合体組成物は非直線的な正の抵抗温度係数を有し、かつ
導電性カーボンブラックとX線回折によって決定して少
くとも20%の全結晶度を有する結晶性熱可塑性重合体
からなり、そして 口)イ)の工程で得られた押出物のまわりに絶縁性重合
体組成物の絶縁性被覆を融解押出しすることからなる自
己調節性電気物品の製造方法において、 A、 (a)非直線的な正の抵抗温度係数を有し、(b
)X線回折で決定して少くとも20%の全結晶度を有す
る結晶性熱可塑性重合体と、組成物の15重重量上りも
多くない量の導電性カーボンブラックとからなり、かつ
(c)少くとも10Q、000オーム・儂の前記押出し
後の室温抵抗率を有する、導電性重合体組成物を一対の
平行な間隔をおいた細長い電極のまわりに融解押出しを
し、 B、 Aの工程で得られた押出物のまわりに絶縁性組
成物を融解押出しをして、次のCの工程でその形状を保
持する絶縁性被覆を形成し、そして C6導電性重合体組成物中の結晶性熱可塑性重合体の融
点より高い温度で、かつ絶縁性被覆がその形状を保持す
る温度でB工程の製品をアニーリングし、然もそのアニ
ーリングはアニーリングされた導電性組成物が式 2L+51og1(、R≦45 (式中、Lは組成物中のカーボンブラックの重量係であ
り、そしてRは組成物のオーム・ぼでの室温抵抗率であ
る)を満足するようになる時間実施されることを特徴と
する自己調節性電気物品の製造方法。
Claims: 1. A pair of parallel spaced elongated electrodes, electrically coupling the electrodes to a melt-extruded conductive polymer composition having a non-linear positive temperature coefficient of resistance. , and conductive carbon black and at least 2 as determined by X-ray diffraction.
a web of a composition comprising a crystalline thermoplastic polymer having a total crystallinity of 0%; A self-regulating electrical article comprising an insulating coating of a melt-extruded polymer that retains its shape at the crystalline melting point of the polymer, wherein the conductive polymer composition contains over 15 weight by weight of conductive carbon black. and have a room temperature resistivity that satisfies the formula % (where L is the weight factor of the carbon black in the composition and R is the ohm-temperature resistivity of the composition). A self-regulating electrical article characterized by: 2 a) Melt extrude a conductive polymer composition around a pair of parallel spaced elongated electrodes, the conductive polymer composition having a non-linear positive temperature coefficient of resistance, and consisting of conductive carbon black and a crystalline thermoplastic polymer having a total crystallinity of at least 20% as determined by X-ray diffraction; A method of making a self-regulating electrical article comprising melt extruding an insulative coating of a composite composition, comprising: (a) having a non-linear positive temperature coefficient of resistance;
(c) a crystalline thermoplastic polymer having a total crystallinity of at least 20% as determined by X-ray diffraction; and an amount of conductive carbon black not more than 15% by weight of the composition; Melt extruding a conductive polymer composition having a room temperature resistivity after extrusion of at least 10 Q, 000 ohm·I around a pair of parallel spaced elongated electrodes; An insulating composition is melt-extruded around the obtained extrudate to form an insulating coating that retains its shape in the next step C, and the crystallization heat in the C6 conductive polymer composition is The product of step B is annealed at a temperature above the melting point of the plastic polymer and at a temperature at which the insulating coating retains its shape; (where L is the weight factor of the carbon black in the composition and R is the ohm-temperature resistivity of the composition). A method of manufacturing a self-regulating electrical article.
JP48101001A 1972-09-08 1973-09-07 Self-regulating electrical article and method of manufacturing the same Expired JPS5818722B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US287444A US3861029A (en) 1972-09-08 1972-09-08 Method of making heater cable
US287444 1972-09-08

Publications (2)

Publication Number Publication Date
JPS4968296A JPS4968296A (en) 1974-07-02
JPS5818722B2 true JPS5818722B2 (en) 1983-04-14

Family

ID=23102943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48101001A Expired JPS5818722B2 (en) 1972-09-08 1973-09-07 Self-regulating electrical article and method of manufacturing the same

Country Status (11)

