WO1999044391A1 - Heating unit - Google Patents

Heating unit Download PDF

Info

Publication number
WO1999044391A1
WO1999044391A1 PCT/JP1999/000877 JP9900877W WO9944391A1 WO 1999044391 A1 WO1999044391 A1 WO 1999044391A1 JP 9900877 W JP9900877 W JP 9900877W WO 9944391 A1 WO9944391 A1 WO 9944391A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heating element
heating
heat generating
composition
Prior art date
Application number
PCT/JP1999/000877
Other languages
French (fr)
Japanese (ja)
Inventor
Eiichi Shitamori
Tsuyoshi Yamamoto
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Publication of WO1999044391A1 publication Critical patent/WO1999044391A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/54Heating elements having the shape of rods or tubes flexible
    • H05B3/56Heating cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient

Definitions

  • the present invention relates to a planar or linear heater used as a heater for heating electric equipment, electronic equipment, mechanical parts, or the like, a heater for preventing dew condensation on a mirror or the like, a heater for preventing freezing of a water supply and drainage facility, and the like. Heating element.
  • heaters formed by using nichrome wires and exothermic substances have been used as heaters for heating electrical equipment, electronic equipment, and mechanical parts, heaters for preventing condensation such as mirrors, and heaters for preventing freezing of plumbing equipment. Heating elements of various forms have been used.
  • a control circuit for power supply is required to control the heat generation temperature, so a heat generating substance that can control the heat generation temperature without using such a control circuit was used.
  • Heating elements are used in various fields.
  • a heat generating substance a substance having a positive temperature coefficient characteristic (hereinafter referred to as a PTC characteristic) in which the value of a specific resistance increases with an increase in temperature is used.
  • a heat generating composition in which a crystalline thermoplastic resin and conductive particles are mixed at a specific ratio is used.
  • heat generation can be performed without using a power supply control circuit by variously selecting the type, the mixing ratio, and the like of the crystalline thermoplastic resin and the conductive particles that are constituents thereof.
  • the temperature can be adjusted.
  • the form of the heating element formed by molding the heat generating composition is formed so as to conform to the form of a member requiring heating. Therefore, when the area of a member requiring heating is large, a planar heating element corresponding to the area is used.
  • this planar heating element When it is installed in a device or an electronic device, it is necessary to incorporate a heat equalizing plate, which causes a problem that the volume of the entire device is increased. For this reason, when incorporated into these devices, particularly devices intended for miniaturization, a heating element having a planar or linear shape is suitable.
  • the heat-generating composition having the PTC characteristic generally has a low electric resistance value in a low temperature range of about 0 to room temperature, and a high temperature range beyond room temperature. Since the resistance-temperature characteristics show that the electrical resistance value rises sharply when the temperature reaches this point, when the heating element incorporated in a device in a low-temperature region that requires heating starts energizing for heating, A large inrush current occurs.
  • the present invention reduces the inrush current at the start of energization in the conventional heating element, reduces the power supply load on the device, and reduces the deterioration in the performance of the heating element due to electric shock and thermal shock. Enables stable use over a wide range To provide a heating element having a structure capable of easily controlling the resistance temperature characteristics of the heating section, capable of controlling the temperature in a low temperature range, and enduring use at a high environmental temperature. It is intended for. Disclosure of the invention
  • the present inventors as a linear heating element using a heat-generating composition having PTC characteristics, the configuration of the heat-generating portion is changed to a layer composed of a plurality of heat-generating compositions having different PTC characteristics, or a PTC characteristic.
  • the distance between the metal core wires used as electrodes is set to a specific value. It has been found that the above-mentioned object can be achieved by configuring the ratio to be in a specific range, and the present invention has been completed based on such findings.
  • the gist of the present invention is as follows.
  • a heating layer (A) made of a heating composition having a positive temperature coefficient characteristic is used as a coating layer near at least the metal core wire serving as an electrode of the metal core wire, and an outer peripheral portion of the heating layer (A) is used.
  • the heating layer has a positive temperature coefficient characteristic as a coating layer of the heating layer, but in a temperature range in which the rising ratio of the resistance in the resistance temperature characteristic is equal to or lower than the temperature indicating the maximum rising ratio of the heating composition of the heating layer (A).
  • It has a positive temperature coefficient characteristic that is lower than the rising ratio of the exothermic composition of (A) or that the temperature at which the resistance starts to rise in the resistance temperature characteristic is higher than the temperature at which the exothermic composition of the heating layer (A) starts to rise.
  • the spacing between the mutual metal core is within 5 mm, and the both of the metal core A heating element characterized in that the volume ratio to the coating layer is 5 to 90%.
  • the heat-generating composition of the heat-generating layer (B 1) is in a temperature range in which the rising ratio of the resistance in the resistance-temperature characteristic is equal to or lower than the temperature indicating the maximum rising magnification of the heat-generating composition of the heat-generating layer (A)
  • the heating magnification of the exothermic composition of (A) is 0.5 times or less, or the temperature at which the resistance starts to rise in the resistance temperature characteristic is lower than the temperature at which the heating composition of the heating layer (A) starts to rise.
  • the heating element according to 1 above which has a positive temperature coefficient characteristic higher by 5 ° C or more.
  • the exothermic composition of the exothermic layer (A) is a exothermic composition comprising a crystalline thermoplastic resin and conductive particles
  • the exothermic composition of the exothermic layer (B 1) is a crystalline thermoplastic resin.
  • the heat-generating composition of the heat-generating layer (A) is a heat-generating composition comprising a crystalline thermoplastic resin and conductive particles
  • the heat-generating composition of the heat-generating layer (B 1) comprises a thermoplastic resin and a silicone.
  • the heat generating composition of the heat generating layer (A) is a heat generating composition comprising a crystalline thermoplastic resin and conductive particles
  • the heat generating composition of the heat generating layer (B 2) is a silicone resin and conductive particles.
  • the heat generating composition of the heat generating layer (A) is a heat generating composition comprising a thermoplastic resin, a silicone resin, and conductive particles
  • the resin of the heat generating layer (B 2) is a silicon resin and a conductive resin.
  • the conductive particles are made of carbon particles having a particle size of 10 to 200 mm.
  • the heating element according to any one of 1 to 6, which is a rack particle.
  • heating element Coating the outer peripheral surface of the heating element with a polyethylene terephthalate film, a polyethylene film, a polypropylene film, or an electrically insulating exterior material selected from a laminating film having an aluminum sheet attached to these films.
  • the heating element according to any one of 1 to 7 above.
  • the cross-sectional shape of the heating element is rectangular, the short side is 0.1 to 1 mm, the long side is 1 to 7 mm, and the number of metal core wires is 2 to 10
  • the heating element according to any one of 1 to 8 above.
  • a lead wire is taken out from at least two metal core wires as electrodes of the heating element, and a connection terminal is provided at an end of the lead wire. Heating element.
  • An additional conductive and heat generating layer (X) is provided between the metal core and the heat generating layer (A), and the coefficient of thermal expansion of the conductive and heat generating layer (X) depends on the coefficient of thermal expansion of the metal core and the heat generating layer (A).
  • the conductive and heat generating layer (X) is a composition comprising a crystalline thermoplastic resin and conductive particles. 17.
  • the heating element according to the item 15 includes an electrically insulating exterior material instead of the heat generation layers (B1) and (B2).
  • Both the heating layer (A) and the conductive and heating layer (X) are both layers or one of them is the coating layer of the metal core wire, and the metal core wire with the coating layer is spirally arranged.
  • the heating element according to 15 above which is characterized by:
  • the molding temperature used for molding the heat-generating layer (A), conductive / heat-generating layer (X), heat-generating layer (B1) or heat-generating layer (B2) and, if necessary, co-extrusion of the insulating resin is determined by the resin used.
  • 1 to 4 are cross-sectional views of an example of the heating element of the present invention.
  • the heating element of the present invention is obtained by coating a plurality of metal core wires arranged in parallel with each other with a heating composition containing at least a thermoplastic resin and conductive particles. Thus, a heat generating portion is formed.
  • a heating layer (A) made of a heating composition having a positive temperature coefficient characteristic is disposed as a coating layer at least in the vicinity of the metal core wire serving as an electrode among the metal core wires, and the heating layer (A) It has a positive temperature coefficient characteristic as a coating layer on the outer peripheral portion, but in the temperature range where the rise ratio of the resistance in the resistance temperature characteristic is equal to or lower than the temperature indicating the maximum rise ratio of the exothermic composition of the exothermic layer (A).
  • a heat generating layer (B 1) made of a heat generating composition having characteristics or a heat generating layer (B 2) made of a heat generating composition having no positive temperature coefficient characteristics is provided.
  • a highly conductive metal used in a conventional heating element for example, a metal wire of copper, a copper alloy, gold, silver, nickel, aluminum or the like is suitably used.
  • the metal core wire may be a single wire, or may be in the form of a stranded wire or a net wire.
  • the cross-sectional shape of the metal core wire is not particularly limited, but any shape such as a circle, an ellipse, a rectangle, and a foil can be used. In particular, those having a rectangular cross-sectional shape are preferable, and the short shape is preferably 0.035 to 0.1 mm and the long diameter is preferably 0.3 to 1.2 mm.
  • the types include single wire, stranded wire, mesh wire, etc., and tin plating is mentioned as the coating material.
  • the thermoplastic resin used for the heating layer (A) in the heating element of the present invention includes a crystalline thermoplastic resin.
  • a crystalline thermoplastic resin include a polyolefin resin and its copolymer resin, a vinyl acetate resin, a polyamide resin, a polyacetal resin, a thermoplastic polyester resin, a gen polymer, and a polyphenylene oxide resin. , Nonyl resin, polysulfone resin etc. No.
  • polystyrene resin examples include polyethylenes such as high-density polyethylene, medium- and low-density polyethylene, and linear low-density polyethylene; polypropylenes such as asotactic polypropylene and syndiotactic polypropylene; Polybutene-11 and poly (4-methylpentene-1) resin.
  • polystyrene resin examples include ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-ethylenol acrylate copolymer, and ethylene-ethylene copolymer.
  • Ethylene acrylate copolymers such as methyl acrylate copolymers, copolymers of olefins and vinyl compounds such as ethylene-vinyl monochloride copolymers, fluorine-containing ethylene polymers, These modifications can also be used.
  • examples of the above-mentioned butyl acetate resin include butyl acetate resin, polyvinyl acetate acetal, and polybutyl butyral.
  • polyamide resin examples include Nylon 6, Nylon 8, Nylon 11, Nylon 66, and Nylon 610.
  • polyacetal resin a homopolymer may be used, or a copolymer may be used.
  • thermoplastic polyester resin examples include polyethylene terephthalate and polybutylene terephthalate.
  • gen-based polymers such as trans-1,3-polyisoprene and syndiotactic 1,2-polybutadiene and copolymers thereof can be used.
  • thermoplastic resins high-density polyethylene, low-density polyethylene, linear low-density polyethylene, ethylene monobutyl copolymer, ethylene-ethylene acrylate copolymer, and other olefin-based copolymers. Polymers and trans-1,4-polyisoprene are preferred.
  • thermoplastic resins may be used alone or in a mixture of two or more.
  • Examples of the resin used for the heating layer (B 1) include the thermoplastic resin.
  • examples of the resin for the heat generating layer (B 2) include a silicone resin, a thermosetting resin, and an amorphous thermoplastic resin.
  • examples of the conductive particles used in the thermoplastic resin component include particles such as carbon black particles and graphite particles, and powders such as metal powder and metal oxide powder. And fibrous materials such as carbon fiber. Among them, granular materials such as carbon black particles and graphite particles, and particularly carbon black particles are preferred. These conductive particles may be used alone or in a combination of two or more.
  • the particle size of these conductive particles those having an average particle size of 10 to 200 micron are used, and those having an average particle size of 15 to 100 micron are more preferable.
  • the aspect ratio is usually from 1 to 100, preferably from 1 to 100.
  • thermoplastic resin and the conductive particles are mixed at a specific mixing ratio, and are melt-kneaded by a kneader or an extruder.
  • melt-kneading step it is preferable to add a cross-linking agent to cross-link the thermoplastic resin, since the PTC property of the obtained exothermic composition is improved.
  • the compounding ratio of the crystalline resin and the conductive particles is usually 10 to 80: 90 to 20, preferably 55 to 75: 45 to 25 by weight. You. If the mixing ratio of the conductive particles is less than this range, the specific resistance of the heat-generating composition will be reduced. When the resistance value is too large, heat generation may be insufficient, and when the mixing ratio of the conductive particles is larger than this range, the PTC characteristics of the heat generating composition may not be sufficiently exhibited.
  • an organic peroxide As the cross-linking agent, an organic peroxide, a sulfur compound, an oxime, a nitroso compound, an amine compound, a polyamine compound, or the like is appropriately selected and used depending on the type of the thermoplastic resin. Can be.
  • an organic peroxide is preferably used.
  • These organic peroxides include, for example, benzoyl peroxide, lauroyl peroxide, dicumyl peroxide, tert-butyl peroxide, tert-butyl peroxybenzoate, tert-butyl cumylno.
  • Tert-Butylhydroperoxide 2,5-dimethyl-1,2,5-di (tert-butylpropyl) hexine-1,3,1,1-bis (tert-butylperoxyisopropylate) Benzene, 1,1-bis (tert-butylpyroxy) -13,3,5-trimethylcyclohexane, n-butyl-14,4-bis (tert-butylperoxy) norrelate, 2,2- Bis (tert-butylperoxy) butane, tert-butylperoxybenzene and the like can be mentioned. Of these, 2,5-dimethyl-1,2,5-di (tert-butylperoxy) hexine-13 is preferred. These organic peroxides may be used alone or, if necessary, may be added with a cross-linking aid such as triallyl cyanurate divinylbenzene, triarylsocyanurate, or the like. .
  • the use ratio of these organic peroxides is usually 0.01 to 5 parts by weight, preferably 0.05 to 2 parts by weight, based on 100 parts by weight of the thermoplastic resin. If this ratio is less than 0.01 part by weight, the crosslinking of the thermoplastic resin becomes insufficient, and the PTC characteristics may not be sufficiently exhibited, or the resistance in a high temperature range may be reduced. If the amount exceeds 5 parts by weight, crosslinking The degree of conversion may be too high, resulting in reduced moldability or reduced PTC properties.
  • the heat-generating composition is coated on at least two metal core wires to be used as electrodes.
  • the co-extrusion molding temperature at the time of coating the outer layer is in the range of 20 to 200 ° C higher than the resin maximum melting point (MP), preferably 50 to 110 ° C.
  • MP resin maximum melting point
  • the resin maximum melting point temperature may have many melting points in the case of resin blend / copolymerization, etc., and refers to the melting point at the maximum temperature in this case. If the maximum melting point of the resin is below 20 ° C, the resin will not melt sufficiently and stable production and production will not be possible.
  • the linear velocity for co-extrusion is 5 to 350 m / min., Preferably 70 to 200 m / min.
  • the exothermic composition and the metal core are co-extruded by holding the two metal cores in parallel in the die of the extruder for the exothermic composition and keeping the distance between the metal cores at a constant interval of 5 mm or less.
  • coating treatment can be performed efficiently.
  • the heat-generating composition used here is prepared by first coating the heat-generating composition used to form the heat-generating layer (A), and then forming the heat-generating layer (B1) or (B2) on the heat-generating composition.
  • the exothermic composition for forming the exothermic layer (A) and the exothermic composition for forming the exothermic layer (B 1) or (B 2) may be extruded from respective extruders.
  • the exothermic composition for forming the exothermic layer (A) is in contact with the metal core wire, and the exothermic composition for forming the exothermic layer (B 1) or (B 2) is outside. They may be co-extruded together with.
  • FIG. Figure 1 shows the cross section of the heating element
  • reference numeral 1 denotes a metal core wire
  • 2 denotes a heating layer (A)
  • 3 denotes a heating layer (B 1) or (B 2).
  • the cross-sectional shape of the heating element is not particularly limited, but a rectangular shape is convenient for taking out a terminal for connection with a lead wire.
  • the practicality is high if the short side of this cross section is about 0.1 to 1 mm and the long side is about 1 to 7 mm. .
  • the wiring operation is not easy, and if the dimensions are larger than this, the flexibility is poor and it is not easy to incorporate into the equipment, and the equipment becomes large. is there.
  • the metal core wire 1 is used as an electrode, at least two metal core wires are required, but the metal core wire 1 may be 2 to 10 wires.
  • the number of metal core wires 1 may be set to, for example, three, and the remaining metal core wire not used for the electrode may be used as a heat conductor for soaking.
  • four metal core wires 1 may be used, two of which may be used as an anode and the other two may be used as a cathode. When the number of the metal core wires 1 is increased and the diameter is reduced in this manner, a heating element having more flexibility can be obtained.
  • the second example is described in FIG.
  • the shape of the heating element is not particularly limited. However, in a case where the heating element is drawn while meandering on a flat surface, a shape close to a circle is preferable, and flexibility is required. In such an application, as shown in Fig. 4, the core wire coated with the necessary coating layer is twisted in a spiral shape to improve the addability, and the shape of the outer coating resin is circular. In this case, the temperature is further improved, and the application of the heating element is facilitated.
  • This metal core wire 1 is embedded in the heat generating composition such that the distance between the metal core wires 1 is within 5 mm, preferably 0.05 to 3 mm. If this interval exceeds 5 mm, local heating is likely to occur.
  • the heat generating layer (A) 2 is formed, and the heat generating layer (A) 2 is formed by covering the outer peripheral surface with the heat generating layer (B 1) or (B 2) 3.
  • the exothermic composition used in (3) has a PTC characteristic in which the rise ratio of the resistance is less than the temperature indicating the maximum rise ratio of the resistance of the exothermic composition of the exothermic layer (A) 2;
  • A) The exothermic composition is used in which the types and blending ratios of the thermoplastic resin and the conductive particles are adjusted so as to be lower than the rising magnification of the resistance of the exothermic composition of 2, preferably 0.5 times or less.
  • the temperature at which the resistance of the exothermic composition used in 3 starts to rise in the resistance temperature characteristics is higher than the temperature at which the resistance of the exothermic composition of the exothermic layer (A) 2 starts to rise, preferably 5 ° C or more.
  • a heat-generating composition may be used in which the types and the mixing ratios of the thermoplastic resin and the conductive particles are adjusted so that
  • the rise ratio of the resistance value in the PTC characteristic is the maximum value of the resistance value when the resistance value of the heat-generating composition at the time of temperature rise is plotted, with the horizontal axis representing the temperature and the vertical axis representing the resistance value. Is the magnification for the minimum value of.
