JPS63252975A - Method of joining ceramic material to metal member - Google Patents

Method of joining ceramic material to metal member

Info

Publication number
JPS63252975A
JPS63252975A JP8770987A JP8770987A JPS63252975A JP S63252975 A JPS63252975 A JP S63252975A JP 8770987 A JP8770987 A JP 8770987A JP 8770987 A JP8770987 A JP 8770987A JP S63252975 A JPS63252975 A JP S63252975A
Authority
JP
Japan
Prior art keywords
metal member
ceramic material
joining
ceramic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8770987A
Other languages
Japanese (ja)
Inventor
直樹 宇野
浩一 新富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP8770987A priority Critical patent/JPS63252975A/en
Publication of JPS63252975A publication Critical patent/JPS63252975A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックス材と金属部材との接合方法に関す
るものであって、特に従来よりも強固な接合強度が得ら
れ、かつ熱応力が生じにくい様な接合方法に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for joining ceramic materials and metal members, and in particular, a method that provides stronger joining strength than conventional methods and is less likely to cause thermal stress. It relates to various joining methods.

〔従来の技術〕[Conventional technology]

電力用半導体素子等発熱量が大きな電子部品を実装する
放熱性電子回路基板として、AlN、SiC等の熱伝導
性が良好なセラミックス材と金属部材との複合材が最近
注目されている。然るにこれらのセラミックス材は一般
に金属部材との濡れ性が悪いため、Ti、Zr等の活性
金属の薄膜をセラミックス材上に形成し、該薄膜を介し
てセラミックス材及び金属部材を高温に加熱して接合す
る方法が通常行なわれている。
BACKGROUND ART Composite materials of ceramic materials with good thermal conductivity such as AlN and SiC and metal members have recently been attracting attention as heat-dissipating electronic circuit boards on which electronic components such as power semiconductor devices that generate a large amount of heat are mounted. However, these ceramic materials generally have poor wettability with metal members, so a thin film of active metal such as Ti or Zr is formed on the ceramic material, and the ceramic material and the metal member are heated to a high temperature through the thin film. A method of joining is commonly used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記セラミックス材と金属部材との接合方法においては
、該セラミックスとTi、Zr等の活性金属との界面に
、高強度で熱膨張係数が該セラミックスよりも大きな中
間相(セラミックスがA[Nの場合は、TiN、ZrN
等)が形成されるため、 (1)接合後の冷却時に熱応力によって、セラミックス
材表面に微細なりラックが入りやすく、充分な接合強度
が得られない。
In the method for joining a ceramic material and a metal member, an intermediate phase having high strength and a coefficient of thermal expansion larger than that of the ceramic (if the ceramic is A[N) is added to the interface between the ceramic and active metal such as Ti or Zr. is TiN, ZrN
(1) During cooling after bonding, fine racks tend to form on the surface of the ceramic material due to thermal stress, making it impossible to obtain sufficient bonding strength.

(2)電流のon←off等により加熱、冷却のヒート
サイクルを受けた際に、熱応力により金属部材がセラミ
ックス材から剥離しやすい。
(2) When subjected to a heat cycle of heating and cooling due to turning on and off of current, etc., the metal member tends to peel off from the ceramic material due to thermal stress.

等の問題を生じていた。This caused problems such as:

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の点に鑑み鋭意検討の結果なされたもので
あって、その目的とするところは、従来よりも強固な接
合強度が得られ、かつ熱応力が生じにくい様なセラミッ
クス材と金属部材との接合方法を提供することである。
The present invention has been made as a result of intensive studies in view of the above points, and its purpose is to provide a ceramic material and a metal member that have stronger bonding strength than before and that are less likely to cause thermal stress. The purpose of the present invention is to provide a method for joining the

即ち本発明は、セラミックス材に金属部材を接合するに
際して、前記セラミックス材と金属部材との間に活性金
属を不連続状態で介在させたのち該活性金属と金属部材
との共晶温度以上に加熱して接合することを特徴とする
セラミックス材と金属部材との接合方法である。
That is, in the present invention, when joining a metal member to a ceramic material, an active metal is interposed in a discontinuous state between the ceramic material and the metal member, and then heated to a temperature higher than the eutectic temperature of the active metal and the metal member. This is a method of joining a ceramic material and a metal member, which is characterized by joining a ceramic material and a metal member.