Country Link
US (1) US3861029A (en)
JP (1) JPS5818722B2 (en)
BE (1) BE804628A (en)
CA (1) CA996171A (en)
DE (1) DE2345303C2 (en)
FR (1) FR2199175B1 (en)
GB (1) GB1449262A (en)
HK (1) HK1482A (en)
NL (1) NL7312393A (en)
NO (1) NO141489C (en)
SE (1) SE411086B (en)

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954695A (en) * 1972-09-08 1990-09-04 Raychem Corporation Self-limiting conductive extrudates and methods therefor
US3972821A (en) * 1973-04-30 1976-08-03 Amchem Products, Inc. Heat transfer composition and method of making
US4033028A (en) * 1974-06-21 1977-07-05 Pyrotenax Of Canada Limited Method of making heating cables
GB1507675A (en) * 1974-06-21 1978-04-19 Pyrotenax Of Ca Ltd Heating cables and manufacture thereof
JPS5113991A (en) * 1974-07-23 1976-02-03 Matsushita Electric Ind Co Ltd TEIKOTAI
GB1521460A (en) * 1974-08-30 1978-08-16 Raychem Corp Self-limiting electrically resistive article and process for its manufacture
US4286376A (en) * 1975-01-20 1981-09-01 Raychem Corporation Method of making heater cable of self-limiting conductive extrudates
ZA761096B (en) * 1975-03-03 1977-02-23 Ici Ltd Fibres
US4188276A (en) * 1975-08-04 1980-02-12 Raychem Corporation Voltage stable positive temperature coefficient of resistance crosslinked compositions
US4421582A (en) * 1975-08-04 1983-12-20 Raychem Corporation Self-heating article with deformable electrodes
US4560498A (en) * 1975-08-04 1985-12-24 Raychem Corporation Positive temperature coefficient of resistance compositions
US4426339B1 (en) 1976-12-13 1993-12-21 Raychem Corp. Method of making electrical devices comprising conductive polymer compositions
US4876440A (en) * 1976-12-13 1989-10-24 Raychem Corporation Electrical devices comprising conductive polymer compositions
DE2760471C2 (en) * 1976-12-13 1996-04-04 Raychem Corp Electrical device for heating elements
US4764664A (en) * 1976-12-13 1988-08-16 Raychem Corporation Electrical devices comprising conductive polymer compositions
FR2533396B1 (en) * 1976-12-13 1988-08-05 Raychem Corp ELECTRICAL DEVICES COMPRISING AN ELECTRODE IN CONTACT WITH A POLYMERIC COMPOSITION
GB1600257A (en) * 1976-12-13 1981-10-14 Raychem Corp Strip heaters comprising conductive polymer compositions
DE2760408C2 (en) * 1976-12-13 1996-04-04 Raychem Corp Electrical device for heating elements
US4866253A (en) * 1976-12-13 1989-09-12 Raychem Corporation Electrical devices comprising conductive polymer compositions
US4388607A (en) * 1976-12-16 1983-06-14 Raychem Corporation Conductive polymer compositions, and to devices comprising such compositions
GB1597007A (en) * 1976-12-16 1981-09-03 Raychem Corp Conductive polymer compositions and devices
DE2919436A1 (en) * 1978-05-18 1979-11-22 Hotfoil Ltd ITEM MADE OF A POLYMERIC ELECTRIC RESISTANCE MATERIAL
DE2923495A1 (en) * 1978-06-15 1980-01-03 Hotfoil Ltd HEATING TAPE
US4200973A (en) * 1978-08-10 1980-05-06 Samuel Moore And Company Method of making self-temperature regulating electrical heating cable
US4237441A (en) * 1978-12-01 1980-12-02 Raychem Corporation Low resistivity PTC compositions
US4242573A (en) * 1979-01-24 1980-12-30 Raychem Corporation Water immersible heater
US4277673A (en) * 1979-03-26 1981-07-07 E-B Industries, Inc. Electrically conductive self-regulating article
JPS55151782A (en) * 1979-05-10 1980-11-26 Sunbeam Corp Flexible heater and method of manufacturing same
US5049850A (en) * 1980-04-21 1991-09-17 Raychem Corporation Electrically conductive device having improved properties under electrical stress
US5178797A (en) * 1980-04-21 1993-01-12 Raychem Corporation Conductive polymer compositions having improved properties under electrical stress
US4318881A (en) * 1980-05-19 1982-03-09 Raychem Corporation Method for annealing PTC compositions
CA1168433A (en) * 1980-05-19 1984-06-05 Umesh K. Sopory Ptc conductive polymers and devices comprising them
US4591700A (en) * 1980-05-19 1986-05-27 Raychem Corporation PTC compositions
US4309596A (en) * 1980-06-24 1982-01-05 Sunbeam Corporation Flexible self-limiting heating cable
US4485297A (en) * 1980-08-28 1984-11-27 Flexwatt Corporation Electrical resistance heater
JPS5784586A (en) * 1980-11-13 1982-05-26 Hitachi Cable Self-temperature controllable heater
US4951384A (en) * 1981-04-02 1990-08-28 Raychem Corporation Method of making a PTC conductive polymer electrical device
US5195013A (en) * 1981-04-02 1993-03-16 Raychem Corporation PTC conductive polymer compositions
US4955267A (en) * 1981-04-02 1990-09-11 Raychem Corporation Method of making a PTC conductive polymer electrical device
US5140297A (en) * 1981-04-02 1992-08-18 Raychem Corporation PTC conductive polymer compositions
US4951382A (en) * 1981-04-02 1990-08-28 Raychem Corporation Method of making a PTC conductive polymer electrical device