  • the temperature at which the resistance value starts to rise in the resistance temperature characteristics is a temperature at which the resistance value of the exothermic composition at room temperature (23 ° C.) is twice as high as the resistance value.
  • the heat generating portion of the heat generating element is constituted by a combination of the two heat generating layers (A) 2 and (B 1) or (B 2) 3 having different PTC characteristics, so that one type is used alone.
  • Inrush current at the start of energization can be greatly reduced as compared with a conventional heating element composed of a heating layer composed of only the heating composition described above, and damage to the heating element due to the inrush current is reduced.
  • the life of the heating element can be extended.
  • this heat generating part is made of two kinds of heat generating layers (A) 2 having different PTC characteristics and a type of thermoplastic resin or conductive particles used for (B 1) or (B 2) 3.
  • an exothermic composition of the exothermic layer (B 1) having a temperature range of 40 to 70 ° C. in which the PTC characteristic appears is used. If a heater with a heat resistance of 150 ° C is used, the obtained heating element may be applied to a part where the environmental temperature may rise to about 150 ° C. Can be used without fear of thermal damage.
  • the heat generating layers (A) 2, (B l), and (B 2) 3 on the metal core wire 1 the heat generating layers (A) 2, (B 1), (B2) The thickness of each of these layers is adjusted so that the volume ratio to 3 is 5 to 90%, preferably 10 to 70%.
  • a conductive layer (X) (4) is further provided between the metal core 1 and the heat generating layer (A), and the coefficient of thermal expansion of the conductive and heat generating layer (X) is equal to the coefficient of thermal expansion of the metal core 1 and the heat generation.
  • the conductive heating layer (X) is a composition comprising the above-mentioned crystalline thermoplastic resin and conductive particles.
  • Each metal core 1, heat generating layer (A) and conductive and heat generating layer (X) have a coefficient of thermal expansion: heat generating layer (A)> conductive and heat generating layer (X)> core 1
  • the heat generation layer (A) and the conductive and heat generation layer (X) so that the order is as follows.
  • the preferred range of the coefficient of thermal expansion is as follows Is appropriately selected from the range.
  • the addition of the conductive and heat generating layer (X) improves the long-term durability when used at a heat generating temperature near the melting point of the heat generating layer (A), and also improves the long-term durability at a high voltage.
  • the conductive layer and the heat generating layer (X) are not added, there is no problem in long-term durability if the heat generating temperature is lower than the melting point of the heat generating layer (A). In addition, there is no problem even if the heat generation temperature near the melting point temperature is short.
  • the problem of long-term durability means a phenomenon in which the resistance value of the heating element increases due to actual use over several months or a thermal cycle test, and the calorific value decreases. It has been found that the main cause of this phenomenon is an increase in the contact resistance between the core wire and the heating layer. Therefore, in order to be applicable to the use near the melting point temperature of the heating layer (A), the conductive and heating layer (X) was added to prevent the contact resistance between the core wire and the heating layer from increasing. That is, by adding the conductive and heat generating layer (X), it is possible to prevent an increase in contact resistance between the core wire and the heat generating layer, and to widen a usable heat generating temperature range and a range of allowable applied voltage. In order to form each heat generating layer (A), conductive and heat generating layer (X), and heat generating layer B1, each layer may be formed individually or each layer may be formed simultaneously.
  • the heating element is required to have flexibility or flexibility, coat each layer as necessary and knit the coated core wires spirally with each other. And an outer covering layer may be provided.
  • a lead wire is connected to the exposed metal core wire 1 by exfoliating the heating layers 2 and 3 partially. Attach the connection terminal to the end of the wire, And be able to connect.
  • this heating element is provided with an exterior material for electrical insulation to further extend the service life of the heating element and to reduce damage due to external force.
  • An outer insulating material is coated on the outer peripheral surface of the heat generating portion by coextrusion.
  • the resin of the electrically insulating exterior material is a polyolefin resin or the like, and the resin preferably has a melt index (Ml) of 0.1 g / lOmin or more. If M l is small, the co-extrusion of the coating resin cannot be performed cleanly, resulting in poor productivity.
  • Examples of the electric insulating material include a high-density polyethylene film, a linear low-density polyethylene film, a low-density polyethylene finolem, a polyethylene phthalate film, a polypropylene film, and an aluminum sheet on these films. What is composed of a laminated film to which is attached is suitably used.
  • the preferred ranges of Ml here are 0.03 to 13 for high density polyethylene, 1.2 to 9 for linear low density polyethylene, 1 to 40 for low density polyethylene and 0 to 4 for polyethylene phthalate.
  • the Ml of each resin was measured in accordance with JISK7210 for high-density polyethylene and linear-low-density polyethylene, JISK6760 for low-density polyethylene, and ASTM D1238 for polyethylene phthalate.
  • the conductive particles used were carbon black with an average particle size of 43 millimicrons [Mitsubishi Chemical Corporation: Diamond Black E] 40 parts by weight were used.
  • 0.1 weight of ethylene-ethylene acrylate copolymer as a crosslinking agent 0.1 weight of ethylene-ethylene acrylate copolymer as a crosslinking agent.
  • these raw materials are supplied to an extruder, melt-kneaded at 200 ° C., extruded into a strand at a discharge rate of 5 kgZhr, and cut to obtain a pellet of the resin composition.
  • the pellet of the resin composition was fed to a single-screw extruder having an inner diameter of 25 mm and crosslinked at 260 ° C and 50 rpm with a shear energy of 0 and Oekw'hrZkg. Was done.
  • thermoplastic layer (B 1) high density polyethylene is used as a heat generating composition for the heat generating layer (B 1).
  • melt-kneaded product of the resin composition for the exothermic composition (A) was introduced into a supply port of a die for coating and molding a metal core wire, and was coated and formed.
  • two extruded molded articles of the exothermic composition (A) were arranged in a metal core wire coating molding die in parallel with each other so that the distance between the metal core wires was 0.54 mm, and introduced into the die.
  • a melt-kneaded product of the resin composition for the heat generating layer (B 1) is introduced from the resin supply port of the die, and the heat generating composition
  • a molded product in which two layers of (A) and the exothermic composition (B 1) were laminated was obtained.
  • a copper wire having a diameter of 0.26 mm was used as the metal core wire.
  • the cross-sectional shape of the linear heating element obtained in this way is shown in Fig. 1, and it is a rectangle with two corners partially cut away, with a short side of 0.8 mm and a long side. 1.4 mm.
  • a heat generating layer (A) 2 having a thickness of 0.15 mm made of the above resin composition was formed on the surface of copper wire 1.
  • the volume ratio of the heat generating element to the two coating layers 2 and 3 of the copper wire 1 was 13%. Met.
  • this linear heating element was cut to a length of 16 O mm, and one of the cut ends was extended 10 mm from its end, and the coating layers 2 and 3 were peeled off to expose the copper wire 1. Then, a lead wire was soldered to each of the two copper wires 1. Thereafter, the entire heating element was covered with a polyethylene terephthalate film except for the two lead wires, and the upper and lower surfaces were heat-laminated to provide an electrical insulation exterior.
  • the exothermic composition for the exothermic layer (A) and exothermic composition for the exothermic layer (B1) of the exothermic element obtained here were separately prepared separately for each of the exothermic compositions.
  • measurements showed that the rise starting temperature of the electric resistance of the heat-generating composition for the heating layer (a) is the 4 3 ° C, the rising ratio of electrical resistance is 1 0 7 times, while the heating layer (B 1) rising start temperature of the electric resistance of the heating compositions for is 5 5 ° C, the rising ratio of electrical resistance was 1 0 8 times.
  • the rising start temperature of the heat generating composition of the heat generating layer (B 1) was higher by 12 ° C. than the rising start temperature of the heat generating composition of the heat generating layer (A).
  • the electrical resistance of the heating element was measured, it was 8 ⁇ .
  • starting temperature Ri rising electric resistance value is 3 8 ° C, the rising ratio of electrical resistance was 1 0 8 times.
  • the inrush current value at the start of energization becomes 0.
  • the current was 75 amperes, and the current value during the subsequent stable heating was 0.6 amperes.
  • the heating element was cooled to 150 ° C. After receiving the heat history in a bun, the outer shape was observed, and there was no change in the shape. When the PTC characteristics were measured again, there was no effect of the heat history.
  • the heat generating composition for the heat generating layer (A) the same heat generating composition as the heat generating layer (A) of Example 1 was used.
  • the exothermic composition for the exothermic layer (B1) 54 parts by weight of a high-density polyethylene (manufactured by Idemitsu Petrochemical Co .; Idemitsu Polyethylene 440 M) and a silicone resin [manufactured by Dow Corning Toray Co., Ltd .: SE6758] was added in an amount of 10 parts by weight, the same carbon black particles as in Example 1 were used in an amount of 36 parts by weight, and 2,5-dimethyl-1,2,5-di (tert-butylpyroxy) was used as a crosslinking agent. Hexin-13 was used in an amount of 0.1 part by weight, and an exothermic composition obtained by melt-kneading these was used.
  • the heating element was manufactured in the same manner as in Example 1.
  • the PTC characteristics were separately measured for both heat-generating compositions separately.
  • the temperature at which the electrical resistance of the heat generating composition for the heat generating layer (A) started to rise was 43. Is C, rising ratio of electrical resistance is 1 0 7 times, while rising start temperature of electrical resistance of the heat-generating composition for the heating layer (B 1) is located at 6 0 ° C , rising ratio of electrical resistance was 1 0 7 times. Therefore, it was confirmed that the rising start temperature of the heat generating composition of the heat generating layer (B 1) was 17 ° C. higher than the rising start temperature of the heat generating composition of the heat generating layer (A).
  • the heat generating composition for the heat generating layer (A) the same heat generating composition as the heat generating layer (A) of Example 1 was used.
  • a heat-generating composition for the heat-generating layer (B2) a conductive silicone resin [manufactured by Toray Dow Co., Ltd .: SE67558] was used.
  • the heating element was manufactured in the same manner as in Example 1.
  • the inrush current value at the start of energization is 1.
  • the current value was 1 ampere
  • the current value during the subsequent stable heating was 0.6 amperes.
  • the heat-generating composition for the heat-generating layer (A) 48 parts by weight of the same ethylene-ethyl acrylate copolymer as in Example 1, 20 parts by weight of the same silicone resin as in Example 2, 32 parts by weight of the same carbon black particles as in Example 1 and 0.1 part by weight of 2,5-dimethyl-2,5-di (tert-butyloxy) hexine-13 as a crosslinking agent were used and melted. The exothermic composition obtained by kneading was used.
  • the same conductive silicone resin as in Example 3 was used as the heat generating composition for the heat generating layer (B 2).
  • the heating element was manufactured in the same manner as in Example 1.
  • the heat-generating composition for the heat-generating layer (A) and the heat-generating composition for the heat-generating layer (B2) of the heating element obtained here were measured separately for the heat-generating compositions. , emitting thermal layer rising start temperature of the electric resistance of the heat-generating composition for (a) is 4 6 ° C, a rise ratio of the electric resistance value of 1 0 7 times, while the heating layer (B 2) The exothermic composition did not show PTC properties.
  • the inrush current value at the start of energization is 1.
  • the current was 5 amperes, and the current value during the subsequent stable heating was 0.8 amperes.
  • the external shape was observed.
  • the P ⁇ C characteristics were measured again, there was no effect due to this heat history.
  • the heat generating layer (A) was the same as in Example 1, and the heat generating layer (B 1) used was the same as Example 1 except for 65 parts by weight of polyethylene and 35 parts by weight of CB.
  • a heating layer (A) was coated on the core wire in the same manner as in Example 1, two wires were arranged in parallel, and the heating layer (B 1) was co-extruded to obtain a heating element.
  • the obtained heating element was cut into a length of 100 mm, lead wires were connected to core wires at both ends, and DC 12 V was applied between the electrodes.
  • the resistance value was 5 ohms
  • the calorific value was 3 W
  • the exothermic temperature was 45 ° C. Also 1
  • the heat generating layer (A) was the same as in Example 1, and the heat generating layer (B 1) used was the same as Example 1 except for 65 parts by weight of polyethylene and 35 parts by weight of CB.
  • the heating layer (A) was coated on the core wire in the same manner as in Example 1, and 21 wires were arranged in parallel, and the heating layer (B 1) was co-extruded to obtain a heating element.
  • the obtained heating element was cut into a length of 13 O mm, lead wires were connected to the core wires at both ends, and DC 30 V was applied between the electrodes.
  • the resistance value is 35 ohms and the calorific value is 3.
  • the heat generation temperature was 6 W, and the exothermic temperature was 53 ° C. In addition, there was no significant change in the shape even after receiving a heat history of 150 ° C. Rate of change before and after the heat history at 150 ° C The results are shown below.
  • these raw materials are supplied to an extruder, melt-kneaded at 200 ° C, extruded in a strand shape at a discharge rate of 5 kgZhr, and cut to obtain a pellet of a resin composition.
  • a pellet of this resin composition was fed to a single screw extruder having an inner diameter of 25 mm, and the resin composition was crosslinked at 260 ° C. and 50 rpm at a shear energy of 0.06 kw * hr Zkg. Was carried out.
  • the melt-kneaded product of the exothermic composition was introduced into a supply port of a die for coating a metal core wire, and the metal core wire was coated with a conductive and heat generating layer (X).
  • the thickness was 0.1 mm.
  • the heat generating layer (X) is 57 parts by weight of polyethylene and 43 parts by weight of CB, and the heat generating layers (A) and (B 1) are the same as in Example 1.
  • the heating layer (A) was coated, two were arranged in parallel, and the heat generating layer (B 1) was co-extruded to obtain a heat generating body.
  • the heating layer (A) was coated with a metal core wire at a molding temperature of 200 ° C and a linear velocity of 150 m / min.
  • the coating of the heating layer (B1) was formed at a molding temperature of 220 ° C and a linear velocity of 100 m / min.
  • the thermal expansion coefficients of the heat generating layer (A), the conductive layer, the heat generating layer (X) and the core wire are “33 ⁇ 10E_5”, “25 ⁇ 10E-5” and “1”, respectively.
  • heat generating layer (A)> conductive and heat generating layer (X)> core wire The selected heating element was cut into a length of 130 mm, lead wires were connected to the core wires at both ends, and DC 30 V was applied between the electrodes. The resistance value is 30 ohms and the calorific value is 4.1 W The exothermic temperature was 70 ° C. In addition, there was no significant change in shape even after receiving a thermal history of 150 ° C. The results of the rate of change before and after the heat history at 150 ° C are shown below.
  • Width deformation rate Sat 2. Within / 0
  • melt-kneaded product of the resin composition for the exothermic composition (A) was introduced into a supply port of a die for coating and molding a metal core wire, and was coated and formed.
  • two extruded molded articles of the exothermic composition (A) were arranged in a metal core wire coating molding die in parallel with each other so that the distance between the metal core wires was 0.54 mm, and introduced into the die.
  • a melt-kneaded product of the resin composition for the heat generating layer (B 1) is introduced from the resin supply port of the die, and the heat generating composition is placed on the metal core wire.
  • a molded product in which two layers of (A) and the exothermic composition (B 1) were laminated was obtained.
  • a copper wire having a diameter of 0.26 mm was used as the metal core wire.
  • the cross-sectional shape of the linear heating element obtained in this way is shown in Fig. 1, and it is a rectangle with two corners partially cut away, with a short side of 0.8 mm and a long side.
  • a heating layer (A) 2 having a thickness of 0.15 mm made of the above resin composition was formed. And the volume ratio to 3 was 13%.
  • the linear heating element was introduced into a supply port of a die for forming an outer cover (electric insulating layer), and formed into a cover.
  • the coating thickness was 0.1 mm, and the coating resin used was low-density polyethylene [Idemitsu Petrochemical Co., Ltd .; Idemitsu polyethylene 534 G].
  • the molding conditions were melting at 200 ° C. and co-extrusion at a linear velocity of 100 m / min.
  • the exothermic composition for the exothermic layer (A) and exothermic composition for the exothermic layer (B1) of the exothermic element obtained here were separately prepared separately for each of the exothermic compositions.
  • the exothermic composition for the exothermic layer (A) A rising start temperature 4 3 ° C in the electric resistance of the object, the rising ratio of electrical resistance is 1 0 7 times, while the heating layer (B 1) an electric resistance value of the heating composition for rising start temperature is 5 5 ° C, the rising ratio of electrical resistance was 1 0 8 times. Accordingly, it was confirmed that the rising start temperature of the heat generating composition of the heat generating layer (B 1) was higher by 12 ° C.
  • the electrical resistance of the heating element was measured, it was 8 ⁇ .
  • starting temperature Ri rising electric resistance value is 3 8 ° C, the rising ratio of electrical resistance was 1 0 8 times.
  • a crosslinking agent [Nippon Oil & Fat Co .: Perhexin 25 B] was used.
  • these raw materials were supplied to an extruder, melt-kneaded at 200 ° C, extruded into a strand at a discharge rate of 5 kg / hr, and cut to obtain a pellet of a resin composition.
  • a pellet of this resin composition was fed to a single-screw extruder having an inner diameter of 25 mm and subjected to shear energy at 260 ° C. and 50 rpm.
  • the resin composition was crosslinked at 0.06 kw'hr Zkg.
  • the heat generating layers (A) and (B 1) are manufactured in the same manner as the heat generating layer (A) in Example 1, but the ratio of the resin to the carbon black is 70 parts by weight and 30 parts by weight. It was made.
  • the outer cover molding resin is the same as in Example 8.
  • the melt-kneaded product of the exothermic composition was introduced into a supply port of a die for coating a metal core wire, and the metal core wire was coated with a conductive and heat generating layer (X).
  • the thickness was 0.1 mm.
  • the core wire is coated with a conductive and heat-generating layer (X) and then with a heat-generating layer (A).
  • FIG. (B 1) was co-extruded to obtain a heating element.
  • the heating layer (A) was coated with a metal core wire at a molding temperature of 200 ° C and a linear velocity of 150 mZmin. Also the heating layer
  • the coating molding of (B1) was performed at a molding temperature of 220 ° C and a linear velocity of 100 m / min.
  • the thermal expansion coefficients of the heat generating layer (, the conductive layer, the heat generating layer (X), and the core wire are “33 X 10 E_5”, “25 X 10 E_5”, and “1.4,” respectively.
  • X10E_5 which satisfies the relationship of coefficient of thermal expansion: heat generating layer (A)> conductive layer 'heat generating layer (X)> core wire.
  • exterior coating molding was performed in the same manner as in Example 8.
  • the selected heating element was cut into a length of 13 O mm, lead wires were connected to the core wires at both ends, and AC 100 V was applied between the electrodes.
  • the resistance was 152 ohms
  • the heat generation was 3.2 W
  • the heat generation temperature was 64 ° C.
  • the results of the rate of change before and after the 11 o ° c heat history are shown below.
  • Example 2 The same heat-generating composition as in Example 1 was supplied to the dice while passing the same two copper wires parallel to each other with a spacing of 0.54 mm to the die, and a single heat-generating layer was formed.
  • a single heat-generating layer was formed.
  • the heating element according to the present invention has a small rush current at the time of starting energization in a temperature range as low as about room temperature, and can reduce the load on the power supply of the apparatus and can suppress the performance deterioration of the heating element due to electric shock and thermal shock. Therefore, it can be used stably for a long period of time. In addition, it has an excellent effect that the resistance temperature characteristics of the heat generating portion can be easily controlled, the temperature can be controlled in a low temperature range, and the device can withstand use at a high environmental temperature.