本発明においてT i、 Zr、 Hf、 V、 Nb
、Ta等の活性金属をセラミックス材と金属部材との間
に不連続状態で介在させる手段としては、例えばステン
レス等の金網でセラミックス材表面をマスキングした後
、スパッタ法、蒸着法、イオンブレーティング法、CV
D法、IVD法等の気相成長法により前記活性金属の薄
膜を形成させる方法を用いることが出来る。
In the present invention, Ti, Zr, Hf, V, Nb
, Ta, etc. can be interposed discontinuously between the ceramic material and the metal member by, for example, masking the surface of the ceramic material with a wire mesh such as stainless steel, and then sputtering, vapor deposition, or ion blating. ,CV
A method of forming a thin film of the active metal by a vapor phase growth method such as the D method or the IVD method can be used.

又本発明に用いるセラミックスの種類は特に限定される
ものではなく、酸化物系、非酸化物系等いずれのセラミ
ックスを用いても差し支えないが、電子回路基板用とし
てはAl2O3、AlN、SiC等を用いるのが望まし
い。
Furthermore, the type of ceramics used in the present invention is not particularly limited, and any oxide-based or non-oxide-based ceramics may be used; however, for electronic circuit boards, Al2O3, AlN, SiC, etc. may be used. It is desirable to use

〔作 用〕[For production]

本発明においては、セラミックス材と金属部材とを、両
者間に不連続状態で介在する活性金属により接合してい
るので、両者を接合した後の冷却時並びに加熱冷却のヒ
ートサイクルな受けた際に熱応力を生じにくく、接合強
度が向上すると共に、ヒートサイクル時における金属部
材の耐剥離性も向上する。
In the present invention, since the ceramic material and the metal member are joined by the active metal interposed in a discontinuous state between the two, the ceramic material and the metal member are joined together, so that the ceramic material and the metal member are joined together by the active metal interposed in a discontinuous state between the two. Thermal stress is less likely to occur, the bonding strength is improved, and the peeling resistance of the metal member during heat cycles is also improved.

〔実施例1〕 次に本発明を実施例により更に具体的に説明する。[Example 1] Next, the present invention will be explained in more detail with reference to Examples.

第1図に示す様に、1インチ角のAIIN基板1上に1
00メツシユのステンレス金網2を配置してマスキング
を行ない、3XIO−3TorrのAr雰囲気中でTi
 ターゲット3によりスパッタリングし、厚さ約3μm
のTi膜4を基盤目状に不連続に形成した。
As shown in Figure 1, one
00 mesh stainless wire mesh 2 was placed for masking, and Ti was removed in an Ar atmosphere of 3XIO-3 Torr.
Sputtered with target 3, about 3μm thick
The Ti film 4 was formed discontinuously in the shape of a substrate.

しかる後前記A[N基板上に厚さ0.31mのCu板を
置き、A「ガス中で900℃×30分加熱して両者を接
合し、セラミックス複合材を得た。該セラミックス複合
材について、接合強度(ビール強度、N=5)を測定す
ると共に、ヒートサイクル試験を行ない、その結果を本
発明例1として第1表に示した。尚ヒートサイクル試験
は、−40℃X30分→室温×10分→150℃X30
分→室温XIO分を1サイクルとし、Cu板が剥離する
迄の繰返し回数を求めた。
Thereafter, a Cu plate with a thickness of 0.31 m was placed on the A[N substrate, and the two were bonded by heating at 900°C for 30 minutes in A[N substrate to obtain a ceramic composite material.About the ceramic composite material] In addition to measuring the bonding strength (beer strength, N=5), a heat cycle test was also conducted, and the results are shown in Table 1 as Invention Example 1.The heat cycle test was carried out at -40°C for 30 minutes → room temperature. ×10 minutes → 150℃×30
One cycle was 1 minute → room temperature XIO minutes, and the number of repetitions until the Cu plate peeled off was determined.