US4845838A (en) * 1981-04-02 1989-07-11 Raychem Corporation Method of making a PTC conductive polymer electrical device
US5227946A (en) * 1981-04-02 1993-07-13 Raychem Corporation Electrical device comprising a PTC conductive polymer
JPS58164187A (en) * 1982-03-25 1983-09-29 日立電線株式会社 Self-temperature controllable heater
US4574188A (en) * 1982-04-16 1986-03-04 Raychem Corporation Elongate electrical assemblies
US4582983A (en) * 1982-04-16 1986-04-15 Raychem Corporation Elongate electrical assemblies
US4659913A (en) * 1982-04-16 1987-04-21 Raychem Corporation Elongate electrical assemblies
US4791276A (en) * 1982-04-16 1988-12-13 Raychem Corporation Elongate electrical assemblies
US4459473A (en) * 1982-05-21 1984-07-10 Raychem Corporation Self-regulating heaters
JPS59102940A (en) * 1982-12-06 1984-06-14 Hitachi Cable Ltd Resin composition for heater with self-controllable temperature
US4693940A (en) * 1983-02-14 1987-09-15 Raychem Corporation Laminate and method of preparing same
US4560524A (en) * 1983-04-15 1985-12-24 Smuckler Jack H Method of manufacturing a positive temperature coefficient resistive heating element
US4471215A (en) * 1983-08-24 1984-09-11 Eaton Corporation Self-regulating heating cable having radiation grafted jacket
US4719335A (en) * 1984-01-23 1988-01-12 Raychem Corporation Devices comprising conductive polymer compositions
US4761541A (en) * 1984-01-23 1988-08-02 Raychem Corporation Devices comprising conductive polymer compositions
US5089688A (en) * 1984-07-10 1992-02-18 Raychem Corporation Composite circuit protection devices
US4780598A (en) * 1984-07-10 1988-10-25 Raychem Corporation Composite circuit protection devices
US5148005A (en) * 1984-07-10 1992-09-15 Raychem Corporation Composite circuit protection devices
JPS6122590A (en) * 1984-07-10 1986-01-31 ダイキン工業株式会社 Polymer composite heater
US5064997A (en) * 1984-07-10 1991-11-12 Raychem Corporation Composite circuit protection devices
US4777351A (en) * 1984-09-14 1988-10-11 Raychem Corporation Devices comprising conductive polymer compositions
JPS61123665A (en) * 1984-11-19 1986-06-11 Matsushita Electric Ind Co Ltd Production of electrically conductive resin composition
US4724417A (en) * 1985-03-14 1988-02-09 Raychem Corporation Electrical devices comprising cross-linked conductive polymers
US4857880A (en) * 1985-03-14 1989-08-15 Raychem Corporation Electrical devices comprising cross-linked conductive polymers
US4698583A (en) * 1985-03-26 1987-10-06 Raychem Corporation Method of monitoring a heater for faults
US4785163A (en) * 1985-03-26 1988-11-15 Raychem Corporation Method for monitoring a heater
US4611588A (en) * 1985-06-05 1986-09-16 Pfizer Hospital Products Group, Inc. Laser beam resistant material
US4668857A (en) * 1985-08-16 1987-05-26 Belton Corporation Temperature self-regulating resistive heating element
US4689475A (en) * 1985-10-15 1987-08-25 Raychem Corporation Electrical devices containing conductive polymers
US4818439A (en) * 1986-01-30 1989-04-04 Sunbeam Corporation PTC compositions containing low molecular weight polymer molecules for reduced annealing
US4849611A (en) * 1985-12-16 1989-07-18 Raychem Corporation Self-regulating heater employing reactive components
US4801785A (en) * 1986-01-14 1989-01-31 Raychem Corporation Electrical devices
CA1333381C (en) 1986-02-20 1994-12-06 Eric D. Nyberg Method and articles employing ion exchange material
JPH0799721B2 (en) * 1986-09-13 1995-10-25 日本メクトロン株式会社 Method for producing PTC composition
JPH0777161B2 (en) * 1986-10-24 1995-08-16 日本メクトロン株式会社 PTC composition, method for producing the same and PTC element
JPH0710025B2 (en) * 1987-05-11 1995-02-01 日本メクトロン株式会社 Printed wiring board with circuit protection function
US4733059A (en) * 1987-06-15 1988-03-22 Thermon Manufacturing Company Elongated parallel, constant wattage heating cable
US4924074A (en) * 1987-09-30 1990-05-08 Raychem Corporation Electrical device comprising conductive polymers
US5166658A (en) * 1987-09-30 1992-11-24 Raychem Corporation Electrical device comprising conductive polymers
US4907340A (en) * 1987-09-30 1990-03-13 Raychem Corporation Electrical device comprising conductive polymers
US4889975A (en) * 1988-03-16 1989-12-26 The Fluorocarbon Company Self-regulating heater having a heat tape that stops tracking
US5066104A (en) * 1988-03-25 1991-11-19 Raychem Corporation Liquid crystal electrical fault indicators
US4922083A (en) * 1988-04-22 1990-05-01 Thermon Manufacturing Company Flexible, elongated positive temperature coefficient heating assembly and method
US5057673A (en) * 1988-05-19 1991-10-15 Fluorocarbon Company Self-current-limiting devices and method of making same
DE3817437A1 (en) * 1988-05-21 1989-11-30 Asea Brown Boveri METHOD FOR PROCESSING WASTE MATERIAL