Landscapes

  • Resistance Heating (AREA)

Abstract

A heating unit formed by coating metal core wires (l) with heating layers (A)(2) having positive temperature coefficient characteristics, and coating outer circumferential surfaces of these heating layers with a heating layer (Bl)(3) the positive temperature coefficient characteristics of which are different from those of the heating layers (A), or a heating layer (B2)(3) not having the positive temperature characteristics, a distance between the metal core wires (l) being set to within 5 mm, a volume ratio of the metal core wires (l) to these two layers of coating (2, 3) being set to 5-90 %. A heating unit, wherein conductive heating layers (X) are further formed between the metal core wires (l) and heating layers (A) so that a thermal expansion coefficient of the conductive heating layers has a value between that of a thermal expansion coefficient of the metal core wires and that of a thermal expansion coefficient of the heating layers (A). This heating unit is capable of reducing a load on an apparatus power source by reducing a rush current at a current application starting time, minimizing a decrease in the performance of the heating unit, and controlling the resistance temperature characteristics of a heating section easily, and, moreover, has a structure resistant to the use thereof in a high environmental temperature.

Description

明 細 書  Specification
発熱体  Heating element
技術分野 Technical field
本発明は、 電気機器や電子機器、 機械部品等の加温用ヒータ、 ある いは鏡等への結露防止用ヒータ、 給排水設備の凍結防止用ヒータ等と して利用される面状及び線状の発熱体に関するものである。  The present invention relates to a planar or linear heater used as a heater for heating electric equipment, electronic equipment, mechanical parts, or the like, a heater for preventing dew condensation on a mirror or the like, a heater for preventing freezing of a water supply and drainage facility, and the like. Heating element.
背景技術 Background art
従来、 電気機器や電子機器、 機械部品等の加温用ヒータや鏡等の結 露防止用ヒータ、 給排水設備の凍結防止用ヒータ等と して、 ニクロム 線や発熱物質を用いて成形された様々な形態の発熱体が用いられてき た。  Conventionally, various heaters formed by using nichrome wires and exothermic substances have been used as heaters for heating electrical equipment, electronic equipment, and mechanical parts, heaters for preventing condensation such as mirrors, and heaters for preventing freezing of plumbing equipment. Heating elements of various forms have been used.
この-クロム線を用いる場合には、 発熱温度の調節に給電の制御回 路が必要になることから、 そのような制御回路を用いることなく発熱 温度の調節を行うことのできる発熱物質を用いた発熱体が様々な分野 で使用されている。 このような発熱物質と しては、 比抵抗の値が温度 上昇とともに増大する正温度係数特性 (以下、 P T C特性という) を 有する物質が用いられている。この P T C特性を有する物質と しては、 例えば結晶性熱可塑性樹脂と導電性粒子を特定の割合で配合してなる 発熱組成物が利用されている。  In the case of using this -chrome wire, a control circuit for power supply is required to control the heat generation temperature, so a heat generating substance that can control the heat generation temperature without using such a control circuit was used. Heating elements are used in various fields. As such a heat generating substance, a substance having a positive temperature coefficient characteristic (hereinafter referred to as a PTC characteristic) in which the value of a specific resistance increases with an increase in temperature is used. As the substance having the PTC characteristic, for example, a heat generating composition in which a crystalline thermoplastic resin and conductive particles are mixed at a specific ratio is used.
このような発熱組成物においては、 その構成成分である結晶性熱可 塑性樹脂や導電性粒子の種類、 配合割合等を種々選択することによつ て、 給電の制御回路を用いることなく、 発熱温度の調節を行うことが できる。 また、 この発熱組成物を成形して形成される発熱体の形態は、 加温を必要とする部材の形態に適合するように形成される。 そこで、 加温を必要とする部材の面積が大である場合には、 その面積に対応す る面状発熱体が使用されている。 ところで、 この面状発熱体を電気機 器や電子機器に組込む際には、均熱板を併せて組込む必要があるため、 これら機器全体の容積の大型化を招く という問題がある。 このような ことから、 これら機器、殊に小型化を指向した機器に組込む場合には、 発熱体の形態と して面状及び線状であるものが適している。 In such a heat-generating composition, heat generation can be performed without using a power supply control circuit by variously selecting the type, the mixing ratio, and the like of the crystalline thermoplastic resin and the conductive particles that are constituents thereof. The temperature can be adjusted. Further, the form of the heating element formed by molding the heat generating composition is formed so as to conform to the form of a member requiring heating. Therefore, when the area of a member requiring heating is large, a planar heating element corresponding to the area is used. By the way, this planar heating element When it is installed in a device or an electronic device, it is necessary to incorporate a heat equalizing plate, which causes a problem that the volume of the entire device is increased. For this reason, when incorporated into these devices, particularly devices intended for miniaturization, a heating element having a planar or linear shape is suitable.
従来知られている P τ C特性を有する線状発熱体は、 電極と して用 いる少なく とも 2本の金属芯線を若干の間隔をおいて中心部に内蔵さ せ、 この金属芯線の外周に前記発熱組成物を被覆し、 その外周を絶縁 被覆して構成されたものである。 ところで、 このような構成からなる 線状発熱体においては、 P T C特性を有する発熱組成物が、 一般に、 0 ないし室温程度の低い温度領域では電気抵抗値が低く、 室温を超 えてある程度高い温度領域に至ると急激に電気抵抗値が上昇するとい う抵抗温度特性を示すことから、 加温を必要とする低温領域にある機 器に組込んだ発熱体に、 加温のための通電を開始すると、 大きな突入 電流が生ずる。 したがって、 このような電気的衝撃や熱的衝撃を繰返 し受けると、発熱体の性能低下を招く ことになるという問題があった。 また、 様々な用途に応じて、 その用途ごとに要求される抵抗温度特 性が得られるように、 熱可塑性樹脂や導電性粒子の種類、 それらの配 合割合を選定しなければならないという煩わしさがあるという問題も めった。  Conventionally known linear heating elements having P τ C characteristics have at least two metal core wires used as electrodes built in the center at a slight interval, and the outer circumference of this metal core wire is The heat-generating composition is coated, and its outer periphery is insulated and coated. By the way, in the linear heating element having such a configuration, the heat-generating composition having the PTC characteristic generally has a low electric resistance value in a low temperature range of about 0 to room temperature, and a high temperature range beyond room temperature. Since the resistance-temperature characteristics show that the electrical resistance value rises sharply when the temperature reaches this point, when the heating element incorporated in a device in a low-temperature region that requires heating starts energizing for heating, A large inrush current occurs. Therefore, there has been a problem that the performance of the heating element is deteriorated when the electric shock and the thermal shock are repeatedly received. In addition, the inconvenience of having to select the type of thermoplastic resin and conductive particles and their combination ratio so that the resistance temperature characteristics required for each application can be obtained for various applications. There was also the problem that there was.
さらに、 P T C特性を発現する温度領域が、 例えば 4 0〜 7 0 °Cの 比較的低い温度領域にある発熱体では、 1 5 0 °C程度の温度に上昇す ることがあり得るよ うな環境では、 熱による損傷のおそれがあること から、 このような場合には使用できないという問題もあった。  Furthermore, in a heating element in which the temperature region exhibiting PTC characteristics is in a relatively low temperature region of, for example, 40 to 70 ° C, an environment in which the temperature may rise to about 150 ° C may occur. Then, there was a problem that it could not be used in such a case because of the possibility of heat damage.
本発明は、従来の発熱体における通電開始時の突入電流を低減して、 装置の電源負荷の軽減や、 電気的衝撃、 熱的衝撃による発熱体の性能 低下の軽減を図ることにより、 長期間にわたる安定的な使用を可能に すると共に、 発熱部の抵抗温度特性の制御が容易であって、 しかも低 い温度領域で温度制御が可能であり、 かつ高い環境温度での使用にも 耐え得る構造を有する発熱体を提供することを目的とするものである。 発明の開示 The present invention reduces the inrush current at the start of energization in the conventional heating element, reduces the power supply load on the device, and reduces the deterioration in the performance of the heating element due to electric shock and thermal shock. Enables stable use over a wide range To provide a heating element having a structure capable of easily controlling the resistance temperature characteristics of the heating section, capable of controlling the temperature in a low temperature range, and enduring use at a high environmental temperature. It is intended for. Disclosure of the invention
本発明者らは、 P T C特性を有する発熱組成物を用いた線状の発熱 体と して、 その発熱部の構成を、 異なる P T C特性を有する複数の発 熱組成物からなる層、 あるいは P T C特性を有する発熱組成物と P T c特性を有しない発熱組成物からなる層で構成すると共に、 電極と し て用いる金属芯線相互の間隔を特定値と し、 さらに、 金属芯線のこれ ら被覆層に対する体積比が特定範囲となるように構成することによ り、 前記目的が達成できることを見出し、 このような知見に基づいて本発 明を完成するに至った。  The present inventors, as a linear heating element using a heat-generating composition having PTC characteristics, the configuration of the heat-generating portion is changed to a layer composed of a plurality of heat-generating compositions having different PTC characteristics, or a PTC characteristic. A layer composed of a heat-generating composition having no heat-generating composition and a heat-generating composition having no PTc characteristics.The distance between the metal core wires used as electrodes is set to a specific value. It has been found that the above-mentioned object can be achieved by configuring the ratio to be in a specific range, and the present invention has been completed based on such findings.
すなわち、 本発明の要旨は下記のとおりである。  That is, the gist of the present invention is as follows.
1 - 互いに平行に配置された複数本の金属芯線に、 少なく とも熱可塑 性樹脂および導電性粒子を含有する発熱組成物を被覆して発熱部が形 成された線状の発熱体であって、 前記金属芯線のうち少なく とも電極 となる金属芯線近傍の被覆層と して、 正温度係数特性を有する発熱組 成物からなる発熱層 (A ) を用い、 該発熱層 (A ) の外周部の被覆層 と して、 正温度係数特性を有するが、 抵抗温度特性における抵抗の立 上がり倍率が発熱層 (A ) の発熱組成物の最大立上がり倍率を示す温 度以下の温度範囲において、 発熱層 (A ) の発熱組成物の立上がり倍 率より も低いか、 あるいは抵抗温度特性における抵抗の立上がり開始 温度が、 発熱層 (A ) の発熱組成物の立上がり開始温度より も高い正 温度係数特性を有する発熱組成物からなる発熱層 (B l )、 または正 温度係数特性を有しない樹脂からなる発熱層 (B 2 ) を用いると共に、 金属芯線の相互間の間隔を 5 m m以内と し、 かつ、 金属芯線の前記両 被覆層に対する体積比を 5〜 9 0 %と してあることを特徴とする発熱 体。 1-A linear heating element in which a plurality of metal core wires arranged parallel to each other are coated with a heating composition containing at least a thermoplastic resin and conductive particles to form a heating section. A heating layer (A) made of a heating composition having a positive temperature coefficient characteristic is used as a coating layer near at least the metal core wire serving as an electrode of the metal core wire, and an outer peripheral portion of the heating layer (A) is used. The heating layer has a positive temperature coefficient characteristic as a coating layer of the heating layer, but in a temperature range in which the rising ratio of the resistance in the resistance temperature characteristic is equal to or lower than the temperature indicating the maximum rising ratio of the heating composition of the heating layer (A). It has a positive temperature coefficient characteristic that is lower than the rising ratio of the exothermic composition of (A) or that the temperature at which the resistance starts to rise in the resistance temperature characteristic is higher than the temperature at which the exothermic composition of the heating layer (A) starts to rise. From the exothermic composition That the heating layer (B l), or the heating layer made of no resin a positive temperature coefficient characteristic (B 2) with use, the spacing between the mutual metal core is within 5 mm, and the both of the metal core A heating element characterized in that the volume ratio to the coating layer is 5 to 90%.
2. 前記発熱層 (B 1 ) の発熱組成物が、 抵抗温度特性における抵抗 の立上がり倍率が発熱層 (A) の発熱組成物の最大立上がり倍率を示 す温度以下の温度範囲において、 発熱層 (A) の発熱組成物の立上が り倍率の 0. 5倍以下であるか、 あるいは抵抗温度特性における抵抗 の立上がり開始温度が、 発熱層 (A) の発熱組成物の立上がり開始温 度より も 5 °C以上高い正温度係数特性を有するものである、 前記 1記 載の発熱体。  2. When the heat-generating composition of the heat-generating layer (B 1) is in a temperature range in which the rising ratio of the resistance in the resistance-temperature characteristic is equal to or lower than the temperature indicating the maximum rising magnification of the heat-generating composition of the heat-generating layer (A), The heating magnification of the exothermic composition of (A) is 0.5 times or less, or the temperature at which the resistance starts to rise in the resistance temperature characteristic is lower than the temperature at which the heating composition of the heating layer (A) starts to rise. The heating element according to 1 above, which has a positive temperature coefficient characteristic higher by 5 ° C or more.
3. 前記発熱層 (A) の発熱組成物が、 結晶性熱可塑性樹脂と導電性 粒子からなる発熱組成物であり、 前記発熱層 (B 1 ) の発熱組成物が、 結晶性熱可塑性樹脂と導電性粒子からなる発熱組成物である、 前記 1 または 2記載の発熱体。  3. The exothermic composition of the exothermic layer (A) is a exothermic composition comprising a crystalline thermoplastic resin and conductive particles, and the exothermic composition of the exothermic layer (B 1) is a crystalline thermoplastic resin. 3. The heating element according to the above 1 or 2, which is a heating composition comprising conductive particles.
4. 前記発熱層 (A) の発熱組成物が、 結晶性熱可塑性樹脂と導電性 粒子からなる発熱組成物であり、 前記発熱層 (B 1 ) の発熱組成物が、 熱可塑性樹脂とシリ コ一ン樹脂および導電性粒子からなる発熱組成物 である、 前記 1または 2記載の発熱体。  4. The heat-generating composition of the heat-generating layer (A) is a heat-generating composition comprising a crystalline thermoplastic resin and conductive particles, and the heat-generating composition of the heat-generating layer (B 1) comprises a thermoplastic resin and a silicone. 3. The heating element according to the above 1 or 2, which is a heating composition comprising a resin and conductive particles.
5. 前記発熱層 (A) の発熱組成物が、 結晶性熱可塑性樹脂と導電性 粒子からなる発熱組成物であり、 前記発熱層 (B 2) の発熱組成物が、 シリコーン樹脂と導電性粒子からなる発熱組成物である、 前記 1記載 の発熱体。  5. The heat generating composition of the heat generating layer (A) is a heat generating composition comprising a crystalline thermoplastic resin and conductive particles, and the heat generating composition of the heat generating layer (B 2) is a silicone resin and conductive particles. 2. The heating element according to 1 above, which is a heating composition comprising:
6. 前記発熱層 (A) の発熱組成物が、 熱可塑性樹脂とシリ コーン樹 脂および導電性粒子からなる発熱組成物であり、 前記発熱層 (B 2 ) の樹脂が、 シリ コーン樹脂と導電性粒子からなる発熱組成物である、 前記 1記載の発熱体。  6. The heat generating composition of the heat generating layer (A) is a heat generating composition comprising a thermoplastic resin, a silicone resin, and conductive particles, and the resin of the heat generating layer (B 2) is a silicon resin and a conductive resin. 2. The heating element according to the above 1, wherein the heating element is a heating composition composed of conductive particles.
7. 前記導電性粒子が、 粒径 1 0〜 2 0 0 ミ リ ミ ク ロ ンのカーボンブ ラック粒子である、 前記 1〜 6のいずれかに記載の発熱体。 7. The conductive particles are made of carbon particles having a particle size of 10 to 200 mm. The heating element according to any one of 1 to 6, which is a rack particle.
8. 前記発熱体の外周面に、 ポリエチレンテレフタレ一トフイルム、 ポリエチレンフィルム、 ポリプロピレンフィルム、 あるいは、 これら のフィルムにアルミ -ゥムシ一トを装着したラミネ一トフイルムから 選択される電気絶縁外装材を被覆してなる、 前記 1〜 7のいずれかに 記載の発熱体。  8. Coating the outer peripheral surface of the heating element with a polyethylene terephthalate film, a polyethylene film, a polypropylene film, or an electrically insulating exterior material selected from a laminating film having an aluminum sheet attached to these films. The heating element according to any one of 1 to 7 above.
9. 前記発熱体の断面形状が長方形であって、 その短辺が 0. 1〜1 mm, 長辺が 1〜 7 mmであり、 かつ前記金属芯線の本数が 2〜 1 0 本と してある、 前記 1〜 8のいずれかに記載の発熱体。  9. The cross-sectional shape of the heating element is rectangular, the short side is 0.1 to 1 mm, the long side is 1 to 7 mm, and the number of metal core wires is 2 to 10 The heating element according to any one of 1 to 8 above.
1 0. 前記発熱体の電極とする少なく とも 2本の金属芯線からそれぞ れリード線を取り出し、該リード線の端部に結線用端子を備えてなる、 前記 1〜 9のいずれかに記載の発熱体。  10. A lead wire is taken out from at least two metal core wires as electrodes of the heating element, and a connection terminal is provided at an end of the lead wire. Heating element.
1 1. 結晶性熱可塑性樹脂の M I が 0. 1以上であることを特徴とす る前記 3の発熱体。  1 1. The heating element according to the above item 3, wherein the MI of the crystalline thermoplastic resin is 0.1 or more.
1 2. 結晶性熱可塑性樹脂、 熱可塑性樹脂及びシリ コーン樹脂の M I が 0. 1以上であることを特徴とする前記 4の発熱体。  1 2. The heating element according to the above item 4, wherein the M I of the crystalline thermoplastic resin, the thermoplastic resin and the silicone resin is 0.1 or more.
1 3. 前記金属芯線の形状が長方形、 台形又は箔状であることを特徴 とする前記 1の発熱体。  1 3. The heating element according to 1 above, wherein the shape of the metal core wire is rectangular, trapezoidal, or foil-like.
1 4. 電気絶縁外装材が共押出しにより被覆され、 電気絶縁外装材の 樹脂の M lが 0. 1以上である前記 8の発熱体。  1 4. The heating element according to the above item 8, wherein the electrically insulating exterior material is coated by co-extrusion, and the resin of the electrically insulating exterior material has Ml of 0.1 or more.
1 5. 金属芯線と発熱層 (A) の間にさらに導電 ·発熱層 (X) を設 け、 当該導電 ·発熱層 (X) の熱膨張率が金属芯線の熱膨張率と発熱 層 (A) の熱膨張率の間の値となることを特徴とする前記 1 の発熱 体。  1 5. An additional conductive and heat generating layer (X) is provided between the metal core and the heat generating layer (A), and the coefficient of thermal expansion of the conductive and heat generating layer (X) depends on the coefficient of thermal expansion of the metal core and the heat generating layer (A). The heating element according to the above item 1, wherein the heating element has a value between the coefficients of thermal expansion.
1 6. 前記導電 ·発熱層 (X) が結晶性熱可塑性樹脂と導電性粒子か らなる組成物であることを特徴とする前記 15の発熱体。 1 7. 前記 1 5の発熱体において、 発熱層 (B 1) (B 2 ) の代わり に、 電気絶縁外装材を有することを特徴とする前記 15の発熱体。1 6. The heating element according to the item 15, wherein the conductive and heat generating layer (X) is a composition comprising a crystalline thermoplastic resin and conductive particles. 17. The heating element according to the item 15, wherein the heating element according to the item 15 includes an electrically insulating exterior material instead of the heat generation layers (B1) and (B2).