〔実施例2〕 実施例1と同様、iN基板上に100メツシユのステン
レス金網のメツシュを施し、スパッタ法により厚さ約3
μmのZr膜を不連続に形成した。しかる後前記AII
N基板上に厚さ0、3 、、のCu板を置き、A「ガス
中で950℃X30分加熱して両者を接合し、セラミッ
クス複合材を得た。該セラミックス複合材について、実
施例1と同様に接合強度を測定すると共に、ヒートサイ
クル試験を行ない、その結果を本発明例2として第1表
に併記した。
[Example 2] As in Example 1, 100 meshes of stainless wire mesh were applied on the iN substrate, and the mesh was made to a thickness of about 3 mm by sputtering.
A micrometer-thick Zr film was formed discontinuously. After that, the AII
A Cu plate with a thickness of 0.3 mm was placed on the N substrate, and the two were bonded by heating at 950°C for 30 minutes in A gas to obtain a ceramic composite. Regarding the ceramic composite, Example 1 In addition to measuring the bonding strength in the same manner as above, a heat cycle test was also conducted, and the results are also listed in Table 1 as Invention Example 2.

〔実施例3〕 AAN基板の表面に300メツシユアンダーのTi粉を
平均厚さ50μmに塗布し、真空中で1600℃×30
分加熱して、AIN基板上にTiをメタライズした。こ
の上に厚さ0.3 m、OCu板を置き、Arガス中で
1000℃X30分加熱して両者を接合し、セラミック
ス複合材を得た。該セラミックス複合材について、実施
例1と同様に接合強度を測定すると共に、ヒートサイク
ル試験を行ない、その結果を本発明例3として第1表に
併記した。
[Example 3] Ti powder with an average thickness of 50 μm under 300 meshes was applied to the surface of an AAN substrate, and heated at 1600° C.
Then, Ti was metallized on the AIN substrate. An OCu plate with a thickness of 0.3 m was placed on top of this and heated in Ar gas at 1000°C for 30 minutes to bond them together to obtain a ceramic composite material. Regarding the ceramic composite material, the bonding strength was measured in the same manner as in Example 1, and a heat cycle test was also conducted, and the results are also listed in Table 1 as Invention Example 3.

〔従来例1〕 1インチ角のAlN基板上に、何らマスキングを施さず
に実施例1と同様な条件で、全面に厚さ3μmのTiス
パッタ膜を形成した。この上に厚さ0.3 mWのCu
板を置き、Arガス中でいて、実施例1と同様に接合強
度を測定すると共にヒートサイクル試験を行ない、その
結果を第1表に併記した。
[Conventional Example 1] A Ti sputtered film with a thickness of 3 μm was formed on the entire surface of a 1-inch square AlN substrate under the same conditions as in Example 1 without any masking. On top of this is a Cu layer with a thickness of 0.3 mW.
The plate was placed and placed in Ar gas, and the bonding strength was measured and a heat cycle test was conducted in the same manner as in Example 1. The results are also listed in Table 1.

〔従来例2〕 1インチ角のA/N基板上に、厚さ5μmのTi箔を全
面に置いた後、この上に厚さ0.3 mlのCu板を置
き、Arガス中で950℃×30分加熱して両者を接合
し、セラミックス複合材を得た。該セラミックス複合材
について、実施例1と同様に接合強度を測定すると共に
ヒートサイクル試験を行ない、その結果を第1表に併記
した。
[Conventional Example 2] After placing a 5 μm thick Ti foil on the entire surface of a 1 inch square A/N board, a 0.3 ml thick Cu plate was placed on top of this and heated at 950°C in Ar gas. The two were bonded together by heating for 30 minutes to obtain a ceramic composite material. Regarding the ceramic composite material, the bonding strength was measured and a heat cycle test was conducted in the same manner as in Example 1, and the results are also listed in Table 1.

第1表 第1表から明らかな様に、本発明例1〜3はいずれも従
来例1及び2に比べて接合強度が高く、かつヒートサイ
クル時における金属部材の耐剥離性が優れている。
As is clear from Table 1, all of Examples 1 to 3 of the present invention have higher bonding strength than Conventional Examples 1 and 2, and are superior in peeling resistance of the metal member during heat cycling.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、セラミックス材に金属部材を接
合した際に、従来よりも強固な接合強度が得られ、かつ
ヒートサイクル時における金属部材の耐剥離性も向上す
る等工業上顕著な効果を奏するものである。
According to the method of the present invention, when a metal member is bonded to a ceramic material, a stronger bonding strength than before can be obtained, and the peeling resistance of the metal member during heat cycling is also improved, which is an industrially significant effect. It is something that plays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマスキングによる活性金属スパッタリングの概
念図である。
FIG. 1 is a conceptual diagram of active metal sputtering using masking.