US5250226A (en) * 1988-06-03 1993-10-05 Raychem Corporation Electrical devices comprising conductive polymers
CA1314581C (en) * 1988-07-08 1993-03-16 Yoshinori Nishino Heater device used for floor material etc. and floor material with heater contained therein
US4967057A (en) * 1988-08-02 1990-10-30 Bayless Ronald E Snow melting heater mats
US5111032A (en) * 1989-03-13 1992-05-05 Raychem Corporation Method of making an electrical device comprising a conductive polymer
US5052699A (en) * 1989-07-10 1991-10-01 Raychem Corporation Grommet
US5925276A (en) * 1989-09-08 1999-07-20 Raychem Corporation Conductive polymer device with fuse capable of arc suppression
US5004432A (en) * 1989-10-02 1991-04-02 Raychem Corporation Electrical connector
US5002501A (en) * 1989-10-02 1991-03-26 Raychem Corporation Electrical plug
US5045673A (en) * 1990-04-04 1991-09-03 General Signal Corporation PTC devices and their composition
US5174924A (en) * 1990-06-04 1992-12-29 Fujikura Ltd. Ptc conductive polymer composition containing carbon black having large particle size and high dbp absorption
JP3255232B2 (en) * 1990-05-07 2002-02-12 レイケム・コーポレイション Long electric resistance heater
DE4024268A1 (en) * 1990-07-31 1992-02-06 Lehmann & Voss & Co Electroconductive plastics element for heater or electronic device - contains synergistic mixt. of carbon or graphite powder and fibres and opt. metal fibres
US6111234A (en) * 1991-05-07 2000-08-29 Batliwalla; Neville S. Electrical device
US5185594A (en) * 1991-05-20 1993-02-09 Furon Company Temperature sensing cable device and method of making same
US5558794A (en) * 1991-08-02 1996-09-24 Jansens; Peter J. Coaxial heating cable with ground shield
US5317061A (en) * 1993-02-24 1994-05-31 Raychem Corporation Fluoropolymer compositions
US5582770A (en) * 1994-06-08 1996-12-10 Raychem Corporation Conductive polymer composition
US5552199A (en) * 1994-09-02 1996-09-03 Minnesota Mining And Manufacturing Company Melt-processable electroconductive fluoroplastic
US5756972A (en) * 1994-10-25 1998-05-26 Raychem Corporation Hinged connector for heating cables of various sizes
US5550350A (en) * 1994-11-17 1996-08-27 Donald W. Barnes Heated ice-melting blocks for steps
US5622642A (en) * 1995-02-06 1997-04-22 Raychem Corporation Sealing apparatus for elongate cables having movable insert with gripping members
DE69606310T2 (en) * 1995-08-15 2001-04-05 Bourns Multifuse Hong Kong Ltd SURFACE MOUNTED CONDUCTIVE COMPONENTS AND METHOD FOR PRODUCING THE SAME
TW309619B (en) * 1995-08-15 1997-07-01 Mourns Multifuse Hong Kong Ltd
US5792987A (en) * 1995-08-28 1998-08-11 Raychem Corporation Sealing device
DE19548741A1 (en) * 1995-12-23 1997-06-26 Abb Research Ltd Process for the production of a material for PTC resistors
US5718600A (en) * 1996-01-17 1998-02-17 Raychem Corporation Electrical plug
US5814264A (en) * 1996-04-12 1998-09-29 Littelfuse, Inc. Continuous manufacturing methods for positive temperature coefficient materials
US6005232A (en) * 1996-06-28 1999-12-21 Raychem Corporation Heating cable
US5767448A (en) * 1996-09-30 1998-06-16 Raychem Corporation Sealing device
US6020808A (en) * 1997-09-03 2000-02-01 Bourns Multifuse (Hong Kong) Ltd. Multilayer conductive polymer positive temperature coefficent device
DE69826986T2 (en) * 1997-12-08 2006-02-09 Acome, Societe Cooperative De Travailleurs EXTRUDED SELF-REGULATING CABLES AND THEIR MANUFACTURE
US6109878A (en) * 1998-04-13 2000-08-29 Micropump, Inc. System and a method for velocity modulation for pulseless operation of a pump
US5993990A (en) * 1998-05-15 1999-11-30 Moltech Corporation PTC current limiting header assembly
JP2002526911A (en) 1998-09-25 2002-08-20 ブアンズ・インコーポレイテッド A two-stage method for producing positive temperature coefficient polymeric materials
EP1121728B1 (en) 1998-10-15 2005-11-09 TYCO Electronics Corporation Connector for electrical cable
US6564011B1 (en) * 2000-08-23 2003-05-13 Fmc Technologies, Inc. Self-regulating heat source for subsea equipment
US6597551B2 (en) 2000-12-13 2003-07-22 Huladyne Corporation Polymer current limiting device and method of manufacture
US7176421B2 (en) * 2004-03-05 2007-02-13 Transdigm Inc. Straight ribbon heater
US7322415B2 (en) * 2004-07-29 2008-01-29 Tyco Thermal Controls Llc Subterranean electro-thermal heating system and method
US7568526B2 (en) * 2004-07-29 2009-08-04 Tyco Thermal Controls Llc Subterranean electro-thermal heating system and method
US9603196B2 (en) * 2012-12-14 2017-03-21 Tech Design Llc Self-regulating semi-conductive flexible heating element
JP6756692B2 (en) * 2017-11-07 2020-09-16 日立金属株式会社 Insulated wire
JP6795481B2 (en) 2017-11-07 2020-12-02 日立金属株式会社 Insulated wire
AR123444A1 (en) 2021-09-07 2022-11-30 Di Ciommo Jose Antonio CABLE FOR ELECTRICAL POWER DISTRIBUTION THAT PREVENTS UNAUTHORIZED UNWANTED CONNECTION TO THE SAME