1 8. 前記発熱体の外周面に、 電気絶縁外装材を被覆してなる、 前記 1 5に記載の発熱体。 1 8. The heating element according to 15 above, wherein an outer peripheral surface of the heating element is coated with an electrically insulating exterior material.
1 9. 発熱層 (A)、 導電 ·発熱層 (X) が両層またはどちらか 1層 が金属芯線の被覆層であり、 同被覆層が備わった金属芯線が螺旋状に 配置されたことを特徴とする前記 1 5に記載の発熱体。  1 9. Both the heating layer (A) and the conductive and heating layer (X) are both layers or one of them is the coating layer of the metal core wire, and the metal core wire with the coating layer is spirally arranged. 16. The heating element according to 15 above, which is characterized by:
2 0. 発熱層 (A)、 導電 · 発熱層 (X) 及び発熱層 (B 1 ) または 発熱層 (B 2 ) 及び必要により電気絶縁外装材を共押出しで成形する 際の成形温度が使用樹脂最高融点温度から 2 0°C以上高いことを特徴 とする前記 1 5または 1 8の発熱体の成形方法。  20. The molding temperature used for molding the heat-generating layer (A), conductive / heat-generating layer (X), heat-generating layer (B1) or heat-generating layer (B2) and, if necessary, co-extrusion of the insulating resin is determined by the resin used. The method for molding a heating element according to the item 15 or 18, wherein the temperature is higher by at least 20 ° C than the maximum melting point.
2 1. 前記発熱体の成形にあたり、 発熱層 (A)、 導電 ·発熱層 (X) 及び発熱層 (B 1 ) または発熱層 (B 2 ) 及び必要により電気絶縁外 装材を共押出しで成形する際の押出速度が 5 m/min. 以上であるこ とを特徴とする前記 2 0の発熱体の成形方法。  2 1. In forming the heating element, the heating layer (A), conductive layer / heating layer (X), heating layer (B 1) or heating layer (B 2), and if necessary, co-extrusion molding of the insulating material. 20. The method for molding a heating element according to the item 20, wherein the extrusion speed during the heating is 5 m / min. Or more.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1〜図 4は本発明の発熱体の一例の断面図である。  1 to 4 are cross-sectional views of an example of the heating element of the present invention.
【符号の説明】  [Explanation of symbols]
1 : 金属芯線 1: Metal core wire
2 : 発熱層 (A)  2: Heating layer (A)
3 :発熱層 (B 1 ) または (B 2 )  3: Heating layer (B 1) or (B 2)
4 : 導電 ,発熱層 (X)  4: Conductive, heating layer (X)
5 : 電気絶縁外装 5: Electrically insulating exterior
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の発熱体は、 互いに平行に配置された複数本の金属芯線に、 少なく とも熱可塑性樹脂と導電性粒子を含有する発熱組成物を被覆し て発熱部が形成されている。 そして、 これら金属芯線のうち少なく と も電極となる金属芯線の近傍の被覆層と して正温度係数特性を有する 発熱組成物からなる発熱層 (A ) を配置し、 該発熱層 (A ) の外周部 の被覆層と して、 正温度係数特性を有するが、 抵抗温度特性における 抵抗の立上がり倍率が発熱層 (A ) の発熱組成物の最大立上がり倍率 を示す温度以下の温度範囲において発熱層 (A ) の発熱組成物の立上 がり倍率より も低いか、 あるいは抵抗温度特性における抵抗の立上が り開始温度が発熱層 (A ) の発熱組成物の立上がり開始温度より も高 い正温度係数特性を有する発熱組成物からなる発熱層 (B l )、 また は正温度係数特性を有しない発熱組成物からなる発熱層 (B 2 ) が配 置されている。 The heating element of the present invention is obtained by coating a plurality of metal core wires arranged in parallel with each other with a heating composition containing at least a thermoplastic resin and conductive particles. Thus, a heat generating portion is formed. A heating layer (A) made of a heating composition having a positive temperature coefficient characteristic is disposed as a coating layer at least in the vicinity of the metal core wire serving as an electrode among the metal core wires, and the heating layer (A) It has a positive temperature coefficient characteristic as a coating layer on the outer peripheral portion, but in the temperature range where the rise ratio of the resistance in the resistance temperature characteristic is equal to or lower than the temperature indicating the maximum rise ratio of the exothermic composition of the exothermic layer (A). Positive temperature coefficient that is lower than the rising magnification of the exothermic composition of A) or that the temperature at which the resistance starts to rise in the resistance temperature characteristic is higher than the temperature at which the heating composition of the heating layer (A) starts to rise. A heat generating layer (B 1) made of a heat generating composition having characteristics or a heat generating layer (B 2) made of a heat generating composition having no positive temperature coefficient characteristics is provided.
本発明の発熱体における金属芯線は、 従来の発熱体において用いら れている導電性の高い金属、 たとえば銅や銅合金、 金、 銀、 ニッケル、 アルミニウムなどの金属線が好適に用いられる。 この金属芯線は、 単 線でもよいし、 より線やあみ線の形態であるものを用いてもよい。 こ の金属芯線の断面形状はとく に制限はないが、円形 ·楕円形,長方形 · 箔状など任意な形状のものが使用できる。 特に、 断面形状が長方形の ものが好ましく、 短形が 0 . 0 3 5〜 0 . 1 m mであり長径が 0 . 3 〜 1 . 2 m mであることが好ましい。 その種類は単線、 撚線、 網線等 があり、 そのコート材と して錫メ ツキが挙げられる。  As the metal core wire in the heating element of the present invention, a highly conductive metal used in a conventional heating element, for example, a metal wire of copper, a copper alloy, gold, silver, nickel, aluminum or the like is suitably used. The metal core wire may be a single wire, or may be in the form of a stranded wire or a net wire. The cross-sectional shape of the metal core wire is not particularly limited, but any shape such as a circle, an ellipse, a rectangle, and a foil can be used. In particular, those having a rectangular cross-sectional shape are preferable, and the short shape is preferably 0.035 to 0.1 mm and the long diameter is preferably 0.3 to 1.2 mm. The types include single wire, stranded wire, mesh wire, etc., and tin plating is mentioned as the coating material.
また、 本発明の発熱体における前記発熱層 (A ) に用いる熱可塑性 樹脂と しては、 結晶性を有する熱可塑性樹脂を含んでいることが好ま しい。 このような結晶性熱可塑性樹脂と しては、 例えばポリオレフィ ン樹脂およびその共重合樹脂、酢酸ビニル系樹脂、 ポリアミ ド系樹脂、 ポリアセタール樹脂、 熱可塑性ポリエステル樹脂、 ジェン系重合体、 ポリフエ二レンォキシド樹脂、 ノニル樹脂、 ポリスルホン樹脂などが 挙げられる。 Further, it is preferable that the thermoplastic resin used for the heating layer (A) in the heating element of the present invention includes a crystalline thermoplastic resin. Examples of such a crystalline thermoplastic resin include a polyolefin resin and its copolymer resin, a vinyl acetate resin, a polyamide resin, a polyacetal resin, a thermoplastic polyester resin, a gen polymer, and a polyphenylene oxide resin. , Nonyl resin, polysulfone resin etc. No.
前記ポリオレフイ ン樹脂と しては、 高密度ポリエチレン、 中、 低密 度ポリエチレン、 直鎖状低密度ポリエチレン等のポリエチレン類、 ァ ィ ソタクチックポリプロ ピレン、 シンジオタクチックポリプロ ピレン 等のポリ プロ ピレン類、 ポリブテン一 1 、 ポリ ( 4—メチルペンテン - 1 ) 樹脂などが挙げられる。  Examples of the polyolefin resin include polyethylenes such as high-density polyethylene, medium- and low-density polyethylene, and linear low-density polyethylene; polypropylenes such as asotactic polypropylene and syndiotactic polypropylene; Polybutene-11 and poly (4-methylpentene-1) resin.
また、 ポリオレフイ ン系共重合体と しては、 エチレン一プロ ピレン 共重合体、 エチレン一酢酸ビニル共重合体、 エチレン一アク リル酸共 重合体、 エチレン一ェチノレアク リ レー ト共重合体、 エチレン一メチル ァク リ レー ト共重合体等のエチレンーァク リ レー ト系共重合体、 ェチ レン一塩化ビニル共重合体等のォレフィ ンと ビュル化合物との共重合 体や、 フッ素含有エチレン系重合体、 これらの変成物も使用できる。 前記酢酸ビュル系樹脂と しては、 酢酸ビュル樹脂、 ポリ ビニルァセ トァセタール、 ポリ ビュルプチラールなどが挙げられる。  Examples of the polyolefin copolymer include ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-ethylenol acrylate copolymer, and ethylene-ethylene copolymer. Ethylene acrylate copolymers such as methyl acrylate copolymers, copolymers of olefins and vinyl compounds such as ethylene-vinyl monochloride copolymers, fluorine-containing ethylene polymers, These modifications can also be used. Examples of the above-mentioned butyl acetate resin include butyl acetate resin, polyvinyl acetate acetal, and polybutyl butyral.
前記ポリアミ ド樹脂と しては、 ナイロン 6、 ナイロン 8、 ナイロン 1 1 、 ナイ ロン 6 6、 ナイ ロン 6 1 0などが挙げられる。 Examples of the polyamide resin include Nylon 6, Nylon 8, Nylon 11, Nylon 66, and Nylon 610.
前記ポリアセタール樹脂は、 単一重合体を用いてもよいし、 共重合体 を用いてもよい。 As the polyacetal resin, a homopolymer may be used, or a copolymer may be used.
前記熱可塑性ポリエステル樹脂と しては、 ポリエチレンテレフタ レ ート、 ポリブチレンテレフタレートなどが挙げられる。  Examples of the thermoplastic polyester resin include polyethylene terephthalate and polybutylene terephthalate.
また、 上記ジェン系重合体と してば、 トランス一 1 , 3—ポリイ ソプ レン、 シンジオタクチック一 1 , 2—ポリブタジエン等のジェン系重 合体ならびにその共重合体を使用することができる。 As the above-mentioned gen-based polymer, gen-based polymers such as trans-1,3-polyisoprene and syndiotactic 1,2-polybutadiene and copolymers thereof can be used.
これら結晶性熱可塑性樹脂の中でも、 高密度ポリエチレン、 低密度 ポリエチレン、 直鎖状低密度ポリエチレンやエチレン一酢酸ビュル共 重合体、 エチレンーェチルァク リ レート共重合体等のォレフィン系共 重合体やトランス一 1, 4—ポリイソプレンなどが好ましい。 Among these crystalline thermoplastic resins, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, ethylene monobutyl copolymer, ethylene-ethylene acrylate copolymer, and other olefin-based copolymers. Polymers and trans-1,4-polyisoprene are preferred.
そして、 これら結晶性熱可塑性樹脂は、 1種単独で用いてもよいし、 2種以上の混合物を用いてもよい。  These crystalline thermoplastic resins may be used alone or in a mixture of two or more.
また、 前記発熱層 (B 1 ) に用いる樹脂と しては、 前記熱可塑性樹 脂が挙げられる。  Examples of the resin used for the heating layer (B 1) include the thermoplastic resin.
さらに、 前記発熱層 (B 2 ) 用の樹脂と しては、 シリ コーン樹脂、 熱硬化性樹脂、 非晶性熱可塑性樹脂などが挙げられる。  Further, examples of the resin for the heat generating layer (B 2) include a silicone resin, a thermosetting resin, and an amorphous thermoplastic resin.
つぎに、 これら熱可塑性樹脂成分に配合して用いる導電性粒子と し ては、 例えば、 カーボンブラック粒子、 グラフアイ ト粒子等の粒状物、 金属粉体、 金属酸化物粉体等の粉状物、 炭素繊維等の繊維状物などが 挙げられる。 これらの中でもカーボンブラック粒子、 グラフアイ ト粒 子等の粒状物、 特にカーボンブラック粒子が好ましい。 これら導電性 粒子は、 1種単独で用いてもよいし、 2種以上を混合物と して併用し てもよい。  Next, examples of the conductive particles used in the thermoplastic resin component include particles such as carbon black particles and graphite particles, and powders such as metal powder and metal oxide powder. And fibrous materials such as carbon fiber. Among them, granular materials such as carbon black particles and graphite particles, and particularly carbon black particles are preferred. These conductive particles may be used alone or in a combination of two or more.
これら導電性粒子の粒径は、 平均粒径が 1 0〜 2 0 0 ミ リ ミクロン であるものが用いられるが、 1 5〜 1 0 0 ミ リ ミクロンであるものが より好ましい。 導電性粒子が繊維状である場合、 そのァスぺク ト比は 通常 1〜 1 0 0 0、 好ましくは 1〜: 1 0 0程度である。  As the particle size of these conductive particles, those having an average particle size of 10 to 200 micron are used, and those having an average particle size of 15 to 100 micron are more preferable. When the conductive particles are fibrous, the aspect ratio is usually from 1 to 100, preferably from 1 to 100.
つぎに、 前記発熱組成物を調製するにあたっては、 上記の熱可塑性 樹脂と導電性粒子を特定の配合割合で混合して、 混練機や押出機によ り溶融混練する。 この溶融混練の工程において、 架橋剤を加えて熱可 塑性樹脂を架橋させると、 得られる発熱組成物の P T C特性が向上す ることから好ましい。  Next, in preparing the exothermic composition, the thermoplastic resin and the conductive particles are mixed at a specific mixing ratio, and are melt-kneaded by a kneader or an extruder. In the melt-kneading step, it is preferable to add a cross-linking agent to cross-link the thermoplastic resin, since the PTC property of the obtained exothermic composition is improved.
前記結晶性樹脂と導電性粒子との配合割合は、 重量比と して、 通常、 1 0〜 8 0 : 9 0〜 2 0、 好ましくは、 5 5〜 7 5 : 4 5〜 2 5であ る。 導電性粒子の配合割合がこの範囲よ り少ないと発熱組成物の比抵 抗値が大きくなり過ぎて発熱が不充分になることがあり、 また、 導電 性粒子の配合割合がこの範囲より多いと発熱組成物の P T C特性が充 分に発現しないことがある。 The compounding ratio of the crystalline resin and the conductive particles is usually 10 to 80: 90 to 20, preferably 55 to 75: 45 to 25 by weight. You. If the mixing ratio of the conductive particles is less than this range, the specific resistance of the heat-generating composition will be reduced. When the resistance value is too large, heat generation may be insufficient, and when the mixing ratio of the conductive particles is larger than this range, the PTC characteristics of the heat generating composition may not be sufficiently exhibited.
前記架橋剤と しては、熱可塑性樹脂の種類に応じて、有機過酸化物、 硫黄化合物、 ォキシム類、 ニ トロ ソ化合物、 ァミ ン化合物、 ポリアミ ン化合物等から適宜選択して使用することができる。 例えば、 ポリオ レフイ ン系樹脂の場合には、 有機過酸化物が好適に用いられる。 これ ら有機過酸化物と しては、 例えばベンゾィルパーォキシド、 ラウロイ ルパーォキシド、 ジク ミルパーォキシド、 tert—ブチルバ一ォキシ ド、 tert—ブチルパーォキシベンゾエー ト、 tert—ブチルク ミルノ、。一ォキ シ ド、 tert—プチルヒ ドロパーォキシ ド、 2 , 5 —ジメチル一 2 , 5 ージ (tert—プチルパ一ォキシ) へキシン一 3 、 1 , 1 一ビス (tert —ブチルパーォキシイ ソプロ ピル) ベンゼン、 1 , 1 —ビス (tert— プチルバーオキシ) 一 3 , 3 , 5— ト リ メチルシク ロへキサン、 n— ブチル一 4 , 4一ビス (tert—ブチルパーォキシ) ノ レレー ト、 2 , 2 —ビス (tert—ブチルパーォキシ) ブタン、 tert—ブチルパーォキ シベンゼンなどが挙げられる。 これらの中でも、 2 , 5—ジメチル一 2 , 5 —ジ (tert—ブチルパーォキシ) へキシン一 3が好ましい。 こ れら有機過酸化物は、 1種単独で使用してもよいし、 必要に応じて、 ト リアリルシアヌ レー トゃジビニルベンゼン、 ト リ ア リルィ ソシァヌ レート等の架橋補助剤を添加してもよい。  As the cross-linking agent, an organic peroxide, a sulfur compound, an oxime, a nitroso compound, an amine compound, a polyamine compound, or the like is appropriately selected and used depending on the type of the thermoplastic resin. Can be. For example, in the case of a polyolefin-based resin, an organic peroxide is preferably used. These organic peroxides include, for example, benzoyl peroxide, lauroyl peroxide, dicumyl peroxide, tert-butyl peroxide, tert-butyl peroxybenzoate, tert-butyl cumylno. Tert-Butylhydroperoxide, 2,5-dimethyl-1,2,5-di (tert-butylpropyl) hexine-1,3,1,1-bis (tert-butylperoxyisopropylate) Benzene, 1,1-bis (tert-butylpyroxy) -13,3,5-trimethylcyclohexane, n-butyl-14,4-bis (tert-butylperoxy) norrelate, 2,2- Bis (tert-butylperoxy) butane, tert-butylperoxybenzene and the like can be mentioned. Of these, 2,5-dimethyl-1,2,5-di (tert-butylperoxy) hexine-13 is preferred. These organic peroxides may be used alone or, if necessary, may be added with a cross-linking aid such as triallyl cyanurate divinylbenzene, triarylsocyanurate, or the like. .
これら有機過酸化物の使用割合は、 熱可塑性樹脂 1 0 0重量部に対 して、 通常、 0 . 0 1 〜 5重量部、 好ましくは、 0 . 0 5 〜 2重量部 である。 この割合が 0 . 0 1重量部未満では、 熱可塑性樹脂の架橋化 が不充分となり、 P T C特性の発現が不充分であったり、 高温領域で の抵抗の低下を招くおそれがある。 また、 5重量部を超えると、 架橋 化度が高くなり過ぎて、 成形性が低下したり、 P T C特性の低下を招 く ことがある。 The use ratio of these organic peroxides is usually 0.01 to 5 parts by weight, preferably 0.05 to 2 parts by weight, based on 100 parts by weight of the thermoplastic resin. If this ratio is less than 0.01 part by weight, the crosslinking of the thermoplastic resin becomes insufficient, and the PTC characteristics may not be sufficiently exhibited, or the resistance in a high temperature range may be reduced. If the amount exceeds 5 parts by weight, crosslinking The degree of conversion may be too high, resulting in reduced moldability or reduced PTC properties.
つぎに、 上記発熱組成物を、 電極と して用いる少なく とも 2本の金 属芯線に被覆する。 芯線へ樹脂を被覆する時、 外層被覆時の共押出成 形温度は、 樹脂最高融点温度 (MP) よ り 2 0〜 2 0 0 °C高い範囲で あり、 好ましくは 5 0〜 1 1 0 °Cの間である。 ここで樹脂最高融点温 度とは樹脂プレンドゃ共重合などの場合融点が多数存在する場合があ り、 この場合の最高温度の融点をさす。 樹脂最高融点温度が 2 0°C以 下の場合、 樹脂の溶融が不十分となり、 安定的な製造 · 生産が出来な い  Next, the heat-generating composition is coated on at least two metal core wires to be used as electrodes. When coating the core with resin, the co-extrusion molding temperature at the time of coating the outer layer is in the range of 20 to 200 ° C higher than the resin maximum melting point (MP), preferably 50 to 110 ° C. Between C. Here, the resin maximum melting point temperature may have many melting points in the case of resin blend / copolymerization, etc., and refers to the melting point at the maximum temperature in this case. If the maximum melting point of the resin is below 20 ° C, the resin will not melt sufficiently and stable production and production will not be possible.
また、 共押出しする線速度は 5〜 3 5 0 m/min. であり好ましく は 7 0〜 2 0 0 m/min. である。 この場合、 発熱組成物の押出機の ダイに、 2本の金属芯線を平行にかつ金属芯線の相互間の間隔を 5 m m以下の一定間隔に保持して、 発熱組成物と金属芯線を共押出成形す ることにより、 効率よく被覆処理することができる。 ここで用いる発 熱組成物は、 発熱層 (A) の形成に用いる発熱組成物を先に被覆処理 し、 ついでその上に、 発熱層 (B 1 ) または (B 2) の形成に用いる 発熱組成物を被覆する方法を採用してもよいし、 これら発熱層 (A) 形成用発熱組成物と発熱層 (B 1 ) または (B 2 ) 形成用の発熱組成 物を、それぞれの押出機から押出し、成形用ダイにおいて、発熱層(A) 形成用発熱組成物を金属芯線と接触する内側に、 発熱層 (B 1 ) また は (B 2 ) 形成用の発熱組成物を外側にして、 金属芯線とともに共押 出してもよい。  The linear velocity for co-extrusion is 5 to 350 m / min., Preferably 70 to 200 m / min. In this case, the exothermic composition and the metal core are co-extruded by holding the two metal cores in parallel in the die of the extruder for the exothermic composition and keeping the distance between the metal cores at a constant interval of 5 mm or less. By molding, coating treatment can be performed efficiently. The heat-generating composition used here is prepared by first coating the heat-generating composition used to form the heat-generating layer (A), and then forming the heat-generating layer (B1) or (B2) on the heat-generating composition. The exothermic composition for forming the exothermic layer (A) and the exothermic composition for forming the exothermic layer (B 1) or (B 2) may be extruded from respective extruders. In the molding die, the exothermic composition for forming the exothermic layer (A) is in contact with the metal core wire, and the exothermic composition for forming the exothermic layer (B 1) or (B 2) is outside. They may be co-extruded together with.
つぎに、 上記のよ うにして得られる本発明の発熱体の二つの例を説 明する。  Next, two examples of the heating element of the present invention obtained as described above will be described.
1例目は、 図 1 を参照して説明する。 図 1は、 発熱体の断面を示し、 図中の符号 1 は金属芯線、 2は発熱層 (A )、 3は発熱層 (B 1 ) ま たは (B 2 ) を示している。 この発熱体の断面形状は、 とく に制約は ないが、 長方形をなすものがリ一ド線との結線用端子の取出しに好都 合である。 そして、 小型化を指向した機器類への組込み用の発熱体の 場合には、 この断面における短辺が 0 . 1〜 1 m m、 長辺が 1〜 7 m m程度と したものが実用性が高い。 すなわち、 これ以下の寸法では結 線操作が容易でなく、 またこれ以上の寸法では柔軟性に乏しくなり機 器類への組込みが容易でない上、 機器類の大型化を招く ことになるか らである。 The first example will be described with reference to FIG. Figure 1 shows the cross section of the heating element, In the figure, reference numeral 1 denotes a metal core wire, 2 denotes a heating layer (A), and 3 denotes a heating layer (B 1) or (B 2). The cross-sectional shape of the heating element is not particularly limited, but a rectangular shape is convenient for taking out a terminal for connection with a lead wire. In the case of a heating element to be incorporated into equipment intended for miniaturization, the practicality is high if the short side of this cross section is about 0.1 to 1 mm and the long side is about 1 to 7 mm. . In other words, if the dimensions are smaller than this, the wiring operation is not easy, and if the dimensions are larger than this, the flexibility is poor and it is not easy to incorporate into the equipment, and the equipment becomes large. is there.