Claims (3)

【特許請求の範囲】[Claims] (1)セラミックス材に金属部材を接合するに際して、
前記セラミックス材と金属部材との間に活性金属を不連
続状態で介在させたのち、該活性金属と金属部材との共
晶温度以上に加熱して接合することを特徴とするセラミ
ックス材と金属部材との接合方法。
(1) When joining a metal member to a ceramic material,
A ceramic material and a metal member, characterized in that an active metal is interposed in a discontinuous state between the ceramic material and the metal member, and then the active metal and the metal member are joined by heating to a temperature higher than the eutectic temperature of the metal member. How to join with.
(2)金網のマスキングを用い、気相成長法により活性
金属を不連続状態に介在させることを特徴とする特許請
求の範囲第一項記載のセラミックス材と金属部材との接
合方法。
(2) A method for joining a ceramic material and a metal member according to claim 1, characterized in that the active metal is interposed in a discontinuous state by a vapor phase growth method using masking of a wire mesh.
(3)セラミックス材がAl_2O_3、AlN、Si
Cの内のいずれか1種からなる回路基板であることを特
徴とする特許請求の範囲第1項記載のセラミックス材と
金属部材との接合方法。
(3) Ceramic material is Al_2O_3, AlN, Si
2. The method of joining a ceramic material and a metal member according to claim 1, wherein the circuit board is made of any one of C.
JP8770987A 1987-04-09 1987-04-09 Method of joining ceramic material to metal member Pending JPS63252975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8770987A JPS63252975A (en) 1987-04-09 1987-04-09 Method of joining ceramic material to metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8770987A JPS63252975A (en) 1987-04-09 1987-04-09 Method of joining ceramic material to metal member

Publications (1)

Publication Number Publication Date
JPS63252975A true JPS63252975A (en) 1988-10-20

Family

ID=13922439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8770987A Pending JPS63252975A (en) 1987-04-09 1987-04-09 Method of joining ceramic material to metal member

Country Status (1)

Country Link
JP (1) JPS63252975A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477369A (en) * 1990-07-16 1992-03-11 Showa Denko Kk Production of metal-ceramic laminated substrate
JP2020145335A (en) * 2019-03-07 2020-09-10 株式会社Fjコンポジット Manufacturing method of circuit substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477369A (en) * 1990-07-16 1992-03-11 Showa Denko Kk Production of metal-ceramic laminated substrate
JP2020145335A (en) * 2019-03-07 2020-09-10 株式会社Fjコンポジット Manufacturing method of circuit substrate

Similar Documents

Publication Publication Date Title
JPS60173900A (en) Ceramic circuit board
JP3336741B2 (en) Metal thin film laminated ceramic substrate
JPS63252975A (en) Method of joining ceramic material to metal member
US3791861A (en) Method for producing thin film circuits on high purity alumina substrates
JPS61121489A (en) Cu wiring sheet for manufacture of substrate
JP3157520B2 (en) Manufacturing method of aluminum nitride substrate
JPH029457B2 (en)
JPS5935074A (en) Ceramic sheet
JPS5935075A (en) Method of bonding ceramic and metal
JP2971605B2 (en) Laminate
JPS58100414A (en) Method of producing barium titanate with aluminum electrode
JPH0245354B2 (en) KINZOKUKAIROOJUSURUSERAMITSUKUSUKIBANNOSEIZOHOHO
JPS63252976A (en) Method of joining aln substrate to metal member
JPH0264081A (en) Metallizing method of aluminum nitride
JPH03112874A (en) Junction between ceramic base and copper
JPH0524958A (en) Metallizing method for surface of alumina and joining method
JPS62197374A (en) Aluminum nitride sintered body
JPH02125451A (en) Manufacture of substrate for semiconductor device
CN117012751A (en) Ceramic-coated metal plate, preparation method thereof and chip heat dissipation module
JPH02125728A (en) Composite base and its manufacture
JPS6272575A (en) Manufacture of ceramic-metal bonded body
JPS5917880B2 (en) Board for electrical equipment
JPS58176189A (en) Metallization of silicon nitride and carbide sintered body surface
JP2503776B2 (en) Substrate for semiconductor device
JPS60107845A (en) Circuit substrate for semiconductor