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE562035A (en) *
US2282832A (en) * 1939-11-24 1942-05-12 Gen Electric Semiconducting tape
US2905919A (en) * 1956-01-17 1959-09-22 British Insulated Callenders Electric heating cables
FR1305140A (en) * 1961-11-09 1962-09-28 Montedison Spa Mixtures based on crystalline polyolefins and electrical elements of variable conductance formed from such mixtures
US3155631A (en) * 1962-02-19 1964-11-03 Du Pont Semi-conductor, containing ethylene/ethyl acrylate copolymer, petroleum wax and carbon black
US3243753A (en) * 1962-11-13 1966-03-29 Kohler Fred Resistance element
SE331504B (en) * 1963-03-05 1971-01-04 Elofol Ag
US3308528A (en) * 1963-11-06 1967-03-14 Ibm Fabrication of cermet film resistors to close tolerances
US3277419A (en) * 1963-11-20 1966-10-04 Du Pont Laminated heating unit
US3351882A (en) * 1964-10-09 1967-11-07 Polyelectric Corp Plastic resistance elements and methods for making same
US3410984A (en) * 1966-05-03 1968-11-12 Gen Electric Flexible electrically heated personal warming device
US3435401A (en) * 1966-10-05 1969-03-25 Texas Instruments Inc Insulated electrical conductors
GB1201166A (en) * 1967-12-04 1970-08-05 Ici Ltd Conducting plastic articles
US3591526A (en) * 1968-01-25 1971-07-06 Polyelectric Corp Method of manufacturing a temperature sensitive,electrical resistor material
US3629154A (en) * 1969-10-30 1971-12-21 Esb Inc Thin electrically conductive nonporous polymeric film
CA949637A (en) * 1970-08-03 1974-06-18 Henry J. Stinger Process for making electrically conductive heating elements