また、 金属芯線 1 は、 電極と して用いるので少なく とも 2本は必要 であるが、 金属芯線 1 は 2〜 1 0本と してもよい。 この場合、 金属芯 線 1の本数を例えば 3本と して、 電極に用いない残余の金属芯線 1本 を均熱用の熱伝導体と して用いてもよい。 また、 金属芯線 1 を 4本用 いて、 このうち 2本を陽極、 他の 2本を陰極と して使用してもよい。 このように金属芯線 1の本数を増やしてその径を小さくすると、 よ り 柔軟性に富む発熱体が得られる。  Further, since the metal core wire 1 is used as an electrode, at least two metal core wires are required, but the metal core wire 1 may be 2 to 10 wires. In this case, the number of metal core wires 1 may be set to, for example, three, and the remaining metal core wire not used for the electrode may be used as a heat conductor for soaking. Alternatively, four metal core wires 1 may be used, two of which may be used as an anode and the other two may be used as a cathode. When the number of the metal core wires 1 is increased and the diameter is reduced in this manner, a heating element having more flexibility can be obtained.
2例目は図 4で説明する。 発熱体の形状は特に制限はないが、 平ら な面に蛇行させながら引き回す用途では、円形に近い形状が好ましく、 且つ、 加と う性が求められる。 このような用途の場合、 図 4に示すよ うに必要な被覆層を被覆した芯線をよることにより相互にスパイラル 状に編みあわせることで加と う性が向上し、 且つ外装被覆樹脂の形状 を円形にすると一層向上し、 発熱体の適用が容易になる。  The second example is described in FIG. The shape of the heating element is not particularly limited. However, in a case where the heating element is drawn while meandering on a flat surface, a shape close to a circle is preferable, and flexibility is required. In such an application, as shown in Fig. 4, the core wire coated with the necessary coating layer is twisted in a spiral shape to improve the addability, and the shape of the outer coating resin is circular. In this case, the temperature is further improved, and the application of the heating element is facilitated.
この金属芯線 1 は、 その相互間の間隔が、 5 m m以内、 好ましく は 0 . 0 5 ~ 3 m mとなるように発熱組成物中に埋設する。 この間隔が 5 m mを超えると、 局所発熱を招きやすくなるからである。  This metal core wire 1 is embedded in the heat generating composition such that the distance between the metal core wires 1 is within 5 mm, preferably 0.05 to 3 mm. If this interval exceeds 5 mm, local heating is likely to occur.
つぎに、 この金属芯線 1の近傍に、 金属芯線 1 に接して発熱層 (A ) 2を形成し、 その発熱層 (A) 2の外周面に、 発熱層 (B 1 ) または (B 2) 3を被覆して形成する。 ここで、 発熱層 (B 1 ) または (BNext, in the vicinity of the metal core 1, the heat generating layer (A) 2 is formed, and the heat generating layer (A) 2 is formed by covering the outer peripheral surface with the heat generating layer (B 1) or (B 2) 3. Here, the heating layer (B 1) or (B
2 ) 3に用いる発熱組成物は、 その P T C特性における抵抗の立上が り倍率が、 発熱層 (A) 2の発熱組成物の抵抗の最大立上がり倍率を 示す温度以下の範囲において、 発熱層 (A) 2の発熱組成物の抵抗の 立上がり倍率より も低い、 好ましくは 0. 5倍以下となるように、 熱 可塑性樹脂と導電性粒子の種類や配合比率などを調整した発熱組成物 を用いる。 この場合、 上記に代えて、 発熱層 (B 1 ) または (B 2 )2) The exothermic composition used in (3) has a PTC characteristic in which the rise ratio of the resistance is less than the temperature indicating the maximum rise ratio of the resistance of the exothermic composition of the exothermic layer (A) 2; A) The exothermic composition is used in which the types and blending ratios of the thermoplastic resin and the conductive particles are adjusted so as to be lower than the rising magnification of the resistance of the exothermic composition of 2, preferably 0.5 times or less. In this case, instead of the above, the heating layer (B 1) or (B 2)
3に用いる発熱組成物の抵抗温度特性における抵抗値の立上がり開始 温度が、 発熱層 (A) 2の発熱組成物の抵抗値の立上がり開始温度よ り も高い温度、 好ましくは 5 °C以上高い温度となるように、 熱可塑性 樹脂と導電性粒子の種類や配合比率などを調整した発熱組成物を用い てもよい。 ここで、 P T C特性における抵抗値の立上がり倍率とは、 横軸を温度、 縦軸を抵抗値と して、 発熱組成物の昇温時の抵抗値をプ ロッ トしたときの抵抗値の最大値の最少値に対する倍率である。また、 抵抗温度特性における抵抗値の立上がり開始温度とは、 上記発熱組成 物の室温 ( 2 3°C) における抵抗値の 2倍の抵抗値を示すときの温度 である。 The temperature at which the resistance of the exothermic composition used in 3 starts to rise in the resistance temperature characteristics is higher than the temperature at which the resistance of the exothermic composition of the exothermic layer (A) 2 starts to rise, preferably 5 ° C or more. A heat-generating composition may be used in which the types and the mixing ratios of the thermoplastic resin and the conductive particles are adjusted so that Here, the rise ratio of the resistance value in the PTC characteristic is the maximum value of the resistance value when the resistance value of the heat-generating composition at the time of temperature rise is plotted, with the horizontal axis representing the temperature and the vertical axis representing the resistance value. Is the magnification for the minimum value of. The temperature at which the resistance value starts to rise in the resistance temperature characteristics is a temperature at which the resistance value of the exothermic composition at room temperature (23 ° C.) is twice as high as the resistance value.
このように、 発熱体の発熱部を、 P T C特性を異にする 2種の発熱 層 (A) 2 と (B 1 ) または (B 2) 3 との組合せにより構成するこ とによって、 1種単独の発熱組成物のみからなる発熱層で構成した従 来の発熱体に較べて、 通電開始時の突入電流を大幅に抑制することが でき、 この突入電流による発熱体の損傷が緩和されるので、 発熱体の 長寿命化を図ることができる。  As described above, the heat generating portion of the heat generating element is constituted by a combination of the two heat generating layers (A) 2 and (B 1) or (B 2) 3 having different PTC characteristics, so that one type is used alone. Inrush current at the start of energization can be greatly reduced as compared with a conventional heating element composed of a heating layer composed of only the heating composition described above, and damage to the heating element due to the inrush current is reduced. The life of the heating element can be extended.
また、 この発熱部は、 P T C特性を異にする 2種の発熱層 (A) 2 と (B 1 ) または (B 2) 3に用いる熱可塑性樹脂や導電性粒子の種 類やそれらの配合割合、 さらに両発熱層の厚みを種々変更すれば、 両 発熱層が持つ P τ C特性から合成された新たな P T C特性を有する発 熱部が容易に形成できるので、 各種用途に対応した多様な要求特性に 応えた商品の設計が容易になる。 In addition, this heat generating part is made of two kinds of heat generating layers (A) 2 having different PTC characteristics and a type of thermoplastic resin or conductive particles used for (B 1) or (B 2) 3. By changing the types and their proportions, and the thickness of both heating layers, it is possible to easily form a heat generating part with new PTC characteristics synthesized from the P τ C characteristics of both heating layers. This makes it easier to design products that meet a variety of required characteristics.
さ らに、 発熱層 (A) 2の発熱組成物と して、 その P T C特性の発 現温度領域が 4 0〜 7 0 °Cであるものを用い、 発熱層 (B 1 ) の発熱 組成物に 1 5 0 °Cの耐熱性を有するものを用いた場合には、 得られた 発熱体は、 環境温度が 1 5 0 °C程度に上昇する可能性のある部位に適 用しても、 熱による損傷を危惧することなく使用することができる。 また、 これら発熱層 (A) 2や (B l )、 (B 2 ) 3を、 前記金属芯 線 1上に被覆するにあたっては、 金属芯線 1の発熱層 (A) 2や (B 1 )、 (B 2) 3に対する体積比が、 5〜 9 0 %、 好ましくは 1 0〜 7 0 %となるように、 これら各層の厚みを調整する。 この体積比が 5 % 未満であると、 局所加熱が発生しやすくなり、 また、 この値が 9 0 % を超えると、 充分な発熱量を得ることができなくなるからである。 金属芯線 1 と発熱層 (A)の間にさらに導電 . 発熱層 (X) (4 ) を設 け、 当該導電 · 発熱層 (X)の熱膨張率が金属芯線 1 の熱膨張率と発 熱層 (A)の熱膨張率の間の値となるよ うに設定することによ り発熱 層 (A)の融点温度近傍での発熱温度で使用する場合の長期耐久性が向 上し、 高い電圧での長期耐久性能が向上した発熱体を得ることができ る。 図 3にその 1 例の断面図を示す。 ここで前記導電 .発熱層 (X) は前述した結晶性熱可塑性樹脂と導電性粒子からなる組成物である。 各金属芯線 1、 発熱層 (A)及び導電 ·発熱層 (X)はその熱膨張率が : 発熱層 (A) > 導電 ·発熱層 (X) > 芯線 1  Further, as the exothermic composition of the exothermic layer (A) 2, an exothermic composition of the exothermic layer (B 1) having a temperature range of 40 to 70 ° C. in which the PTC characteristic appears is used. If a heater with a heat resistance of 150 ° C is used, the obtained heating element may be applied to a part where the environmental temperature may rise to about 150 ° C. Can be used without fear of thermal damage. When coating these heat generating layers (A) 2, (B l), and (B 2) 3 on the metal core wire 1, the heat generating layers (A) 2, (B 1), (B2) The thickness of each of these layers is adjusted so that the volume ratio to 3 is 5 to 90%, preferably 10 to 70%. If the volume ratio is less than 5%, local heating is likely to occur, and if the value exceeds 90%, a sufficient amount of heat cannot be obtained. A conductive layer (X) (4) is further provided between the metal core 1 and the heat generating layer (A), and the coefficient of thermal expansion of the conductive and heat generating layer (X) is equal to the coefficient of thermal expansion of the metal core 1 and the heat generation. By setting the thermal expansion coefficient to a value between the thermal expansion coefficients of the layer (A), the long-term durability when used at a temperature around the melting point of the heat generating layer (A) is improved, and a high voltage is applied. A heating element having improved long-term durability performance can be obtained. Fig. 3 shows a cross-sectional view of one example. Here, the conductive heating layer (X) is a composition comprising the above-mentioned crystalline thermoplastic resin and conductive particles. Each metal core 1, heat generating layer (A) and conductive and heat generating layer (X) have a coefficient of thermal expansion: heat generating layer (A)> conductive and heat generating layer (X)> core 1
の順番となるように必要発熱特性を考慮して、発熱層(A)および導電 · 発熱層 (X)の選定を行なう。 好ましい、 熱膨張率の値の範囲は下記 の範囲から適宜選ばれる。 In consideration of the required heat generation characteristics, select the heat generation layer (A) and the conductive and heat generation layer (X) so that the order is as follows. The preferred range of the coefficient of thermal expansion is as follows Is appropriately selected from the range.
導電 ·発熱層 (X)の熱膨張率 : 0. 8〜 3 0 X 1 0 E— 5 /°C 金属芯線の熱膨張率 : 1. 4〜 2. 0 X 1 0 E- 5 /°C Conductivity · Coefficient of thermal expansion of heat generating layer (X): 0.8 to 30 X 10 E-5 / ° C Thermal expansion of metal core wire: 1.4 to 2.0 X 10 E-5 / ° C
発熱層 (A)の熱膨張率 : 0. 8〜 3 0 X 1 0E_ 5 /°C Thermal expansion coefficient of heat generating layer (A): 0.8 to 30 X 10E_5 / ° C
導電 ·発熱層 (X)を追加することで、 発熱層 (A)の融点温度近傍で の発熱温度で使用する場合の長期耐久性が向上し、 同じく高い電圧で の長期耐久性能が向上する。 導電 ·発熱層 (X)を追加しない場合は、 発熱温度が発熱層 (A)の融点温度近郷以下であれば長期耐久性に問題 が生じない。 また、 融点温度近傍での発熱温度でも短期間であればな んら問題は生じない。  The addition of the conductive and heat generating layer (X) improves the long-term durability when used at a heat generating temperature near the melting point of the heat generating layer (A), and also improves the long-term durability at a high voltage. When the conductive layer and the heat generating layer (X) are not added, there is no problem in long-term durability if the heat generating temperature is lower than the melting point of the heat generating layer (A). In addition, there is no problem even if the heat generation temperature near the melting point temperature is short.
ここで言う長期耐久性の問題とは、 数ケ月以上の実使用や熱サイク ル試験により発熱体の抵抗値が增加し発熱量が低下する現象を意味す る。 同現象の主な原因は芯線と発熱層の接触抵抗の増加であることが 判明している。 そこで、 発熱層 (A)の融点温度近傍で使用する用途に 適用可能にするために、 芯線と発熱層の接触抵抗の増加を防止するた めに導電 · 発熱層 (X)を追加した。 即ち、 導電 ·発熱層 (X)を追加 することで芯線と発熱層の接触抵抗の増加を防止し、 使用可能な発熱 温度の範囲と許容印加電圧の幅を広げることができる。 各発熱層 (A)、 導電 ·発熱層 (X)、 発熱層 B1 を形成するには、 各層を個別に形成し ても、 各層を同時に形成してもよい。  The problem of long-term durability as referred to here means a phenomenon in which the resistance value of the heating element increases due to actual use over several months or a thermal cycle test, and the calorific value decreases. It has been found that the main cause of this phenomenon is an increase in the contact resistance between the core wire and the heating layer. Therefore, in order to be applicable to the use near the melting point temperature of the heating layer (A), the conductive and heating layer (X) was added to prevent the contact resistance between the core wire and the heating layer from increasing. That is, by adding the conductive and heat generating layer (X), it is possible to prevent an increase in contact resistance between the core wire and the heat generating layer, and to widen a usable heat generating temperature range and a range of allowable applied voltage. In order to form each heat generating layer (A), conductive and heat generating layer (X), and heat generating layer B1, each layer may be formed individually or each layer may be formed simultaneously.
また、 発熱体の柔軟性や加と う性が必要な場合は、 必要に応じて各 層を被覆した上で、 それらの被覆された芯線を互いにスパイラル状に 編み、 その上で必要な発熱層及び外装被覆層を配置しても良い。  If the heating element is required to have flexibility or flexibility, coat each layer as necessary and knit the coated core wires spirally with each other. And an outer covering layer may be provided.
上述のよ うにして製造された発熱体本体における金属芯線 1の一方 の端部には、 その発熱層 2、 3を一部剥離して露出した金属芯線 1 に リード線を結線し、 そのリード線の端部に結線用端子を取付け、 電源 と結線できるようにする。 At one end of the metal core wire 1 in the heating element body manufactured as described above, a lead wire is connected to the exposed metal core wire 1 by exfoliating the heating layers 2 and 3 partially. Attach the connection terminal to the end of the wire, And be able to connect.
ついで、 この発熱体に、 電気絶縁用の外装材を施し、 発熱体のさら なる長寿命化を図るとともに、 外力による損傷の軽減を図る。 電気絶 縁外装材を前記発熱部の外周面に、 共押出しにより被覆する。 このと き、 電気絶縁外装材の樹脂は、 ポリオレフイ ン樹脂等であり、 この樹 脂のメルトインデックス (M l ) 0.1 g /lOmin 以上であること力 好ましい。 M l が小さいと被覆樹脂がきれいに共押出不可能で生産性 が悪くなる。 この電気絶縁用外装材と しては、 高密度ポリエチレンフ イルム、 リニア一低密度ポリエチレンフィルム、 低密度ポリエチレン フイノレム、 ポリエチレンレフタ レ一トフイノレム、 ポリ プロ ピレンフィ ルム、 あるいは、 これらのフィルムにアルミニウムシー トを装着した ラミネートフイルムから構成されているものなどが好適に用いられる。 ここで好ましい Ml の範囲は高密度ポリエチレンで 0.03 〜 13、 リ ニァ一低密度ポリエチレンで 1.2〜9、 低密度ポリエチレンで 1 ~40 及びポリエチレンレフタ レー トで o.4〜25 である。 各樹脂の Ml はそ れぞれ、 高密度ポリエチレン及びリニア一低密度ポリエチレンは JISK7210, 低密度ポリエチレンは JISK6760 及びポリエチレンレフ タレ一トは ASTM D 1238に準拠して測定した。  Next, this heating element is provided with an exterior material for electrical insulation to further extend the service life of the heating element and to reduce damage due to external force. An outer insulating material is coated on the outer peripheral surface of the heat generating portion by coextrusion. At this time, the resin of the electrically insulating exterior material is a polyolefin resin or the like, and the resin preferably has a melt index (Ml) of 0.1 g / lOmin or more. If M l is small, the co-extrusion of the coating resin cannot be performed cleanly, resulting in poor productivity. Examples of the electric insulating material include a high-density polyethylene film, a linear low-density polyethylene film, a low-density polyethylene finolem, a polyethylene phthalate film, a polypropylene film, and an aluminum sheet on these films. What is composed of a laminated film to which is attached is suitably used. The preferred ranges of Ml here are 0.03 to 13 for high density polyethylene, 1.2 to 9 for linear low density polyethylene, 1 to 40 for low density polyethylene and 0 to 4 for polyethylene phthalate. The Ml of each resin was measured in accordance with JISK7210 for high-density polyethylene and linear-low-density polyethylene, JISK6760 for low-density polyethylene, and ASTM D1238 for polyethylene phthalate.
【実施例】  【Example】
つぎに、 本発明を実施例によ り具体的に説明する。  Next, the present invention will be described specifically with reference to examples.
〔実施例 1〕  (Example 1)
発熱層 (A ) 用の発熱組成物を製造するための結晶性熱可塑性樹脂と して、 エチレンーェチルァク リ レート共重合体 〔; 日本ュニカー (株) 製 : D P D J 6 1 8 2 : MI = 1. 5, MP=95°C〕 6 0重量部を用い、 導電 性粒子と しては、 平均粒径 4 3 ミ リ ミクロンのカーボンブラック 〔三 菱化学 (株) 製 : ダイヤブラック E〕 4 0重量部を用いた。 さらに、 架橋剤と してエチレンーェチルァク リ レート共重合体に対して 0. 1 重量。 /0に相当する量の 2, 5 _ジメチルー 2, 5—ジ ( t e r t—ブ チルバーォキシ) へキシン一 3 〔日本油脂 (株) 製 : パーへキシン 2 5 B ; 1分半減期温度 1 9 3°C〕 を用いた。 As a crystalline thermoplastic resin for producing a heat-generating composition for the heat-generating layer (A), an ethylene-ethyl acrylate copolymer [; Nippon Tunica Co., Ltd .: DPDJ 618: MI = 1.5, MP = 95 ° C] Using 60 parts by weight, the conductive particles used were carbon black with an average particle size of 43 millimicrons [Mitsubishi Chemical Corporation: Diamond Black E] 40 parts by weight were used. further, 0.1 weight of ethylene-ethylene acrylate copolymer as a crosslinking agent. 2,5_Dimethyl-2,5-di (tert-butylbutyloxy) hexine- 1 in an amount equivalent to / 0 [Nippon Oil & Fats Co., Ltd .: Parhexin 25B; 1 minute half-life temperature 193 ° C].
つぎに、 これら原料を押出機に供給し、 2 0 0 °Cにおいて溶融混練 した後、 5 k gZh rの吐出量でス トランド状に押出し、 切断して樹 脂組成物のぺレッ トを得た。 この樹脂組成物のペレッ トを内径 2 5 m mの一軸押出機に供給し、 2 6 0 °C、 5 0 r p mにおいて、 剪断エネ ルギー 0 , O e k w ' h rZk gにおいて、 樹脂組成物の架橋化を行 つた。  Next, these raw materials are supplied to an extruder, melt-kneaded at 200 ° C., extruded into a strand at a discharge rate of 5 kgZhr, and cut to obtain a pellet of the resin composition. Was. The pellet of the resin composition was fed to a single-screw extruder having an inner diameter of 25 mm and crosslinked at 260 ° C and 50 rpm with a shear energy of 0 and Oekw'hrZkg. Was done.
また、 発熱層 (B 1 ) 用の発熱組成物と して、 高密度ポリエチレン In addition, as a heat generating composition for the heat generating layer (B 1), high density polyethylene is used.
〔出光石油化学社製;出光ポリエチレン 4 4 OM: MI = 1.0, MP=135°C] 5 5重量部と、 上記と同じカーボンブラック 4 5重量部、 および上記 と同じ架橋剤 0. 1重量部を用いて、 これらを 2 3 0 °Cにおいて溶融 混練してなる発熱組成物を用いた。 [Idemitsu Petrochemical Co .; Idemitsu Polyethylene 44 OM: MI = 1.0, MP = 135 ° C] 55 parts by weight, 45 parts by weight of the same carbon black as above, and 0.1 part by weight of the same crosslinking agent as above An exothermic composition obtained by melting and kneading these at 230 ° C. was used.