Also Published As

Publication number Publication date
BE804628A (en) 1974-03-07
FR2199175B1 (en) 1977-09-23
SE411086B (en) 1979-11-26
AU6016873A (en) 1975-03-13
JPS4968296A (en) 1974-07-02
DE2345303A1 (en) 1974-04-18
CA996171A (en) 1976-08-31
US3861029A (en) 1975-01-21
HK1482A (en) 1982-01-22
FR2199175A1 (en) 1974-04-05
NO141489B (en) 1979-12-10
GB1449262A (en) 1976-09-15
NL7312393A (en) 1974-03-12
DE2345303C2 (en) 1984-09-20
NO141489C (en) 1980-03-19

Similar Documents

Publication Publication Date Title
JPS5818722B2 (en) Self-regulating electrical article and method of manufacturing the same
US3858144A (en) Voltage stress-resistant conductive articles
US4286376A (en) Method of making heater cable of self-limiting conductive extrudates
CA1067947A (en) Positive temperature coefficient resistance heating elements
US3823217A (en) Resistivity variance reduction
US3914363A (en) Method of forming self-limiting conductive extrudates
US3793716A (en) Method of making self limiting heat elements
US4334351A (en) Novel PTC devices and their preparation
US4304987A (en) Electrical devices comprising conductive polymer compositions
US4591700A (en) PTC compositions
US4400614A (en) PTC Devices and their preparation
US4200973A (en) Method of making self-temperature regulating electrical heating cable
US4237441A (en) Low resistivity PTC compositions
US4534889A (en) PTC Compositions and devices comprising them
US4388607A (en) Conductive polymer compositions, and to devices comprising such compositions
US4426339A (en) Method of making electrical devices comprising conductive polymer compositions
CA1082447A (en) Voltage stable compositions
US5140297A (en) PTC conductive polymer compositions
US5195013A (en) PTC conductive polymer compositions
US4845838A (en) Method of making a PTC conductive polymer electrical device
JPH0159684B2 (en)
JP2003506862A (en) Conductive polymer composition
US4318881A (en) Method for annealing PTC compositions
US4951382A (en) Method of making a PTC conductive polymer electrical device
US4367168A (en) Electrically conductive composition, process for making an article using same