つぎに、 上記発熱組成物 (A) 用樹脂組成物の溶融混練物を、 金属 芯線被覆成形用のダイスの供給口に導入して被覆成形した。 ついで、 金属芯線被覆成形用ダイスに発熱組成物 (A) の被覆成形体を、 金属 芯線同士の間隔が 0. 5 4 mmとなるように 2本平行に配列してダイ ス内に導入しながら、 上記発熱層 (B 1 ) 用樹脂組成物の溶融混練物 をダイスの樹脂供給口よ り導入して、 金属芯線の上に、 発熱組成物 Next, the melt-kneaded product of the resin composition for the exothermic composition (A) was introduced into a supply port of a die for coating and molding a metal core wire, and was coated and formed. Next, two extruded molded articles of the exothermic composition (A) were arranged in a metal core wire coating molding die in parallel with each other so that the distance between the metal core wires was 0.54 mm, and introduced into the die. Then, a melt-kneaded product of the resin composition for the heat generating layer (B 1) is introduced from the resin supply port of the die, and the heat generating composition
(A) と発熱組成物 (B 1 ) の 2層を積層した成形体を得た。 上記金 属芯線には、 その直径が 0. 2 6 mmの銅線を用いた。 A molded product in which two layers of (A) and the exothermic composition (B 1) were laminated was obtained. A copper wire having a diameter of 0.26 mm was used as the metal core wire.
このようにして得られた線状の発熱体は、 断面形状が図 1 に示すと おり、 角部 2か所を一部切欠いた長方形であり、 その短辺が 0. 8 m m、 長辺が 1. 4 mmのものであった。 そして、 銅線 1の表面には、 上記樹脂組成物からなる厚みが 0. 1 5 mmの発熱層 (A) 2が形成 されたものであり、 この発熱体の銅線 1 の両被覆層 2、 3に対する体 積比は 1 3 %であった。 The cross-sectional shape of the linear heating element obtained in this way is shown in Fig. 1, and it is a rectangle with two corners partially cut away, with a short side of 0.8 mm and a long side. 1.4 mm. And on the surface of copper wire 1, A heat generating layer (A) 2 having a thickness of 0.15 mm made of the above resin composition was formed. The volume ratio of the heat generating element to the two coating layers 2 and 3 of the copper wire 1 was 13%. Met.
つぎに、 この線状の発熱体を 1 6 O mmの長さに切断して、 一方の 切断端部をその末端から 1 0 mmにわたり、 被覆層 2、 3を剥離して 銅線 1 を露出させ、 2本の銅線 1のそれぞれにリ一ド線をハンダ付け した。 その後、 2本のリード線を残して、 発熱体の全体をポリエチレ ンテレフタレートフィルムで上下面を覆い、 熱ラミネートして電気絶 縁用外装を施した。  Next, this linear heating element was cut to a length of 16 O mm, and one of the cut ends was extended 10 mm from its end, and the coating layers 2 and 3 were peeled off to expose the copper wire 1. Then, a lead wire was soldered to each of the two copper wires 1. Thereafter, the entire heating element was covered with a polyethylene terephthalate film except for the two lead wires, and the upper and lower surfaces were heat-laminated to provide an electrical insulation exterior.
ここで得られた発熱体の発熱層 (A) 用の発熱組成物と発熱層 (B 1 ) 用の発熱組成物については、 別途、 両発熱組成物のそれぞれにつ いて、 単独に P T C特性を測定した結果、 発熱層 (A) 用の発熱組成 物の電気抵抗値の立上がり開始温度が 4 3 °Cであり、 電気抵抗値の立 上がり倍率が、 1 0 7倍であり、 他方、 発熱層 (B 1 ) 用の発熱組成 物の電気抵抗値の立上がり開始温度が 5 5°Cであり、 電気抵抗値の立 上がり倍率が、 1 08倍であった。 したがって、 発熱層 (B 1 ) の発 熱組成物の前記立上がり開始温度は、 発熱層 (A) の発熱組成物の立 上がり開始温度より も、 1 2°C高いものであることが確認された。 そして、 この発熱体の電気抵抗値を測定したところ、 8 Ωであった。 また、 この発熱体の P T C特性を測定した結果、 電気抵抗値の立上が り開始温度は 3 8 °Cであり、 電気抵抗値の立上がり倍率は、 1 08倍 であった。 The exothermic composition for the exothermic layer (A) and exothermic composition for the exothermic layer (B1) of the exothermic element obtained here were separately prepared separately for each of the exothermic compositions. measurements showed that the rise starting temperature of the electric resistance of the heat-generating composition for the heating layer (a) is the 4 3 ° C, the rising ratio of electrical resistance is 1 0 7 times, while the heating layer (B 1) rising start temperature of the electric resistance of the heating compositions for is 5 5 ° C, the rising ratio of electrical resistance was 1 0 8 times. Accordingly, it was confirmed that the rising start temperature of the heat generating composition of the heat generating layer (B 1) was higher by 12 ° C. than the rising start temperature of the heat generating composition of the heat generating layer (A). . When the electrical resistance of the heating element was measured, it was 8 Ω. As a result of measurement of a PTC characteristics of the heating elements, starting temperature Ri rising electric resistance value is 3 8 ° C, the rising ratio of electrical resistance was 1 0 8 times.
つぎに、 この発熱体のリ一ド線の端子に電源からの給電用配線を結 線し、 両電極間に 6ボルトの電圧を印加すると、 この通電開始時の突 入電流値は、 0. 7 5アンペアであり、 その後の昇温安定時の電流値 は、 0. 6アンペアであった。 さらに、 この発熱体を 1 5 0 °Cのォー ブンに入れて熱履歴を受けた後に、 外形を観察したところ、 形状の変 化はなく 、 また、 再度 P T C特性を測定したところ、 この熱履歴によ る影響はなかった。 Next, when a power supply wiring from a power supply is connected to the lead wire terminal of this heating element and a voltage of 6 volts is applied between both electrodes, the inrush current value at the start of energization becomes 0. The current was 75 amperes, and the current value during the subsequent stable heating was 0.6 amperes. In addition, the heating element was cooled to 150 ° C. After receiving the heat history in a bun, the outer shape was observed, and there was no change in the shape. When the PTC characteristics were measured again, there was no effect of the heat history.
〔実施例 2〕  (Example 2)
発熱層 (A) 用の発熱組成物と しては、 実施例 1の発熱層 (A) と同 一の発熱組成物を用いた。 発熱層 (B 1 ) 用の発熱組成物と しては、 高密度ポリエチレン 〔出光石油化学社製;出光ポリエチレン 4 4 0 M〕 を 5 4重量部、 シリ コーン樹脂 〔東レ · ダウコーニング社製 : S E 6 7 5 8〕 を 1 0重量部、 実施例 1 と同一のカーボンブラック粒子を 3 6重量部、 さらに架橋剤と して 2, 5—ジメチル一 2, 5—ジ ( t e r t —プチルバーオキシ) へキシン一 3を 0. 1重量部用い、 これら を溶融混練して得た発熱組成物を用いた。 発熱体の製造は、 実施例 1 と同様にした。 As the heat generating composition for the heat generating layer (A), the same heat generating composition as the heat generating layer (A) of Example 1 was used. As the exothermic composition for the exothermic layer (B1), 54 parts by weight of a high-density polyethylene (manufactured by Idemitsu Petrochemical Co .; Idemitsu Polyethylene 440 M) and a silicone resin [manufactured by Dow Corning Toray Co., Ltd .: SE6758] was added in an amount of 10 parts by weight, the same carbon black particles as in Example 1 were used in an amount of 36 parts by weight, and 2,5-dimethyl-1,2,5-di (tert-butylpyroxy) was used as a crosslinking agent. Hexin-13 was used in an amount of 0.1 part by weight, and an exothermic composition obtained by melt-kneading these was used. The heating element was manufactured in the same manner as in Example 1.
ここで得られた発熱体の発熱層 (A) 用の発熱組成物と発熱層 (B 1 ) 用の発熱組成物については、 別途、 両発熱組成物それぞれについ て単独に P TC特性を測定した結果、 発熱層 (A) 用の発熱組成物の 電気抵抗値の立上がり開始温度が 4 3。Cであり、 電気抵抗値の立上が り倍率が 1 07倍であり、 他方、 発熱層 (B 1 ) 用の発熱組成物の電 気抵抗値の立上がり開始温度が 6 0 °Cであり、 電気抵抗値の立上がり 倍率が 1 07倍であった。 したがって、 発熱層 (B 1 ) の発熱組成物 の前記立上がり開始温度は、 発熱層 (A) の発熱組成物の立上がり開 始温度より も、 1 7 °C高いものであることが確認された。 With respect to the heat-generating composition for the heat-generating layer (A) and the heat-generating composition for the heat-generating layer (B 1), the PTC characteristics were separately measured for both heat-generating compositions separately. As a result, the temperature at which the electrical resistance of the heat generating composition for the heat generating layer (A) started to rise was 43. Is C, rising ratio of electrical resistance is 1 0 7 times, while rising start temperature of electrical resistance of the heat-generating composition for the heating layer (B 1) is located at 6 0 ° C , rising ratio of electrical resistance was 1 0 7 times. Therefore, it was confirmed that the rising start temperature of the heat generating composition of the heat generating layer (B 1) was 17 ° C. higher than the rising start temperature of the heat generating composition of the heat generating layer (A).
そして、 この発熱体の電気抵抗値を測定したところ、 6 Ωであった。 また、 この発熱体の P T C特性を測定した結果、 電気抵抗値の立上が り開始温度は 4 5 °Cであり、 電気抵抗値の立上がり倍率は、 1 07倍 であった。 つぎに、 この発熱体のリ一ド線の端子に電源からの給電用配線を結 線し、 両電極間に 6ボルトの電圧を印加すると、 この通電開始時の突 入電流値は、 1. 1アンペアであり、 その後の昇温安定時の電流値は、 0. 8アンペアであった。 さらに、 この発熱体を 1 5 0 °Cのオーブン に入れて熱履歴を受けた後に、 外形を観察したところ、 形状の変化は なく、 また、 再度 P T C特性を測定したところ、 この熱履歴による影 響はなかった。 When the electric resistance of the heating element was measured, it was 6 Ω. As a result of measurement of a PTC characteristics of the heating elements, starting temperature Ri rising electric resistance value is 4 5 ° C, the rising ratio of electrical resistance was 1 0 7 times. Next, when the power supply wiring from the power supply is connected to the lead wire terminal of this heating element and a voltage of 6 volts is applied between both electrodes, the inrush current value at the start of energization is 1. The current value was 1 ampere, and the current value when the temperature was stabilized was 0.8 amperes. Furthermore, after placing this heating element in a 150 ° C oven and receiving heat history, the outer shape was observed.The shape did not change. When the PTC characteristics were measured again, the heat history There was no sound.
〔実施例 3〕  (Example 3)
発熱層 (A) 用の発熱組成物と しては、 実施例 1の発熱層 (A) と同 一の発熱組成物を用いた。 発熱層 (B 2 ) 用の発熱組成物と しては、 導電性シリ コーン樹脂 〔東レ . ダウコーユング社製 : S E 6 7 5 8〕 を用いた。 発熱体の製造は、 実施例 1 と同様にした。 As the heat generating composition for the heat generating layer (A), the same heat generating composition as the heat generating layer (A) of Example 1 was used. As a heat-generating composition for the heat-generating layer (B2), a conductive silicone resin [manufactured by Toray Dow Co., Ltd .: SE67558] was used. The heating element was manufactured in the same manner as in Example 1.
ここで得られた発熱体の発熱層 (A) 用の発熱組成物と発熱層 (B 2 ) 用の発熱組成物については、 別途、 両発熱組成物それぞれについ て単独に P T C特性を測定した結果、 発熱層 (A) 用の発熱組成物の 電気抵抗値の立上がり開始温度が 4 3 °Cであり、 電気抵抗値の立上が り倍率が 1 07倍であり、 他方、 発熱層 (B 2) 用の発熱組成物は、 P T C特性を示さなかった。 Regarding the exothermic composition for the exothermic layer (A) and exothermic composition for the exothermic layer (B 2) of the heating elements obtained here, the PTC characteristics were measured separately for both exothermic compositions. , rising start temperature of the electric resistance of the heat-generating composition for the heating layer (a) is the 4 3 ° C, a 1 0 7 times the rising ratio of electrical resistance, while the heat generating layer (B The exothermic composition for 2) did not show PTC properties.
そして、 この発熱体の電気抵抗値を測定したところ、 5. 2 Ωであ つた。 また、 この発熱体の P T C特性を測定した結果、 電気抵抗値の 立上がり開始温度は 4 3. 7°Cであり、 電気抵抗値の立上がり倍率は、 1 07倍であった。 When the electrical resistance of this heating element was measured, it was 5.2 Ω. As a result of measurement of a PTC characteristic of the heating element, the rise start temperature of the electric resistance value is 4 3. 7 ° C, the rising ratio of electrical resistance was 1 0 7 times.
つぎに、 この発熱体のリ一ド線の端子に電源からの給電用配線を結 線し、 両電極間に 6ボルトの電圧を印加すると、 この通電開始時の突 入電流値は、 1. 1アンペアであり、 その後の昇温安定時の電流値は、 0. 6アンペアであった。 さらに、 この発熱体を 1 5 0 °Cのオーブン に入れて熱履歴を受けた後に、 外形を観察したところ、 形状の変化は なく、 また、 再度 P T C特性を測定したところ、 この熱履歴による影 響はなかった。 Next, when the power supply wiring from the power supply is connected to the lead wire terminal of this heating element and a voltage of 6 volts is applied between both electrodes, the inrush current value at the start of energization is 1. The current value was 1 ampere, and the current value during the subsequent stable heating was 0.6 amperes. In addition, heat the heating element in an oven at 150 ° C. After receiving the thermal history in the tub, the external shape was observed and there was no change in the shape. When the PTC characteristics were measured again, there was no effect of the thermal history.
〔実施例 4〕  (Example 4)
発熱層 (A) 用の発熱組成物と しては実施例 1 と同一のエチレン—ェ チルァク リ レート共重合体 4 8重量部と、 実施例 2 と同一のシリコ一 ン樹脂 2 0重量部、実施例 1 と同じカーボンブラック粒子 3 2重量部、 および架橋剤と して 2, 5—ジメチルー 2, 5—ジ ( t e r t—ブチ ルバーオキシ) へキシン一 3を 0. 1重量部用い、 これらを溶融混練 して得た発熱組成物を用いた。 また、 発熱層 (B 2) 用の発熱組成物 と しては、 実施例 3 と同じ導電性シリコーン樹脂を用いた。 発熱体の 製造は、 実施例 1 と同様にした。 ここで得られた発熱体の発熱層 (A) 用の発熱組成物と発熱層 (B 2) 用の発熱組成物については、 別途、 両発熱組成物それぞれについて単独に P TC特性を測定した結果、 発 熱層 (A) 用の発熱組成物の電気抵抗値の立上がり開始温度が 4 6 °C であり、 電気抵抗値の立上がり倍率が 1 07倍であり、 他方、 発熱層 (B 2 ) 用の発熱組成物は、 P T C特性を示さなかった。 As the heat-generating composition for the heat-generating layer (A), 48 parts by weight of the same ethylene-ethyl acrylate copolymer as in Example 1, 20 parts by weight of the same silicone resin as in Example 2, 32 parts by weight of the same carbon black particles as in Example 1 and 0.1 part by weight of 2,5-dimethyl-2,5-di (tert-butyloxy) hexine-13 as a crosslinking agent were used and melted. The exothermic composition obtained by kneading was used. In addition, the same conductive silicone resin as in Example 3 was used as the heat generating composition for the heat generating layer (B 2). The heating element was manufactured in the same manner as in Example 1. The heat-generating composition for the heat-generating layer (A) and the heat-generating composition for the heat-generating layer (B2) of the heating element obtained here were measured separately for the heat-generating compositions. , emitting thermal layer rising start temperature of the electric resistance of the heat-generating composition for (a) is 4 6 ° C, a rise ratio of the electric resistance value of 1 0 7 times, while the heating layer (B 2) The exothermic composition did not show PTC properties.
そして、 この発熱体の電気抵抗値を測定したところ、 4 Ωであった。 また、 この発熱体の P T C特性を測定した結果、 電気抵抗値の立上が り開始温度は 4 7 °Cであり、 電気抵抗値の立上がり倍率は、 1 06倍 であった。 When the electric resistance of the heating element was measured, it was 4 Ω. As a result of measurement of a PTC characteristics of the heating elements, starting temperature Ri rising electric resistance value is 4 7 ° C, the rising ratio of electrical resistance was 1 0 6 times.
つぎに、 この発熱体のリ一ド線の端子に電源からの給電用配線を結 線し、 両電極間に 6ボルトの電圧を印加すると、 この通電開始時の突 入電流値は、 1. 5アンペアであり、 その後の昇温安定時の電流値は、 0. 8アンペアであった。 さらに、 この発熱体を 1 5 0 °Cのオーブン に入れて熱履歴を受けた後に、 外形を観察したところ、 形状の変化は なく、 また、 再度 P τ C特性を測定したところ、 この熱履歴による影 響はなかった。 Next, when the power supply wiring from the power supply is connected to the lead wire terminal of this heating element and a voltage of 6 volts is applied between both electrodes, the inrush current value at the start of energization is 1. The current was 5 amperes, and the current value during the subsequent stable heating was 0.8 amperes. Furthermore, after placing this heating element in a 150 ° C oven and receiving heat history, the external shape was observed. However, when the P τ C characteristics were measured again, there was no effect due to this heat history.
[実施例 5]  [Example 5]
発熱層 (A) は実施例 1 と同じであり、 発熱層 (B 1 ) はポリェチ レン 6 5重量部と C B 3 5重量部以外は実施例 1 と同じもの用いた。 図 1 (添付) に示すよ うに実施例 1 と同じよ うに芯線に発熱層 (A) を被覆し、 2本を平行に配置し発熱層 (B 1 ) を共押出して発熱体を 得た。 得られた発熱体を 1 0 0 mmの長さに切り取り、 両端の芯線に リード線を接続し、 電極間に D C 1 2 Vを印可した。 抵抗値は、 5ォ —ムであり発熱量は 3 Wとなり発熱温度は 4 5 °Cとなった。 また、 1 The heat generating layer (A) was the same as in Example 1, and the heat generating layer (B 1) used was the same as Example 1 except for 65 parts by weight of polyethylene and 35 parts by weight of CB. As shown in FIG. 1 (attached), a heating layer (A) was coated on the core wire in the same manner as in Example 1, two wires were arranged in parallel, and the heating layer (B 1) was co-extruded to obtain a heating element. The obtained heating element was cut into a length of 100 mm, lead wires were connected to core wires at both ends, and DC 12 V was applied between the electrodes. The resistance value was 5 ohms, the calorific value was 3 W, and the exothermic temperature was 45 ° C. Also 1
5 0°Cの熱履歴を受けた後も形状の大きな変化はなかった。 1 5 0 °C 熱履歴前後の変化率結果を下記に示す。 There was no significant change in shape after receiving a thermal history of 50 ° C. The change rate results before and after the heat history at 150 ° C are shown below.
• 幅長変形率 : 土 2 %以内  • Width deformation rate: within 2% of soil
•長さ変形率 : ± 5 %以内  • Length deformation rate: within ± 5%
[実施例 6 ]  [Example 6]
発熱層 (A) は実施例 1 と同じであり、 発熱層 (B 1 ) はポリェチ レン 6 5重量部と C B 3 5重量部以外は実施例 1 と同じもの用いた。 実施例 1 と同じように芯線に発熱層 (A) を被覆し、 2 1本を平行に 配置し発熱層 (B 1 ) を共押出して発熱体を得た。 得られた発熱体を 1 3 O mmの長さに切り取り、 両端の芯線にリ一ド線を接続し、 電極 間に D C 3 0 Vを印可した。 抵抗値は、 3 5オームであり発熱量は 3. The heat generating layer (A) was the same as in Example 1, and the heat generating layer (B 1) used was the same as Example 1 except for 65 parts by weight of polyethylene and 35 parts by weight of CB. The heating layer (A) was coated on the core wire in the same manner as in Example 1, and 21 wires were arranged in parallel, and the heating layer (B 1) was co-extruded to obtain a heating element. The obtained heating element was cut into a length of 13 O mm, lead wires were connected to the core wires at both ends, and DC 30 V was applied between the electrodes. The resistance value is 35 ohms and the calorific value is 3.
6 Wとなり発熱温度は 5 3 °Cとなった。 また、 1 5 0°Cの熱履歴を受 けた後も形状の大きな変化はなかった。 1 5 0°C熱履歴前後の変化率 結果を下記に示す。 The heat generation temperature was 6 W, and the exothermic temperature was 53 ° C. In addition, there was no significant change in the shape even after receiving a heat history of 150 ° C. Rate of change before and after the heat history at 150 ° C The results are shown below.
• 幅長変形率 : ± 2 %以内  • Width deformation ratio: within ± 2%
•長さ変形率 : ± 5 %以内 [実施例 7] • Length deformation rate: within ± 5% [Example 7]
導電 ·発熱層 (X)の結晶性熱可塑性樹脂と してポリエチレン [出光 石油化学社製; 出光ポリエチレン 1 3 0 J: MI = 11, MP=1 3 4 °C] 5 7 重量部、 C B [三菱化学㈱: ダイヤブラック E] 4 3重量部を用いた。 架橋剤 [日本油脂㈱: パーへキシン 2 5 B]を用いた。  Polyethylene as a crystalline thermoplastic resin for the conductive and heat generating layer (X) [Idemitsu Petrochemical; Idemitsu Polyethylene 130 J: MI = 11, MP = 134 ° C] 57 parts by weight, CB [ Mitsubishi Chemical Corporation: Diamond Black E] 43 parts by weight were used. A cross-linking agent [Nippon Oil & Fat Co .: Perhexin 25 B] was used.
つぎに、 これら原料を押出機に供給し、 2 0 0 °Cにおいて溶融混練 した後、 5 k gZh rの吐出量でス トラン ド状に押出し、 切断して樹 脂組成物のペレツ トを得た。 この樹脂組成物のペレツ トを内径 2 5 m mの一軸押出機に供給し、 2 6 0 °C、 5 0 r p mにおいて、 剪断エネ ルギー 0. 0 6 k w * h r Zk gにおいて、 樹脂組成物の架橋化を行 つた。  Next, these raw materials are supplied to an extruder, melt-kneaded at 200 ° C, extruded in a strand shape at a discharge rate of 5 kgZhr, and cut to obtain a pellet of a resin composition. Was. A pellet of this resin composition was fed to a single screw extruder having an inner diameter of 25 mm, and the resin composition was crosslinked at 260 ° C. and 50 rpm at a shear energy of 0.06 kw * hr Zkg. Was carried out.
次に、 上記発熱組成物の溶融混練物を金属芯線被覆用成形のダイス の供給口に導入して金属芯線に導電 ·発熱層 (X)を被覆成形した。 厚みは 0. 1 mmであった。 導電 '発熱層 (X)はポリ エチレン 5 7 重量部と C B 4 3重量部、 発熱層 (A) (B 1) は実施例 1 と同じで ある。 実施例 1 と同じように芯線に導電 .発熱層 (X)次いで発熱層 Next, the melt-kneaded product of the exothermic composition was introduced into a supply port of a die for coating a metal core wire, and the metal core wire was coated with a conductive and heat generating layer (X). The thickness was 0.1 mm. The heat generating layer (X) is 57 parts by weight of polyethylene and 43 parts by weight of CB, and the heat generating layers (A) and (B 1) are the same as in Example 1. Conductive on the core wire as in Example 1. Heating layer (X) Heating layer
(A) を被覆し、 2本を平行に配置し発熱層 (B 1 ) を共押出して発 熱体を得た。 発熱層 (A) の金属芯線被覆成形は、 成形温度 2 0 0 °C であり, 線速度は 1 5 0 m/min. でおこなった。 また、 発熱層 (B 1 ) の被覆成形は、 成形温度 2 2 0 °Cであり, 線速度は 1 0 0 m/min. でおこなった。 ここで発熱層 (A)、 導電 .発熱層 (X)及び芯線の熱 膨張率は、 それぞれ、 「3 3 X 1 0 E _ 5」、 「 2 5 X 1 0 E— 5」 及 び 「 1. 4 X 1 0 E— 5」 であり、 熱膨張率:発熱層 (A) >導電 ·発 熱層 (X)>芯線の関係を満たしている。 選られた発熱体を 1 3 0 m mの長さに切り取り、 両端の芯線にリード線を接続し、 電極間に D C 3 0 Vを印可した。 抵抗値は、 3 0オームであり発熱量は 4. 1 Wと なり発熱温度は 7 0 °Cとなった。 また、 1 5 0 °C の熱履歴を受けた 後も形状の大きな変化はなかった。 1 5 0°C熱履歴前後の変化率結果 を下記に示す。 (A) was coated, two were arranged in parallel, and the heat generating layer (B 1) was co-extruded to obtain a heat generating body. The heating layer (A) was coated with a metal core wire at a molding temperature of 200 ° C and a linear velocity of 150 m / min. The coating of the heating layer (B1) was formed at a molding temperature of 220 ° C and a linear velocity of 100 m / min. Here, the thermal expansion coefficients of the heat generating layer (A), the conductive layer, the heat generating layer (X) and the core wire are “33 × 10E_5”, “25 × 10E-5” and “1”, respectively. 4 X 10E-5 ”, which satisfies the relationship of coefficient of thermal expansion: heat generating layer (A)> conductive and heat generating layer (X)> core wire. The selected heating element was cut into a length of 130 mm, lead wires were connected to the core wires at both ends, and DC 30 V was applied between the electrodes. The resistance value is 30 ohms and the calorific value is 4.1 W The exothermic temperature was 70 ° C. In addition, there was no significant change in shape even after receiving a thermal history of 150 ° C. The results of the rate of change before and after the heat history at 150 ° C are shown below.
•幅長変形率 : 土 2。/0以内 • Width deformation rate: Sat 2. Within / 0
•長さ変形率 : ± 5 %以内  • Length deformation rate: within ± 5%
さらに、 AC 1 0 0 Vを印可した 3 ヶ月以上の長期テス トでも安定 した発熱特性を示し、 高電圧での耐久性が確認された。 その結果を下 記に示す。  In addition, stable heat generation characteristics were exhibited even in long-term tests of three months or more with AC 100 V applied, and durability at high voltages was confirmed. The results are shown below.
① 3 力月長期の抵抗値変化 : 3 0 Ω± 5 %以内  ① Change in resistance value for 3 months long: within 30 Ω ± 5%
② 3 力月長期の発熱量変化 : 7 W± 1 0 %以内  (2) Change in calorific value over a three-month period: within 7 W ± 10%
[実施例 8 ]  [Example 8]
発熱層 (A) 用の発熱組成物を製造するための結晶性熱可塑性樹脂と して、 エチレン—ェチルァク リ レー ト共重合体 〔; 日本ュニカー (株) 製 : D P D J 6 1 8 2 : MI = 1.5, MP=95°C〕 6 0重量部を用い、 導電 性粒子と しては、 平均粒径 4 3 ミ リ ミ ク ロンのカーボンブラック 〔三 菱化学 (株) 製 : ダイヤブラック E〕 4 0重量部を用いた。 さらに、 架橋剤と してエチレン一ェチルァク リ レート共重合体に対して 0 · 5 重量%に相当する量の 2, 5—ジメチル— 2, 5—ジ ( t e r t —ブ チルバーォキシ) へキシン一 3 〔日本油脂 (株) 製 : バーへキシン 2 5 B ; 1分半減期温度 1 9 3°C〕 を用いた。 As a crystalline thermoplastic resin for producing the heat-generating composition for the heat-generating layer (A), an ethylene-ethyl acrylate copolymer [; Nippon Tunica Co., Ltd .: DPDJ 6182: MI = 1.5, MP = 95 ° C] 60 parts by weight, and the conductive particles used were carbon black with an average particle size of 43 Milimicron [Diamond Black E] manufactured by Mitsubishi Chemical Corporation. 0 parts by weight were used. Further, as a cross-linking agent, 2,5-dimethyl-2,5-di (tert-butylbutyloxy) hexyne-1 in an amount equivalent to 0.5% by weight based on the ethylene-ethyl acrylate copolymer is used. Nippon Oil & Fats Co., Ltd .: Bar Hexin 25B; 1 minute half-life temperature 1933 ° C] was used.
つぎに、 これら原料を押出機に供給し、 2 0 0 °Cにおいて溶融混練 した後、 5 k g Zh rの吐出量でス トランド状に押出し、 切断して樹 脂組成物のペレツ トを得た。 この樹脂組成物のペレツ トを内径 2 5 m mの一軸押出機に供給し、 2 6 0 °C、 5 0 r p mにおいて、 剪断エネ ルギー 0. 0 6 k w ' h r Zk gにおいて、 樹脂組成物の架橋化を行 つた。 また、 発熱層 (B 1 ) 用の発熱組成物と して、 高密度ポリエチレンNext, these raw materials were fed to an extruder, melt-kneaded at 200 ° C, extruded into a strand at a discharge rate of 5 kg Zhr, and cut to obtain a pellet of a resin composition. . The pellets of this resin composition were fed to a single-screw extruder having an inner diameter of 25 mm, and the resin composition was crosslinked at 260 ° C and 50 rpm at a shear energy of 0.06 kw'hr Zkg. Was carried out. In addition, as a heat generating composition for the heat generating layer (B 1), high density polyethylene is used.
〔出光石油化学社製; 出光ポリエチレン 4 4 0M : MI = 1.0〕 5 5重量 部と、 上記と同じカーボンブラック 4 5重量部、 および上記と同じ架 橋剤 0. 1重量部を用いて、 これらを 2 3 0 °Cにおいて溶融混練して なる発熱組成物を用いた。 [Idemitsu Petrochemical Co .; Idemitsu Polyethylene 440M: MI = 1.0] 55 parts by weight, 45 parts by weight of the same carbon black as described above, and 0.1 part by weight of the same crosslinking agent as described above were used. The exothermic composition obtained by melting and kneading at 230 ° C. was used.
つぎに、 上記発熱組成物 (A) 用樹脂組成物の溶融混練物を、 金属 芯線被覆成形用のダイスの供給口に導入して被覆成形した。 ついで、 金属芯線被覆成形用ダイスに発熱組成物 (A) の被覆成形体を、 金属 芯線同士の間隔が 0. 5 4 mmとなるように 2本平行に配列してダイ ス内に導入しながら、 上記発熱層 (B 1 ) 用樹脂組成物の溶融混練物 をダイスの樹脂供給口よ り導入して、 金属芯線の上に、 発熱組成物 Next, the melt-kneaded product of the resin composition for the exothermic composition (A) was introduced into a supply port of a die for coating and molding a metal core wire, and was coated and formed. Next, two extruded molded articles of the exothermic composition (A) were arranged in a metal core wire coating molding die in parallel with each other so that the distance between the metal core wires was 0.54 mm, and introduced into the die. Then, a melt-kneaded product of the resin composition for the heat generating layer (B 1) is introduced from the resin supply port of the die, and the heat generating composition is placed on the metal core wire.
(A) と発熱組成物 (B 1 ) の 2層を積層した成形体を得た。 上記金 属芯線には、 その直径が 0. 2 6 mmの銅線を用いた。 A molded product in which two layers of (A) and the exothermic composition (B 1) were laminated was obtained. A copper wire having a diameter of 0.26 mm was used as the metal core wire.
このよ うにして得られた線状の発熱体は、 断面形状が図 1に示すと おり、 角部 2か所を一部切欠いた長方形であり、 その短辺が 0. 8 m m、 長辺が 1. 4 mmのものであった。 そして、 銅線 1の表面には、 上記樹脂組成物からなる厚みが 0. 1 5 mmの発熱層 (A) 2が形成 されたものであり、 この発熱体の銅線 1の両被覆層 2、 3に対する体 積比は 1 3 %であった。 次に、 この線状発熱体を外装被覆成形用 (電 気絶縁層) のダイスの供給口に導入して被覆成形した。被覆厚みは 0. 1 mmであり、 被覆樹脂は低密度ポリエチレン [出光石油化学社製; 出光ポリエチレン 5 0 3 4 G]を用いた。 成形条件は 2 0 0 °Cで溶融 させ、 線速度 1 0 0 m/m i n.で共押出しをおこなった。  The cross-sectional shape of the linear heating element obtained in this way is shown in Fig. 1, and it is a rectangle with two corners partially cut away, with a short side of 0.8 mm and a long side. Was 1.4 mm. On the surface of the copper wire 1, a heating layer (A) 2 having a thickness of 0.15 mm made of the above resin composition was formed. And the volume ratio to 3 was 13%. Next, the linear heating element was introduced into a supply port of a die for forming an outer cover (electric insulating layer), and formed into a cover. The coating thickness was 0.1 mm, and the coating resin used was low-density polyethylene [Idemitsu Petrochemical Co., Ltd .; Idemitsu polyethylene 534 G]. The molding conditions were melting at 200 ° C. and co-extrusion at a linear velocity of 100 m / min.
ここで得られた発熱体の発熱層 (A) 用の発熱組成物と発熱層 (B 1 ) 用の発熱組成物については、 別途、 両発熱組成物のそれぞれにつ いて、 単独に P T C特性を測定した結果、 発熱層 (A) 用の発熱組成 物の電気抵抗値の立上がり開始温度が 4 3 °Cであり、 電気抵抗値の立 上がり倍率が、 1 0 7倍であり、 他方、 発熱層 ( B 1 ) 用の発熱組成 物の電気抵抗値の立上がり開始温度が 5 5 °Cであり、 電気抵抗値の立 上がり倍率が、 1 0 8倍であった。 したがって、 発熱層 (B 1 ) の発 熱組成物の前記立上がり開始温度は、 発熱層 (A ) の発熱組成物の立 上がり開始温度よりも、 1 2 °C高いものであることが確認された。 そして、 この発熱体の電気抵抗値を測定したところ、 8 Ωであった。 また、 この発熱体の P T C特性を測定した結果、 電気抵抗値の立上が り開始温度は 3 8 °Cであり、 電気抵抗値の立上がり倍率は、 1 0 8倍 であった。 The exothermic composition for the exothermic layer (A) and exothermic composition for the exothermic layer (B1) of the exothermic element obtained here were separately prepared separately for each of the exothermic compositions. As a result of the measurement, the exothermic composition for the exothermic layer (A) A rising start temperature 4 3 ° C in the electric resistance of the object, the rising ratio of electrical resistance is 1 0 7 times, while the heating layer (B 1) an electric resistance value of the heating composition for rising start temperature is 5 5 ° C, the rising ratio of electrical resistance was 1 0 8 times. Accordingly, it was confirmed that the rising start temperature of the heat generating composition of the heat generating layer (B 1) was higher by 12 ° C. than the rising start temperature of the heat generating composition of the heat generating layer (A). . When the electrical resistance of the heating element was measured, it was 8 Ω. As a result of measurement of a PTC characteristics of the heating elements, starting temperature Ri rising electric resistance value is 3 8 ° C, the rising ratio of electrical resistance was 1 0 8 times.
つぎに、 この発熱体のリ一ド線の端子に電源からの給電用配線を結 線し、 両電極間に 6ボルトの電圧を印加すると、 この通電開始時の突 入電流値は、 0 . 7 5アンペアであり、 その後の昇温安定時の電流値 は、 0 . 6アンペアであった。 さらに、 この発熱体を 1 5 0 °Cのォー ブンに入れて熱履歴を受けた後に、 外形を観察したところ、 形状の変 化はなく、 また、 再度 P T C特性を測定したところ、 この熱履歴によ る影響はなかった。  Next, when a power supply wiring from a power supply is connected to the terminal of the lead wire of the heating element and a voltage of 6 volts is applied between both electrodes, the inrush current value at the start of energization becomes 0. The current was 75 amperes, and the current value during the subsequent stable heating was 0.6 amperes. Furthermore, after placing this heating element in a 150 ° C oven and receiving heat history, the external shape was observed.The shape did not change, and the PTC characteristics were measured again. There was no effect from history.
〔実施例 9〕  (Example 9)
導電 · 発熱層 (X)の結晶性熱可塑性樹脂と してポリエチレン [出光 石油化学社製 ; 出光ポリエチレン 1 3 0 J: I = 1 1 , MP= 1 3 4 °C] 5 7 重量部、 C B [三菱化学㈱ : ダイヤブラック E] 4 3重量部を用いた。 架橋剤 [日本油脂㈱ : パーへキシン 2 5 B]を用いた。  Polyethylene as the crystalline thermoplastic resin of the conductive and heat generating layer (X) [Idemitsu Petrochemical Co., Ltd .; Idemitsu Polyethylene 130 J: I = 11, MP = 1334 ° C] 57 parts by weight, CB [Mitsubishi Chemical Corporation: Diamond Black E] 43 parts by weight were used. A crosslinking agent [Nippon Oil & Fat Co .: Perhexin 25 B] was used.
つぎに、 これら原料を押出機に供給し、 2 0 0 °Cにおいて溶融混練 した後、 5 k g / h r の吐出量でス トランド状に押出し、 切断して樹 脂組成物のペレツ トを得た。 この樹脂組成物のペレツ トを内径 2 5 m mの一軸押出機に供給し、 2 6 0 °C、 5 0 r p mにおいて、 剪断エネ ルギー 0. 0 6 k w ' h r Zk gにおいて、 樹脂組成物の架橋化を行 つた。 Next, these raw materials were supplied to an extruder, melt-kneaded at 200 ° C, extruded into a strand at a discharge rate of 5 kg / hr, and cut to obtain a pellet of a resin composition. . A pellet of this resin composition was fed to a single-screw extruder having an inner diameter of 25 mm and subjected to shear energy at 260 ° C. and 50 rpm. The resin composition was crosslinked at 0.06 kw'hr Zkg.
また、 発熱層 (A)、 (B 1 ) は、 両層とも実施例 1の発熱層 (A) と同じ要領で製造するが、 樹脂とカーボンブラックの比率を 7 0重量 部と 3 0重量部にしたものである。 外装被覆成形樹脂は実施例 8と同 じである。  The heat generating layers (A) and (B 1) are manufactured in the same manner as the heat generating layer (A) in Example 1, but the ratio of the resin to the carbon black is 70 parts by weight and 30 parts by weight. It was made. The outer cover molding resin is the same as in Example 8.
次に、 上記発熱組成物の溶融混練物を金属芯線被覆用成形のダイス の供給口に導入して金属芯線に導電 ·発熱層 (X)を被覆成形した。 厚みは 0. 1 mmであった。 実施例 1 と同じように芯線に導電,発熱 層 (X)次いで発熱層 (A) を被覆し、 次に図 4に示すよ うに、 この 2本をスパイラル状に交互に編み、 これと発熱層 (B 1 ) を共押出し て発熱体を得た。 発熱層 (A) の金属芯線被覆成形は、 成形温度 2 0 0 °Cであり, 線速度は 1 5 0 mZmin. でおこなった。 また、 発熱層 Next, the melt-kneaded product of the exothermic composition was introduced into a supply port of a die for coating a metal core wire, and the metal core wire was coated with a conductive and heat generating layer (X). The thickness was 0.1 mm. As in Example 1, the core wire is coated with a conductive and heat-generating layer (X) and then with a heat-generating layer (A). Then, as shown in FIG. (B 1) was co-extruded to obtain a heating element. The heating layer (A) was coated with a metal core wire at a molding temperature of 200 ° C and a linear velocity of 150 mZmin. Also the heating layer
(B 1 ) の被覆成形は、 成形温度 2 2 0 °Cであり, 線速度は 1 0 0 m /min. でおこなった。 ここで発熱層 ( 、 導電 '発熱層 (X)及び芯 線の熱膨張率は、 それぞれ、 「 3 3 X 1 0 E _ 5」、 「 2 5 X 1 0 E _ 5」 及び 「 1. 4 X 1 0 E _ 5」 であり、 熱膨張率:発熱層 (A) >導 電 '発熱層 (X)>芯線の関係を満たしている。 次に、 図 4に示すよ うに、 外装被覆成形を実施例 8と同じ要領でおこなった。 The coating molding of (B1) was performed at a molding temperature of 220 ° C and a linear velocity of 100 m / min. Here, the thermal expansion coefficients of the heat generating layer (, the conductive layer, the heat generating layer (X), and the core wire are “33 X 10 E_5”, “25 X 10 E_5”, and “1.4,” respectively. X10E_5 ”, which satisfies the relationship of coefficient of thermal expansion: heat generating layer (A)> conductive layer 'heat generating layer (X)> core wire. Next, as shown in Fig. 4, exterior coating molding Was performed in the same manner as in Example 8.
選られた発熱体を 1 3 O mmの長さに切り取り、 両端の芯線にリ一 ド線を接続し、 電極間に A C 1 0 0 Vを印可した。 抵抗値は、 1 5 2 2オームであり発熱量は 3. 2 Wとなり発熱温度は 6 4 °Cとなった。 また、 1 1 0DC の熱履歴を受けた後も形状の大きな変化はなかった。 1 1 o°c熱履歴前後の変化率結果を下記に示す。 The selected heating element was cut into a length of 13 O mm, lead wires were connected to the core wires at both ends, and AC 100 V was applied between the electrodes. The resistance was 152 ohms, the heat generation was 3.2 W, and the heat generation temperature was 64 ° C. Also, there was no big change in shape after being subjected to heat history 1 1 0 D C. The results of the rate of change before and after the 11 o ° c heat history are shown below.
•幅長変形率: ± 2 %以内  • Width deformation ratio: within ± 2%
•長さ変形率: ± 5 %以内 さらに、 AC 1 0 0 Vを印可した 3 ヶ月以上の長期テス トでも安定 した発熱特性を示し、 高電圧での耐久性が確認された。 その結果を下 記に示す。 • Length deformation rate: within ± 5% In addition, stable heat generation characteristics were exhibited even in long-term tests of three months or more with AC 100 V applied, and durability at high voltages was confirmed. The results are shown below.
① 3 力月長期の抵抗値変化 : 1 5 2 2 Ω± 7 %以内  ① Change in resistance value for 3 months long: Within 15 22 Ω ± 7%
② 3 力月長期の発熱量変化 : 3. 2W± 1 2 %以内  (2) Change in calorific value over a long period of three months: within 3.2W ± 12%
〔比較例 1〕 (Comparative Example 1)
上記と同じ銅線 2本を平行に、 かつその間隔を 0. 5 4 mmとしてダ イスに揷通しながら、 実施例 1 と同一の発熱組成物をダイスに供給し て、 単一層からなる発熱層を被覆成形した。 The same heat-generating composition as in Example 1 was supplied to the dice while passing the same two copper wires parallel to each other with a spacing of 0.54 mm to the die, and a single heat-generating layer was formed. Was molded by coating.
そして、 この発熱体の電気抵抗値を測定したところ、 1. 4 Ωであつ た。 また、 この発熱体の P T C特性を測定した結果、 電気抵抗値の立 上がり開始温度は 3 8°Cであった。 When the electrical resistance of this heating element was measured, it was 1.4 Ω. Also, as a result of measuring the PTC characteristics of this heating element, the temperature at which the electrical resistance started to rise was 38 ° C.
つぎに、 この発熱体のリード線の端子に電源からの給電用配線を結 線し、 両電極間に 6ボル トの電圧を印加すると、 この通電開始時の突 入電流値は、 4. 2アンペアであり、 その後の昇温安定時の電流値は、 0. 7アンペアであった。 さらに、 この発熱体を 1 5 0 °Cのオーブン に入れて熱履歴を受けた後に、 外形を観察したところ、 形状変化が大 きく、 再使用は困難であった。  Next, when a power supply wiring from a power supply is connected to the terminal of the lead wire of this heating element and a voltage of 6 volts is applied between both electrodes, the inrush current value at the start of energization becomes 4.2 The current value when the temperature stabilization was stable was 0.7 amperes. Furthermore, after placing the heating element in an oven at 150 ° C and receiving heat history, the external shape was observed. The shape change was large, and reuse was difficult.
産業上の利用可能性 Industrial applicability
本発明の発熱体は、 室温程度の低い温度領域での通電開始時の突入 電流が小さく、 装置電源の負荷の低減や、 電気的衝撃、 熱的衝撃によ る発熱体の性能低下を抑制できるので、 長期間安定的に使用すること ができる。 また、 発熱部の抵抗温度特性の制御が容易であり、 しかも、 低い温度領域で温度制御が可能でかつ高い環境温度での使用にも耐え 得るという優れた効果を奏するものである。  The heating element according to the present invention has a small rush current at the time of starting energization in a temperature range as low as about room temperature, and can reduce the load on the power supply of the apparatus and can suppress the performance deterioration of the heating element due to electric shock and thermal shock. Therefore, it can be used stably for a long period of time. In addition, it has an excellent effect that the resistance temperature characteristics of the heat generating portion can be easily controlled, the temperature can be controlled in a low temperature range, and the device can withstand use at a high environmental temperature.

Claims

請 求 の 範 囲 The scope of the claims
1. 互いに平行に配置された複数本の金属芯線に、 少なく とも熱可塑 性樹脂および導電性粒子を含有する発熱組成物を被覆して発熱部が形 成された線状の発熱体であって、 前記金属芯線のうち少なく とも電極 となる金属芯線近傍の被覆層と して、 正温度係数特性を有する発熱組 成物からなる発熱層 (A) を用い、 該発熱層 (A) の外周部の被覆層 と して、 正温度係数特性を有するが、 抵抗温度特性における抵抗の立 上がり倍率が発熱層 (A) の発熱組成物の最大立上がり倍率を示す温 度以下の温度範囲において、 発熱層 (A) の発熱組成物の立上がり倍 率より も低いか、 あるいは抵抗温度特性における抵抗の立上がり開始 温度が、 発熱層 (A) の発熱組成物の立上がり開始温度より も高い正 温度係数特性を有する発熱組成物からなる発熱層 (B l )、 または正 温度係数特性を有しない樹脂からなる発熱層 (B 2 ) を用いると共に、 金属芯線の相互間の間隔を 5 mm以内と し、 かつ、 金属芯線の前記両 被覆層に対する体積比を 5〜 9 0 %と してあることを特徴とする発熱 体。  1. A linear heating element in which a heating portion is formed by coating a plurality of metal core wires arranged in parallel with each other with a heating composition containing at least a thermoplastic resin and conductive particles. A heating layer (A) made of a heating composition having a positive temperature coefficient characteristic is used as a coating layer near at least the metal core wire serving as an electrode of the metal core wire, and an outer peripheral portion of the heating layer (A) is used. It has a positive temperature coefficient characteristic as a coating layer of the heat generating layer, but in a temperature range in which the rise ratio of the resistance in the resistance temperature characteristic is equal to or lower than the temperature indicating the maximum rise ratio of the heat generating composition of the heat generating layer (A). It has a positive temperature coefficient characteristic that is lower than the rising ratio of the exothermic composition of (A) or that the temperature at which the resistance starts to rise in the resistance temperature characteristic is higher than the temperature at which the exothermic composition of the heating layer (A) starts to rise. Composed of exothermic composition A heat layer (Bl) or a heat layer (B2) made of a resin having no positive temperature coefficient characteristic is used, the distance between the metal core wires is set to within 5 mm, and the metal core wire is covered with the above-mentioned two layers. A heating element characterized in that the volume ratio to the layer is 5 to 90%.
2. 前記発熱層 (B 1 ) の発熱組成物が、 抵抗温度特性における抵抗 の立上がり倍率が発熱層 (A) の発熱組成物の最大立上がり倍率を示 す温度以下の温度範囲において、 発熱層 (A) の発熱組成物の立上が り倍率の 0. 5倍以下であるか、 あるいは抵抗温度特性における抵抗 の立上がり開始温度が、 発熱層 (A) の発熱組成物の立上がり開始温 度より も 5 °C以上高い正温度係数特性を有するものである、 請求項 1 記載の発熱体。  2. When the heat-generating composition of the heat-generating layer (B 1) is in a temperature range in which the rising ratio of the resistance in the resistance-temperature characteristic is equal to or lower than the temperature indicating the maximum rising magnification of the heat-generating composition of the heat-generating layer (A), The heating magnification of the exothermic composition of (A) is 0.5 times or less, or the temperature at which the resistance starts to rise in the resistance temperature characteristic is lower than the temperature at which the heating composition of the heating layer (A) starts to rise. The heating element according to claim 1, which has a positive temperature coefficient characteristic higher by 5 ° C or more.
3. 前記発熱層 (A) の発熱組成物が、 結晶性熱可塑性樹脂と導電性 粒子からなる発熱組成物であり、 前記発熱層 (B 1 ) の発熱組成物が、 結晶性熱可塑性樹脂と導電性粒子からなる発熱組成物である、 請求項 1または 2記載の発熱体。 3. The exothermic composition of the exothermic layer (A) is a exothermic composition comprising a crystalline thermoplastic resin and conductive particles, and the exothermic composition of the exothermic layer (B 1) is a crystalline thermoplastic resin. An exothermic composition comprising conductive particles, Heating element according to 1 or 2.
4 . 前記発熱層 (A ) の発熱組成物が、 結晶性熱可塑性樹脂と導電性 粒子からなる発熱組成物であり、 前記発熱層 (B 1 ) の発熱組成物が、 熱可塑性樹脂とシリ コーン樹脂および導電性粒子からなる発熱組成物 である、 請求項 1または 2記載の発熱体。  4. The heat generating composition of the heat generating layer (A) is a heat generating composition comprising a crystalline thermoplastic resin and conductive particles, and the heat generating composition of the heat generating layer (B 1) is a thermoplastic resin and a silicone. 3. The heating element according to claim 1, which is a heating composition comprising a resin and conductive particles.
5 . 前記発熱層 (A ) の発熱組成物が、 結晶性熱可塑性樹脂と導電性 粒子からなる発熱組成物であり、 前記発熱層 (B 2 ) の発熱組成物が、 シリコーン樹脂と導電性粒子からなる発熱組成物である、 請求項 1記 載の発熱体。  5. The heat generating composition of the heat generating layer (A) is a heat generating composition comprising a crystalline thermoplastic resin and conductive particles, and the heat generating composition of the heat generating layer (B 2) is a silicone resin and conductive particles. The heating element according to claim 1, which is a heating composition comprising:
6 . 前記発熱層 (A ) の発熱組成物が、 熱可塑性樹脂とシリ コーン樹 脂および導電性粒子からなる発熱組成物であり、 前記発熱層 (B 2 ) の樹脂が、 シリ コーン樹脂と導電性粒子からなる発熱組成物である、 請求項 1記載の発熱体。  6. The heat generating composition of the heat generating layer (A) is a heat generating composition comprising a thermoplastic resin, a silicone resin and conductive particles, and the resin of the heat generating layer (B 2) is a silicon resin and a conductive resin. The heating element according to claim 1, wherein the heating element is a heat-generating composition comprising conductive particles.
7 . 前記導電性粒子が、 粒径 1 0〜2 0 0 ミ リ ミ クロンのカーボンブ ラック粒子である、 請求項 1〜 6のいずれかに記載の発熱体。  7. The heating element according to any one of claims 1 to 6, wherein the conductive particles are carbon black particles having a particle size of 10 to 200 millimicrons.
8 . 前記発熱体の外周面に、 ポリエチレンテレフタレ一トフイルム、 ポリエチレンフィルム、 ポリ プロ ピレンフィルム、 あるいは、 これら のフィルムにアルミニゥムシ一トを装着したラ ミネ一トフイルムから 選択される電気絶縁外装材を被覆してなる、 請求項 1〜7のいずれか に記載の発熱体。  8. The outer peripheral surface of the heating element is covered with an electrically insulating exterior material selected from a polyethylene terephthalate film, a polyethylene film, a polypropylene film, or a laminate film in which an aluminum sheet is attached to these films. The heating element according to any one of claims 1 to 7, comprising:
9 . 前記発熱体の断面形状が長方形であって、 その短辺が 0 . 1〜1 m m、 長辺が 1〜 7 m mであり、 かつ前記金属芯線の本数が 2〜 1 0 本と してある、 請求項 1〜 8のいずれかに記載の発熱体。  9. The cross-sectional shape of the heating element is rectangular, the short side is 0.1 to 1 mm, the long side is 1 to 7 mm, and the number of metal core wires is 2 to 10 The heating element according to any one of claims 1 to 8.
1 0 . 前記発熱体の電極とする少なく とも 2本の金属芯線からそれぞ れリード線を取り出し、該リード線の端部に結線用端子を備えてなる、 請求項 1〜 9のいずれかに記載の発熱体。 10. The lead according to any one of claims 1 to 9, wherein a lead wire is taken out from at least two metal core wires serving as electrodes of the heating element, and a connection terminal is provided at an end of the lead wire. Heating element as described.
1 1. 結晶性熱可塑性樹脂の M I が 0. 1以上であることを特徴とす る請求項 3の発熱体。 1 1. The heating element according to claim 3, wherein M I of the crystalline thermoplastic resin is 0.1 or more.
1 2. 結晶性熱可塑性樹脂、 熱可塑性樹脂及びシリ コーン樹脂の M I が 0. 1以上であることを特徴とする請求項 4の発熱体。  1 2. The heating element according to claim 4, wherein M I of the crystalline thermoplastic resin, the thermoplastic resin, and the silicone resin is 0.1 or more.
1 3. 前記金属芯線の形状が長方形、 台形又は箔状であることを特徴 とする請求項 1の発熱体。  1 3. The heating element according to claim 1, wherein the shape of the metal core wire is a rectangle, a trapezoid, or a foil.
1 4. 電気絶縁外装材が共押出しにより被覆され、 電気絶縁外装材の 樹脂の M l が 0. 1以上である請求項 8の発熱体。  1 4. The heating element according to claim 8, wherein the electrically insulating exterior material is coated by co-extrusion, and the resin of the electrically insulating exterior material has Ml of 0.1 or more.
1 5. 金属芯線と発熱層 (A) の間にさらに導電 · 発熱層 (X) を設 け、 当該導電 ·発熱層 (X) の熱膨張率が金属芯線の熱膨張率と発熱 層 (A) の熱膨張率の間の値となることを特徴とする請求項 1 の発 熱体。  1 5. A conductive / heat generating layer (X) is further provided between the metal core and the heat generating layer (A), and the thermal expansion coefficient of the conductive / heat generating layer (X) is determined by the coefficient of thermal expansion of the metal core and the heat generating layer (A). 2. The heat generating element according to claim 1, wherein the heat expansion coefficient is a value between the coefficients of thermal expansion.
1 6. 前記導電 ·発熱層 (X) が結晶性熱可塑性樹脂と導電性粒子か らなる組成物であることを特徴とする請求項 15の発熱体。  16. The heating element according to claim 15, wherein the conductive and heat generating layer (X) is a composition comprising a crystalline thermoplastic resin and conductive particles.
1 7. 請求項 1 5の発熱体において、 発熱層 (B 1) (B 2 ) の代わ りに、 電気絶縁外装材を有することを特徴とする請求項 15の発熱体。 17. The heating element according to claim 15, wherein the heating element according to claim 15 has an electrically insulating exterior material instead of the heating layers (B1) and (B2).
1 8. 前記発熱体の外周面に、 電気絶縁外装材を被覆してなる、 請求 項 1 5に記載の発熱体。 18. The heating element according to claim 15, wherein an outer peripheral surface of the heating element is coated with an electrically insulating exterior material.
1 9. 発熱層 (A)、 導電 ·発熱層 (X) が両層またはどちらか 1層 が金属芯線の被覆層であり、 同被覆層が備わった金属芯線が螺旋状に 配置されたことを特徴とする請求項 1 5に記載の発熱体。  1 9. Both the heat generating layer (A) and the conductive and heat generating layer (X) are both layers or one of them is the coating layer of the metal core wire, and the metal core wire provided with the coating layer is spirally arranged. The heating element according to claim 15, characterized in that:
2 0. 発熱層 (A)、 導電 ·発熱層 (X) 及び発熱層 (B 1 ) または 発熱層 (B 2) 及び必要により電気絶縁外装材を共押出しで成形する 際の成形温度が使用樹脂最高融点温度から 2 0°C以上高いことを特徴 とする請求項 1 5または 1 8の発熱体の成形方法。 20. The molding temperature for molding the heat-generating layer (A), the conductive / heat-generating layer (X) and the heat-generating layer (B1) or the heat-generating layer (B2) and, if necessary, the co-extrusion molding of the insulating material is determined by the resin used. The method for molding a heating element according to claim 15 or 18, wherein the temperature is higher than the maximum melting point by 20 ° C or more.
2 1. 前記発熱体の成形にあたり、 発熱層 (A)、 導電 ·発熱層 (X) 及び発熱層 (B 1 ) または発熱層 (B 2 ) 及び必要により電気絶縁外 装材を共押出しで成形する際の押出速度が 5 m/min. 以上であるこ とを特徴とする請求項 2 0の発熱体の成形方法。 2 1. Heating layer (A), Conductive / heating layer (X) 20. The extrusion speed when forming the heat generating layer (B 1) or the heat generating layer (B 2) and the electrically insulating external material by co-extrusion if necessary is 5 m / min. Or more. Heating element molding method.
PCT/JP1999/000877 1998-02-27 1999-02-25 Heating unit WO1999044391A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4715698 1998-02-27
JP10/47156 1998-02-27

Publications (1)

Publication Number Publication Date
WO1999044391A1 true WO1999044391A1 (en) 1999-09-02

Family

ID=12767234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000877 WO1999044391A1 (en) 1998-02-27 1999-02-25 Heating unit

Country Status (1)

Country Link
WO (1) WO1999044391A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026352A2 (en) * 2001-09-14 2003-03-27 W.E.T. Automotive Systems Ag Electric heating device comprising a coated heat conductor
JP2003166721A (en) * 2001-11-29 2003-06-13 Idemitsu Kosan Co Ltd Heater
JP2006202583A (en) * 2005-01-20 2006-08-03 Nichias Corp Heating roll and method of manufacturing same
JP2007109640A (en) * 2005-09-13 2007-04-26 Ist Corp Planar heating element and manufacturing method of the same
KR101379428B1 (en) * 2013-10-14 2014-03-28 (주)한진테크 Heater assembly for electric ondol
CN104582036A (en) * 2013-10-17 2015-04-29 安徽安邦控制系统有限公司 Control type self-temperature-controlling heat tracing cable
WO2016057953A1 (en) 2014-10-09 2016-04-14 Pentair Thermal Management Llc Voltage-leveling heater cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03176981A (en) * 1989-12-04 1991-07-31 Matsushita Electric Ind Co Ltd Heating element with positive resistance temperature coefficient
JPH10241841A (en) * 1997-02-26 1998-09-11 Idemitsu Kosan Co Ltd Heating/heat insulating device using heat-accumulating materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03176981A (en) * 1989-12-04 1991-07-31 Matsushita Electric Ind Co Ltd Heating element with positive resistance temperature coefficient
JPH10241841A (en) * 1997-02-26 1998-09-11 Idemitsu Kosan Co Ltd Heating/heat insulating device using heat-accumulating materials

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026352A2 (en) * 2001-09-14 2003-03-27 W.E.T. Automotive Systems Ag Electric heating device comprising a coated heat conductor
WO2003026352A3 (en) * 2001-09-14 2003-08-28 Wet Automotive Systems Ag Electric heating device comprising a coated heat conductor
CN1328928C (en) * 2001-09-14 2007-07-25 W.E.T.汽车系统股份公司 Electric heating device comprising a coated heat conductor
JP2003166721A (en) * 2001-11-29 2003-06-13 Idemitsu Kosan Co Ltd Heater
JP2006202583A (en) * 2005-01-20 2006-08-03 Nichias Corp Heating roll and method of manufacturing same
JP2007109640A (en) * 2005-09-13 2007-04-26 Ist Corp Planar heating element and manufacturing method of the same
KR101379428B1 (en) * 2013-10-14 2014-03-28 (주)한진테크 Heater assembly for electric ondol
CN104582036A (en) * 2013-10-17 2015-04-29 安徽安邦控制系统有限公司 Control type self-temperature-controlling heat tracing cable
WO2016057953A1 (en) 2014-10-09 2016-04-14 Pentair Thermal Management Llc Voltage-leveling heater cable
EP3205179A4 (en) * 2014-10-09 2018-11-21 Pentair Flow Services AG Voltage-leveling heater cable
US10231288B2 (en) 2014-10-09 2019-03-12 Nvent Services Gmbh Voltage-leveling heater cable
US11503674B2 (en) 2014-10-09 2022-11-15 Nvent Services Gmbh Voltage-leveling heater cable

Similar Documents

Publication Publication Date Title
US4654511A (en) Layered self-regulating heating article
US4543474A (en) Layered self-regulating heating article
US4330703A (en) Layered self-regulating heating article
CA1062755A (en) Layered self-regulating heating article
JP6598231B2 (en) Polymer conductive composite material and PTC element
CA1067947A (en) Positive temperature coefficient resistance heating elements
JP4188682B2 (en) Conductive polymer composition and device containing NNm-phenylene dimaleimide
EP0312204A2 (en) Conductive polymeric conduit heater
JPH03504784A (en) PTC polymer compositions and appliances
CA2479926A1 (en) Ptc conductive composition containing a low molecular weight polyethylene processing aid
CN102522172A (en) Resistance positive temperature effect conductive composite material and thermistor element
WO1999044391A1 (en) Heating unit
CN102522173A (en) Conducting composite material with resistance positive-temperature effect and overcurrent-protecting element
KR20220146615A (en) Power cables and methods of manufacturing power cables
JP2002012777A (en) Electroconductive polymer composition containing fibril fiber and its element using the same
CN103762052A (en) PPTC (polymer positive temperature coefficient) overcurrent protector with low holding current and preparation method thereof
JPH10241841A (en) Heating/heat insulating device using heat-accumulating materials
CN115413069A (en) PTC heating element and method for manufacturing same
JP2000109615A (en) Conductive polymer composition having positive temperature coefficient characteristic
TW408343B (en) Electrical device comprising a conductive polymer and method for making the same
JPS5963688A (en) Panel heater and method of producing same
JP2010020990A (en) Planar heating element
JPH01186783A (en) Manufacture of heater element of positive temperature characteristic
JP2001267049A (en) Linear heating element, its manufacturing method, floor heating appliance, electric carpet, and warm toilet seat
JP2002109970A (en) Power cable

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase