JPS63251470A - Anisotropically conductive film and production thereof - Google Patents

Anisotropically conductive film and production thereof

Info

Publication number
JPS63251470A
JPS63251470A JP8435587A JP8435587A JPS63251470A JP S63251470 A JPS63251470 A JP S63251470A JP 8435587 A JP8435587 A JP 8435587A JP 8435587 A JP8435587 A JP 8435587A JP S63251470 A JPS63251470 A JP S63251470A
Authority
JP
Japan
Prior art keywords
particles
metal
water
added
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8435587A
Other languages
Japanese (ja)
Other versions
JPH0726032B2 (en
Inventor
Goro Sato
護郎 佐藤
Michio Komatsu
通郎 小松
Yoshihiro Tanaka
喜凡 田中
Hiroo Yoshitome
吉留 博雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP8435587A priority Critical patent/JPH0726032B2/en
Publication of JPS63251470A publication Critical patent/JPS63251470A/en
Publication of JPH0726032B2 publication Critical patent/JPH0726032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PURPOSE:To obtain an anisotropically conductive film which is inexpensive and slightly different in specific gravity from its base resin and in which a filler is well dispersed, by dispersing a specific electrically conductive filler in a base resin and forming a film having a thickness approximately equal to the particle size of the filler from the resulting compsn. on a substrate. CONSTITUTION:An alkali is added to a water/alcohol dispersion contg. a metal oxide or hydroxide as a seed to prevent the seed from being agglomerated. While maintaining the alkaline condition, a metal alkoxide is added thereto to be hydrolyzed, thus depositing a hydrolyzate of the metal alkoxide on the seed. The resulting particles or black particles obtd. by heat-treating said particles at 250 deg.C or higher are plated with a metal. The resulting electrically conductive filler (A) is dispersed in a base resin (B) to prepare an electrically conductive resin compsn. A film having a thickness approximately equal to the particle size of the filler is formed from the compsn. on a substrate to obtain the desired electrically conductive film.

Description

【発明の詳細な説明】 発明の技術分野 本発明は異方導電性膜およびその製造方法に関し、さら
に詳しくは、導電性充填材を含み、方向によって導電性
を異にする異方導電性膜およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an anisotropically conductive film and a method for producing the same, and more particularly to an anisotropically conductive film containing a conductive filler and having different conductivity depending on the direction. It relates to its manufacturing method.

発明の技術的背景ならびにその問題点 縦方向と横方向とで導電性を異にする異方導電性膜にお
いては、 この膜に導電性を付与するため に、従来、金、銀、白金等の貴金属あるいは銅、アルミ
、ニッケル等の金属粉末またはカーボン粉末、カーボン
繊維等が、ベースとなる樹脂中に添加されてきた。しか
しながらカーボン類は安価であるものの導電性が低く、
ざらに銅、アルミ、ニッケルは酸化され易く、導電性に
対する信頼性に乏しいという問題点があった。また金な
どの貴金属は、高価であるため生産コストが高くなる舌
の問題点があった。
Technical background of the invention and its problems In anisotropic conductive films that have different conductivity in the vertical and horizontal directions, conventionally, gold, silver, platinum, etc. were used to impart conductivity to the film. Noble metals or metal powders such as copper, aluminum, and nickel, carbon powders, carbon fibers, etc. have been added to the base resin. However, although carbons are cheap, they have low conductivity.
In general, copper, aluminum, and nickel have problems in that they are easily oxidized and have poor reliability in terms of conductivity. Moreover, since precious metals such as gold are expensive, there is a problem in that production costs are high.

このような問題点を解決するため、銅粉末、カラスビー
ズあるいは合成樹脂等の粒子の表面に金属メッキを施し
てなる導電性充填材が開発されている。ところがこれら
の充填材を塗料や接着剤に用いた場合、被メッキ物が銅
粉末である場合には、ビヒクルとしてのベース樹脂との
大きな比重差のために充填材が短時間で塗料から分離・
沈降してしまい、そのため使用しようとするたびに直前
に充填材を再分散させなければならず、作業性が悪いと
いう問題点があった。また被メッキ物がガラスピーズで
ある場合には、銅粉末に比べればビヒクルとしてのベー
ス樹脂との比重差は幾分改良されてはいるが、ガラスピ
ーズは現状では数十μ而の粒径を有しているので、性能
的に充分に満足しうるちのを得ることはできなかった。
To solve these problems, conductive fillers have been developed in which the surfaces of particles of copper powder, glass beads, synthetic resin, etc. are plated with metal. However, when these fillers are used in paints or adhesives, if the object to be plated is copper powder, the filler will separate from the paint in a short period of time due to the large specific gravity difference with the base resin as a vehicle.
The filler settles, and therefore the filler must be redispersed immediately before each use, which poses a problem of poor workability. Furthermore, when the object to be plated is glass beads, although the difference in specific gravity with the base resin as a vehicle is somewhat improved compared to copper powder, glass beads currently have a particle size of several tens of microns. Therefore, it was not possible to obtain a material that was fully satisfactory in terms of performance.

さらにまた被メッキ物が合成樹脂である場合には、前記
の問題は解決されているが、その導電性充填材が分散さ
れた異方導電性膜は、外圧が加わった際に樹脂が変形し
たり、導電層が剥離したりするという問題点があった。
Furthermore, when the object to be plated is a synthetic resin, the above problem is solved, but the anisotropically conductive film in which the conductive filler is dispersed causes the resin to deform when external pressure is applied. There have been problems in that the conductive layer may peel off or the conductive layer may peel off.

発明の目的 本発明は、上記のような従来技術に伴なう問題点を解決
しようとするものであって、ビヒクルとしてのベース樹
脂との比重差が小さく分散性が良好な導電性充填材を含
み、しかも安価な異方導電性膜およびその製造方法を提
供することを目的としている。
Purpose of the Invention The present invention aims to solve the above-mentioned problems associated with the prior art. It is an object of the present invention to provide an anisotropically conductive film containing the above-mentioned characteristics and an inexpensive method for manufacturing the same.

発明の概要 本発明に係る異方導電性膜は、金属酸化物あるいは金属
水酸化物がシードとして分散された水−アルコール系分
散液に、該分散液をアルカリ性に保ちながら金属アルコ
キシドを添加して加水分解し、前記シード上に金属アル
コキシド分解生成物を付着させて得られた粒子、あるい
は前記粒子を250℃以上で熱処理して得られた黒色系
粒子の表面に、金属メッキを施してなる(a)導電性充
填材が、(b)ベース樹脂中に分散されてなる導電性膜
であって、この導電性薄膜の膜厚が、前記(a)導電性
充填材の粒径とほぼ等しいことを特徴としている。
Summary of the Invention The anisotropically conductive film according to the present invention is produced by adding a metal alkoxide to a water-alcohol dispersion in which metal oxides or metal hydroxides are dispersed as seeds while keeping the dispersion alkaline. Metal plating is applied to the surface of particles obtained by hydrolyzing and adhering metal alkoxide decomposition products onto the seeds, or black particles obtained by heat-treating the particles at 250 ° C. or higher ( a) A conductive filler is dispersed in (b) a base resin, and the thickness of this conductive thin film is approximately equal to the particle size of the conductive filler (a). It is characterized by

本発明に係る異方導電性膜の製造方法は、金属酸化物あ
るいは金属水酸化物がシードとして分散された水−アル
コール系分散液に、該分散液をアルカリ性に保ちながら
金属アルコキシドを添加して加水分解し、前記シード上
に金属アルコキシド分解生成物を付着させて得られた粒
子、あるいは前記粒子を250℃以上で熱処理して得ら
れた黒色系粒子の表面に、金属メッキを施してなる(a
)導電性充填材が、(b)ベース樹脂そして必要に応じ
て(c)希釈剤中に分散されてなる導電性樹脂組成物を
、基材上に、該組成物中に含まれる導電性充填材の粒径
とほぼ等しい膜厚で塗布することを特徴としている。
The method for producing an anisotropically conductive film according to the present invention includes adding a metal alkoxide to a water-alcohol dispersion in which a metal oxide or metal hydroxide is dispersed as a seed while keeping the dispersion alkaline. Metal plating is applied to the surface of particles obtained by hydrolyzing and adhering metal alkoxide decomposition products onto the seeds, or black particles obtained by heat-treating the particles at 250 ° C. or higher ( a
) A conductive resin composition in which a conductive filler is dispersed in (b) a base resin and optionally (c) a diluent is applied onto a base material, and the conductive filler contained in the composition is disposed on a base material. It is characterized by being applied at a film thickness that is approximately equal to the particle size of the material.

発明の詳細な説明 本発明に係る異方導電性膜は、特定の方法で得られる被
メツキ用粒子の表面に、金属メッキを施してなる(a)
導電材充填材が、(b)ベース樹脂そして必要に応じて
(c)希釈剤中に分散されている導電性樹脂組成物を用
いて、基材上に、該組成物中に含まれる導電性充填材の
粒径とほぼ等しい膜厚に形成されていることを特徴とし
ている。このメッキが施されている(a)導電性充填材
の製造方法について説明する。
Detailed Description of the Invention The anisotropic conductive film according to the present invention is formed by applying metal plating to the surface of particles to be plated obtained by a specific method (a)
Using a conductive resin composition in which a conductive filler is dispersed in (b) a base resin and optionally (c) a diluent, the conductive material contained in the composition is applied onto a substrate. It is characterized by being formed with a film thickness that is approximately equal to the particle size of the filler. A method of manufacturing the (a) conductive filler to which this plating is applied will be explained.

本発明で用いられる被メツキ用粒子は、球状であってそ
の粒度分布がシャープなものであるが、その製造方法に
ついて説明すると、まず金属酸化物あるいは金属水酸化
物をシードとして分散された水−アルコール系分散液を
調製する。水−アルコール系分散液中に分散されるシー
ドは、金属酸化物あるいは金属水酸化物であるが、場合
によっては他の粒子径の揃った粒子を用いることもでき
る。上記のようなシードとして用いられる粒子は、0.
05〜9.0μ瓦程度のなるべく均一な粒子径を有して
いることが好ましい。
The particles to be plated used in the present invention are spherical and have a sharp particle size distribution. To explain the manufacturing method, first, the particles are dispersed in water using metal oxides or metal hydroxides as seeds. Prepare an alcoholic dispersion. The seeds dispersed in the water-alcohol dispersion are metal oxides or metal hydroxides, but depending on the case, other particles with uniform particle sizes can also be used. The particles used as seeds as described above are 0.
It is preferable that the particle size is as uniform as possible, on the order of 0.05 to 9.0 μm.

このようなシードが分散された水−アルコール系分散液
は、水−アルコール系混合溶液にシードを添加してもよ
く、あるいは水−アルコール系分散液中でシードを生成
させてもよい。このうち水−アルコール系分散液中で金
属アルコキシドを加水分解さゼて得られるシードが分散
された水−アルコール系分散液が好ましく用いられる。
To obtain such a water-alcohol dispersion in which seeds are dispersed, the seeds may be added to a water-alcohol mixed solution, or the seeds may be generated in the water-alcohol dispersion. Among these, a water-alcohol dispersion in which seeds obtained by hydrolyzing a metal alkoxide in a water-alcohol dispersion are dispersed is preferably used.

シードの生成方法は、たとえば粉体及び粉体冶金2ユ。Seed generation methods include, for example, powder and powder metallurgy.

(4)、19〜24 (1976)あるいはJourn
alcolloid &Interface  Sci
、 26.62〜69(1968)に記載されている。
(4), 19-24 (1976) or Journal
alcolloid &Interface Sci
, 26.62-69 (1968).

このようにして金属酸化物粒子あるいは金属水酸化物粒
子がシードとして分散された水−アルコール系分散液が
得られるが、分散液中のシードが凝集して合体しないよ
うに、この分散液にアルカリを加えて安定化された分散
液(以下ヒールゾルと称することがある)とする。もし
アルカリを加えて分散液の安定化を図らないと、シード
粒子同士が凝集して沈殿してくることがある。シード同
士か凝集すると、凝集粒子の接合部分(ネック部)にも
金属アルフキ91分解生成物の付着が起こるため、均一
な粒径を有する粒子が得られない。
In this way, a water-alcohol dispersion in which metal oxide particles or metal hydroxide particles are dispersed as seeds is obtained. is added to form a stabilized dispersion (hereinafter sometimes referred to as heel sol). If the dispersion is not stabilized by adding an alkali, the seed particles may aggregate and precipitate. If the seeds aggregate with each other, the metal Alfuki 91 decomposition products will also adhere to the joints (necks) of the aggregated particles, making it impossible to obtain particles with a uniform particle size.

分散液の安定化を図るために加えるアルカリとしては、
アンモニアガス、アンモニア水、水酸化ナトリウムなど
のアルカリ金属水酸化物、第4級アンモニウム塩、アミ
ン類などが単独であるいは組合せて用いられる。
The alkali added to stabilize the dispersion is as follows:
Ammonia gas, aqueous ammonia, alkali metal hydroxides such as sodium hydroxide, quaternary ammonium salts, amines, etc. may be used alone or in combination.

シードが分散された水−アルコール系分散液中でのアル
コール濃度は35〜97壬量%であることが好ましい。
The alcohol concentration in the water-alcohol dispersion in which the seeds are dispersed is preferably 35 to 97% by weight.

ここで用いられるアルコールとしては、メタノール、エ
タノール、n−プロパツール、イソプロパツール、n−
ブチルアル]−ル、イソブチルアルコールなどの低級ア
ルコールが用いられる。またこれらの低級アルコールの
混合溶媒を用いることもてきる。
The alcohols used here include methanol, ethanol, n-propanol, isopropanol, n-propanol,
Lower alcohols such as butyl alcohol and isobutyl alcohol are used. It is also possible to use a mixed solvent of these lower alcohols.

また、水−アルコール系分散液として、水およびアルコ
ールに加えて、他の有機溶媒を用いることもできる。こ
のような有機溶媒としては、水およびアルコールと相溶
性がよく、しかも金属アルコキシドとの相溶性がよいも
のが用いられる。
In addition to water and alcohol, other organic solvents can also be used as the water-alcohol dispersion. As such an organic solvent, one is used that has good compatibility with water and alcohol, and also has good compatibility with metal alkoxide.

このような有機溶媒としては、具体的には、エチレング
リコール、プロピレングリコール、ヘキシレングリコー
ルなどの多価アルコール、エチレングリコールモノメチ
ルエーテル、エチレングリコールモノメチルエーテル、
エチレングリコールモノメチルエーテルなどのエーテル
類、酢酸エチルなどのエステル類、アセトンなどのケト
ン類、トルエン、キシレンなどのペンゾール類、ジメチ
ルホルムアミド、N−メチル−2−ピロリドンおよびそ
の誘導体などが単独あるいは組合せて用いられる。
Specifically, such organic solvents include polyhydric alcohols such as ethylene glycol, propylene glycol, and hexylene glycol, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether,
Ethers such as ethylene glycol monomethyl ether, esters such as ethyl acetate, ketones such as acetone, penzoles such as toluene and xylene, dimethylformamide, N-methyl-2-pyrrolidone and its derivatives, etc. are used alone or in combination. It will be done.

水−アルコール系分散液中でのシードの濃゛度は、酸化
物換算濃度で0.05〜20.0重量%であることが好
ましい。シードの酸化物換算濃度が0.05重量%未満
でおると、後の金属アルコキシド分解生成物をシードに
付着させる工程で、新たなシードが発生することがあり
、得られる粒子−〇 − の粒度分布がブロードになるため好ましくない。
The concentration of the seeds in the water-alcohol dispersion is preferably 0.05 to 20.0% by weight in terms of oxide concentration. If the oxide concentration of the seeds is less than 0.05% by weight, new seeds may be generated in the subsequent step of attaching metal alkoxide decomposition products to the seeds, and the particle size of the resulting particles This is not preferable because the distribution becomes broad.

一方、シードの酸化物換算濃度が20.0重量%を越え
ると、金属アルフキ91分解生成物をシードに付着させ
る工程で粒子同士が凝集してしまうため好ましくない。
On the other hand, if the oxide concentration of the seeds exceeds 20.0% by weight, it is not preferable because the particles will coagulate during the process of attaching the metal Alfuki 91 decomposition product to the seeds.

次に、上記のようにして得られたアルカリで安定化され
たシードが分散された水−アルコール系分散液であるヒ
ールゾルに、このヒールゾルをアルカリ性に保ちながら
金属アルコキシドを添加して加水分解し、シード上に金
属アルコキシド分解生成物を付着させてシード粒子を成
長させる。
Next, while keeping the heel sol alkaline, a metal alkoxide is added to the heel sol, which is a water-alcohol dispersion in which the alkali-stabilized seeds obtained as described above are dispersed, for hydrolysis. Seed particles are grown by depositing metal alkoxide decomposition products on the seeds.

金属アルコキシドとしては、アルコキシドを形成しうる
金属であればどのような金属のアルコキシドであっても
用いることができる。アルコキシドを形成するエステル
基の炭素数は、1〜7程度望ましくは1〜4程度である
ことが好ましい。このような金属アルコキシドはアルコ
ールなどで希釈して用いてもよく、また原液のまま用い
てもよい。
As the metal alkoxide, any metal alkoxide can be used as long as it can form an alkoxide. The number of carbon atoms in the ester group forming the alkoxide is preferably about 1 to 7, preferably about 1 to 4. Such metal alkoxides may be used after being diluted with alcohol or the like, or may be used as a undiluted solution.

分散液中に金属アルコキシドを添加するに際しては、金
属アルコキシドとともに、水−アルコール混合溶液を添
加することが好ましい。これらの金属アルコキシドおよ
び水−アルコール混合溶液は、ヒールゾルに徐々に添加
することが好ましい。
When adding the metal alkoxide to the dispersion, it is preferable to add a water-alcohol mixed solution together with the metal alkoxide. It is preferable that these metal alkoxides and water-alcohol mixed solution are gradually added to the heel sol.

ヒールゾル中に金属アルコキシドを添加すると、金属ア
ルコキシドは加水分解し始め、このとき急激に溶液のl
)Hが変化する。ヒールゾル液が上記のようなアルカリ
性でなくなると、シードが凝集したりあるいは新しいシ
ードが発生したりすることがあり、最終的に得られる粒
子の粒度分布がブロードになるため好ましくない。この
ため金属アルコキシドの添加に際しては、ヒールゾルを
アルカリ性に保つようにして行なう。ヒールゾルのpH
は、10〜13であることが好ましい。ヒールゾルをア
ルカリ性に保つためには、ヒールゾルにアルカリを添加
すればよく、具体的には、添加されるアルカリとして、
アンモニアガス、アンモニア水、アミン類、アルカリ金
属水酸化物、第4@アンモニウム塩が単独あるいは組合
せて用いられる。
When a metal alkoxide is added to Healsol, the metal alkoxide begins to hydrolyze, and at this time, the volume of the solution rapidly decreases.
) H changes. If the heel sol liquid is no longer alkaline as described above, seeds may aggregate or new seeds may be generated, which is not preferable because the particle size distribution of the final particles becomes broad. Therefore, when adding the metal alkoxide, the heel sol is kept alkaline. pH of Healsol
is preferably 10 to 13. In order to keep the heel sol alkaline, it is sufficient to add alkali to the heel sol. Specifically, as the alkali added,
Ammonia gas, aqueous ammonia, amines, alkali metal hydroxides, and quaternary ammonium salts may be used alone or in combination.

金属アルコキシドを加水分解させる際の温度は、特に限
定しないが、水またはアルコールの沸点以上の温度を採
用する場合には、溶液が液相を保持できるように加圧さ
れることが好ましい。ただし、反応系内に存在するアル
コールなどの臨界温度以上で金属アルコキシドの分解反
応を行なうことは、液相内の組成比が変化することがあ
るので、臨界温度未満で行なうことが好ましい。
The temperature at which the metal alkoxide is hydrolyzed is not particularly limited, but when a temperature higher than the boiling point of water or alcohol is used, it is preferable to pressurize the solution so that it can maintain a liquid phase. However, carrying out the decomposition reaction of the metal alkoxide above the critical temperature of alcohol or the like present in the reaction system may change the composition ratio in the liquid phase, so it is preferable to carry out the decomposition reaction below the critical temperature.

上記のようにしてシード上に金属アルコキシド分解生成
物を付着させてシード粒子を成長させるが、反応系内の
成長した粒子の濃度は、酸化物換算濃度で0,05〜2
0.0重量%ざらに望ましくは0.05〜15.0重量
%であることが好ましい。粒子の濃度が0.05重量%
未満でおると、生産性が悪くかつ多量のアルコールが必
要となり経済性に劣り、一方粒子の濃度が20重量%を
越えると、シードの粒子成長中に粒子間の凝集が起こり
、得られる粒子の粒度分布がブロードになるため好まし
くない。
Seed particles are grown by depositing the metal alkoxide decomposition product on the seeds as described above, but the concentration of the grown particles in the reaction system is 0.05 to 2.0 in terms of oxide concentration.
It is preferably 0.0% by weight, more preferably 0.05 to 15.0% by weight. Particle concentration is 0.05% by weight
If the concentration is less than 20% by weight, productivity will be poor and a large amount of alcohol will be required, resulting in poor economic efficiency. On the other hand, if the concentration of particles exceeds 20% by weight, aggregation will occur between particles during seed particle growth, resulting in poor productivity of the resulting particles. This is not preferable because the particle size distribution becomes broad.

シード上に金属アルコキシド分解生成物を付着させるに
際して、反応系中でのアルコール濃度は35〜97重量
%であるようにするのが好ましい。
When depositing the metal alkoxide decomposition product on the seeds, the alcohol concentration in the reaction system is preferably 35 to 97% by weight.

アルコール濃度が35重量%未満であると、添加される
金属アルコキシドとの相溶性が悪くエマルジョン化し、
シードが凝集したりあるいは球状でない不定形生成物が
得られるため好ましくなく、一方アルコール溶液が97
重量%を越えると金属アルコキシドの加水分解速度が遅
くなりすぎるため好ましくない。反応系中のアルコール
濃度は、反応系中に金属アルコキシドとともに水および
アルコールを添加することにより調節することができ、
アルコールはアルコキシドに対して0.4〜1.1モル
の割合で、また水はアルコキシドに対して2.0〜24
.0モルの割合で添加されることが好ましい。
If the alcohol concentration is less than 35% by weight, it will have poor compatibility with the metal alkoxide to be added and will form an emulsion.
This is undesirable because the seeds may aggregate or an amorphous product that is not spherical may be obtained.
If it exceeds % by weight, the rate of hydrolysis of the metal alkoxide becomes too slow, which is not preferable. The alcohol concentration in the reaction system can be adjusted by adding water and alcohol together with the metal alkoxide into the reaction system,
The ratio of alcohol to the alkoxide is 0.4 to 1.1 moles, and the ratio of water to the alkoxide is 2.0 to 24 moles.
.. It is preferable that it is added in a proportion of 0 mol.

このようにして得られる、水−アルコール系分散媒に分
散された粒子は、球状でその粒子径は0.1〜10μm
程度であり、粒度分布がシャープ(σ≦0.5)であり
、分散媒中に凝集せずに単分散されている。また上記の
ような粒子の製造方法によれば、得られる粒子の粒子径
を0.1〜10μmの範囲のうち、任意の値に制御する
ことができる。さらに粒子の酸化物基準の濃度は0.0
5〜20.0重量%であり、従来の金属アルコキシドを
用いた粒子の製造方法と比較して著しく高くすることが
可能である。したがって粒子の製造効率を高めることが
できるとともに製造コストの低減も図ることができる。
The particles thus obtained and dispersed in the water-alcohol dispersion medium are spherical and have a particle diameter of 0.1 to 10 μm.
It has a sharp particle size distribution (σ≦0.5), and is monodispersed without agglomeration in the dispersion medium. Further, according to the method for producing particles as described above, the particle diameter of the obtained particles can be controlled to any value within the range of 0.1 to 10 μm. Furthermore, the concentration of particles based on oxides is 0.0
It is 5 to 20.0% by weight, which can be significantly higher than in conventional methods of producing particles using metal alkoxides. Therefore, it is possible to increase the production efficiency of the particles and also to reduce the production cost.

このようにして得られた分散液に単分散された粒子の安
定性をざらに高めるために、得られた分散液中に、アル
カリなどの安定剤を添加し熟成を施こせば、長期間にわ
たって分散液中の粒子は凝集したりすることがない。ま
た分散液中のアルコールを別の有機溶媒に置換すること
もできる。
In order to greatly increase the stability of the particles monodispersed in the dispersion obtained in this way, if a stabilizer such as an alkali is added to the dispersion obtained and aging is performed, it is possible to maintain the stability for a long period of time. Particles in the dispersion do not aggregate. Moreover, the alcohol in the dispersion can also be replaced with another organic solvent.

このような分散液を乾燥すれば分散性のよい粒子が得ら
れ、これを本発明の被メツキ用粒子として用いる。
By drying such a dispersion, particles with good dispersibility can be obtained, which are used as particles to be plated in the present invention.

また場合によっては、上記のようにして得られた粒子を
、250℃以上好ましくは250〜1000℃の温度で
、空気雰囲気中あるいは不活性ガス雰囲気中で熱処理す
ると、白色系の粒子は黒色系に変化するが、このように
して得られる分散性の良好な黒色系の粒子を、被メツキ
用粒子として用いることもできる。
In some cases, when the particles obtained as described above are heat-treated at a temperature of 250°C or higher, preferably 250 to 1000°C, in an air atmosphere or an inert gas atmosphere, white particles become blackish. Although it varies, the black-colored particles with good dispersibility obtained in this way can also be used as particles to be plated.

白色系の粒子を250℃以上の温度で熱処理することに
よって黒色系の粒子に変化するのは、次のような理由に
よるのであろうと考えられる。すなわち、熱処理前の粒
子の内部には、未反応の金属アルコキシドなどの有機物
が存在しており、この未反応の金属アルコキシドなどの
有機物が250℃以上の温度に加熱されて分解あるいは
炭化することによって、粒子が黒色化するのであろう。
It is thought that the reason why white particles change to black particles by heat treatment at a temperature of 250° C. or higher is as follows. In other words, organic substances such as unreacted metal alkoxides are present inside the particles before heat treatment, and when these unreacted organic substances such as metal alkoxides are heated to a temperature of 250°C or higher and decomposed or carbonized, , the particles probably turn black.

白色系粒子の熱処理温度は、上述のように250°C以
上、好ましくは250〜1000°Cであるが、熱処理
温度が250℃未満であると、白色系粒子の黒色化は起
こるが、黒色化に長時間を要するため好ましくなく、一
方熱処理温度が1000℃を越えると、粒子間の焼結が
起こることがあるため好ましくない。
As mentioned above, the heat treatment temperature for the white particles is 250°C or higher, preferably 250 to 1000°C. However, if the heat treatment temperature is lower than 250°C, the white particles will be blackened; On the other hand, if the heat treatment temperature exceeds 1000° C., sintering between particles may occur, which is not preferable.

また一般的に白色系粒子の粒子径が小さい場合には、2
50〜1000℃の温度範囲の比較的低温領域での熱処
理によって黒色化が起こるが、粒子径が大きくなるほど
比較的高温領域での熱処理が必要となる。
Generally, when the particle size of white particles is small, 2
Blackening occurs by heat treatment at a relatively low temperature in the temperature range of 50 to 1000°C, but as the particle size increases, heat treatment at a relatively high temperature is required.

また本発明においては、シードが分散された水−アルコ
ール系分散液に、金属アルコキシドを添加する際に、水
−アルコール系分散液に、溶解あるいは分散する有機物
を添加しておき、この有機物を、シード上に金属アルコ
キシド分解生成物とともに付着させ、次いで得られる粒
子を250℃以上の温度に熱処理すると、得られる黒色
系粒子の色調をざらに黒色化することができる。あるい
はまた、分散液を乾燥することによって得られた白色系
粒子を熱処理する前に、この白色系粒子を有機物の溶液
に含浸して該粒子の細孔に有機物を(4看させた後に熱
処理することによっても、得られる黒色系粒子の色調を
さらに黒色化することができる。
Furthermore, in the present invention, when adding the metal alkoxide to the water-alcohol dispersion in which the seeds are dispersed, an organic substance that is dissolved or dispersed in the water-alcohol dispersion is added, and this organic substance is By depositing the metal alkoxide decomposition product on the seed and then heat-treating the resulting particles to a temperature of 250° C. or higher, the color tone of the resulting black particles can be roughly blackened. Alternatively, before heat-treating the white particles obtained by drying the dispersion, the white particles are impregnated with a solution of an organic substance, and the organic substance is introduced into the pores of the particles (after heating for 4 hours). By doing so, the color tone of the obtained black particles can be further blackened.

上記のようにして得られた黒色系粒子は、JIS  Z
  8701−82に準拠して測定した色の三刺激値X
、Y、Zに基いて表示される色の明るさに相当するY値
が、通常、10%以下の値を有しており、非常に黒色性
に優れている。
The black particles obtained as described above are JIS Z
Color tristimulus value X measured in accordance with 8701-82
, Y, and Z, which corresponds to the brightness of the color displayed, usually has a value of 10% or less, and has excellent blackness.

前記の製造方法によって得られる被メツキ用粒子は、そ
の粒子径が0.1〜10μ瓦でその粒度分布がシャープ
(σ≦0.5)であるため、この粒子表面に金属メッキ
を施して得られる導電性充填材は、導電性ポリマー、導
電性ゴム、導電性プラスデック、導電性塗料、導電性接
着剤等に添加した場合の分散性が良好であり、しかも導
電性充填材としての性能に優れている。
The particles to be plated obtained by the above production method have a particle size of 0.1 to 10μ and a sharp particle size distribution (σ≦0.5), so the particles can be obtained by applying metal plating to the surface of the particles. The conductive filler has good dispersibility when added to conductive polymers, conductive rubber, conductive plus deck, conductive paints, conductive adhesives, etc., and has excellent performance as a conductive filler. Are better.

上記のようにして得られる被メツキ用粒子の表面に金属
メッキを施すには、化学メッキなど従来公知の方法を採
用することができる。金属メッキ層の厚さは、100Å
以上でおることが好ましい。
In order to apply metal plating to the surfaces of the particles to be plated obtained as described above, conventionally known methods such as chemical plating can be employed. The thickness of the metal plating layer is 100 Å
It is preferable to stay above.

金属メッキ層の厚さが100人未満であると、得られる
導電性充填材の導電性が低くなるため好ましくない。
If the thickness of the metal plating layer is less than 100, the conductivity of the resulting conductive filler becomes low, which is not preferable.

金属メッキをする金属としては、具体的には、白金、金
、銀、銅、ニッケル、パラジウム等が用いられる。また
種類の異なる金属を順次メッキして多層の金属メッキ層
とすることもできる。
Specifically, platinum, gold, silver, copper, nickel, palladium, etc. are used as the metal for metal plating. It is also possible to sequentially plate different types of metals to form a multilayer metal plating layer.

化学メッキにより被メツキ用粒子の表面に金属メッキを
施す具体的方法の一例を述べるならば、アンモニア性硝
酸金属塩水溶液中に該粒子を十分に分散させ、ホルマリ
ン等の還元性を有する有機化合物で還元して金属を該粒
子表面上に均一に析出させて付着させることにより、該
粒子の表面に金属メッキを形成づ−ることかできる。こ
の際、析出する金属量と金属メッキを施ず該粒子量の比
率を適当に調節することにより、種々の体積固有抵抗の
ものが得られる。
An example of a specific method for applying metal plating to the surface of particles to be plated by chemical plating is to sufficiently disperse the particles in an aqueous ammoniacal nitrate metal salt solution, and then coat the particles with a reducing organic compound such as formalin. Metal plating can be formed on the surfaces of the particles by reducing and depositing the metal uniformly on the surfaces of the particles. At this time, by appropriately adjusting the ratio between the amount of metal to be precipitated and the amount of particles without metal plating, materials having various volume resistivities can be obtained.

金属メッキの密着性を向上させたいときには、前記の被
メツキ用粒子の製造方法において金属アルコキシド添加
の際に水−アルコール混合液に分散または溶解可能なメ
ッキ金属の酸性金属塩を少量同時に添加すれば良い。あ
るいは、得られた被メツキ用粒子に酸性金属塩を含浸さ
せても良い。
When it is desired to improve the adhesion of metal plating, it is possible to simultaneously add a small amount of an acidic metal salt of the plating metal that can be dispersed or dissolved in the water-alcohol mixture when adding the metal alkoxide in the above method for producing particles to be plated. good. Alternatively, the obtained particles for plating may be impregnated with an acidic metal salt.

このようにして得られた、被メツキ用粒子の表面に金属
メッキ層を有する(a)導電性充填材を、(b)ベース
樹脂そして必要に応じて(c)希釈剤中に分散すること
により、本発明で用いられる導電性樹脂組成物が得られ
る。
By dispersing (a) a conductive filler having a metal plating layer on the surface of the particles to be plated thus obtained, in (b) a base resin and optionally (c) a diluent. , the conductive resin composition used in the present invention is obtained.

本発明で用いられる(b)ベース樹脂としては、具体的
には、メタクリル樹脂等のアクリル系樹脂、ポリウレタ
ン系樹脂、ユリア樹脂、メラミン樹脂等のアミン系樹脂
、ポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイ
ミド系樹脂、ポリウレタン系樹脂、アルキッド樹脂等の
ポリエステル系樹脂、エポキシ系樹脂、塩素化ポリエー
テル樹脂等の塩素化物樹脂、ポリエチレン樹脂、ポリプ
ロピレン樹脂等のポリオレフィン系樹脂、ポリカーボネ
ート系樹脂、シリコーン系樹脂、ポリスチレン系樹脂、
ABS系樹脂、ポリアミンスルフォン樹脂、ポリエーテ
ルスルフォン樹脂、ポリフェニレンスルフ汁ン樹脂等の
ポリウレタン系樹脂、塩化ビニル樹脂、塩化ビニリデン
樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポ
リビニルカルバゾール樹脂、ブヂラール樹脂等のビニル
系樹脂、フッ素系樹脂、ポリフェニレンオキシド系樹脂
、ポリピロール系樹脂、ポリファラフエニレン系樹脂、
紫外線硬化樹脂、あるいはセルロース誘導体等が用いら
れる。また前記樹脂の混合物あるいは前記樹脂の重合体
または共重合体、例えばスチレン−ブタジェンゴム、ブ
タジェンゴム、イソプレンゴム、エチレン−プロピレン
共重合体、エチレン−プロピレン−ジエン共重合体、ア
クリロニトリル−ブタジェン共重合体、クロロプレンゴ
ム、ブチルゴム、ウレタンゴム、シリコーンゴム、多硫
化ゴム、フッ素ゴム、四フッ化エチレンープロピレンゴ
ム、アクリルゴム、クロロスルホン化ポリエチレン、エ
ビクロロヒドリンゴム、プロピレンオギサイドゴム、エ
チレン−酢酸ビニルゴム、エチレン−アクリルゴム、液
状ゴム、シンジオタクチック−1,2−ポリブタジェン
ゴム、ノルボルネンゴム、熱可塑性エラストマー等を1
種または2種以上組合わせて使用できる。
Specific examples of the base resin (b) used in the present invention include acrylic resins such as methacrylic resins, polyurethane resins, urea resins, amine resins such as melamine resins, polyamide resins, polyimide resins, and polyamide resins. Polyester resins such as imide resins, polyurethane resins, alkyd resins, chlorinated resins such as epoxy resins and chlorinated polyether resins, polyolefin resins such as polyethylene resins and polypropylene resins, polycarbonate resins, silicone resins, polystyrene resin,
Polyurethane resins such as ABS resin, polyamine sulfone resin, polyether sulfone resin, polyphenylene sulfone resin, vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, polyvinyl alcohol resin, polyvinyl carbazole resin, butyral resin, etc. resin, fluorine resin, polyphenylene oxide resin, polypyrrole resin, polyphalaphenylene resin,
Ultraviolet curing resin, cellulose derivatives, etc. are used. Also, mixtures of the above resins or polymers or copolymers of the above resins, such as styrene-butadiene rubber, butadiene rubber, isoprene rubber, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, acrylonitrile-butadiene copolymer, chloroprene Rubber, butyl rubber, urethane rubber, silicone rubber, polysulfide rubber, fluororubber, tetrafluoroethylene-propylene rubber, acrylic rubber, chlorosulfonated polyethylene, shrimp chlorohydrin rubber, propylene oxyside rubber, ethylene-vinyl acetate rubber, ethylene-acrylic Rubber, liquid rubber, syndiotactic-1,2-polybutadiene rubber, norbornene rubber, thermoplastic elastomer, etc.
It can be used as a species or in combination of two or more species.

(a)導電性充填材と、(b)ベース樹脂との混合割合
は、両者の全体重量に対して(a)導電性充填材が、0
.0’1重量%〜20.O重量%、好ましくは0.1重
量%〜15.O重量%の量であることが望ましい。(a
)導電性充填材が0.01重量%未満では、得られる導
電性樹脂組成物の導電性が悪くなるため好ましくなく、
一方20.0重量%を越えると導電性樹脂組成物と基材
との密着性が悪くなるため好ましくない。また高い透明
性が要求される用途では、(a)導電性充填材の量を0
.1重量%〜5.0重量%にすることが好ましい。(a
)導電性充填材の量が5.0重量%を越えると、得られ
る導電性樹脂組成物の透明性が悪くなるからである。
The mixing ratio of (a) conductive filler and (b) base resin is such that (a) conductive filler is 0% relative to the total weight of both.
.. 0'1% by weight - 20. 0% by weight, preferably from 0.1% to 15. Preferably, the amount is 0% by weight. (a
) If the content of the conductive filler is less than 0.01% by weight, the conductivity of the resulting conductive resin composition will deteriorate, which is not preferable.
On the other hand, if it exceeds 20.0% by weight, the adhesion between the conductive resin composition and the base material will deteriorate, which is not preferable. In addition, in applications that require high transparency, (a) the amount of conductive filler can be reduced to 0.
.. The content is preferably 1% to 5.0% by weight. (a
) If the amount of the conductive filler exceeds 5.0% by weight, the resulting conductive resin composition will have poor transparency.

本発明で用いられる導電性樹脂組成物は、前記の各成分
が必要に応じて(c)希釈剤中に溶解あるいは分散され
ている。この(c)希釈剤としては、(b)ベース樹脂
を溶解または希釈しうるちのであれば用いることができ
る。具体的には、メタノール、エタノール、n−プロパ
ツール、i−プロパツール、n−ブタノール、i−ブタ
ノール、ジアセトンアルコール、シクロヘキサノール、
エチレングリコール、プロピレングリコール、ヘキシレ
ングリコール等のアルコール類、アセトン、シクロヘキ
サノン、メチルエチルケトン、メチルイソブチルケトン
、ホロン、イソホロン等のケトン類、エチレングリコー
ルモノメチルエーテル、エチレングリコールモノエチル
エーテル、カルピトール、メチルカルピトール、ブチル
カルピトール、ジオキサン等のエーテル類、酢酸エチル
等のエステル類、ヘキサン、シクロヘキサン等の石油ナ
フサ類、トルエン、キシレン、ソルベントナフサ等のペ
ンゾール類、N−メチル−2−ピロリドンおよびその誘
導体等が単独あるいは組合わせて用いられる。このよう
な(c)希釈剤は、種々の用途に加工しやすい粘性を与
えるような量で用いられる。また(b)ベース樹脂とし
て水溶性樹脂を用いた場合には、(c)希釈剤として水
を用いることもできる。
In the conductive resin composition used in the present invention, each of the above-mentioned components is dissolved or dispersed in (c) a diluent, if necessary. Any diluent (c) can be used as long as it can dissolve or dilute the base resin (b). Specifically, methanol, ethanol, n-propertool, i-propertool, n-butanol, i-butanol, diacetone alcohol, cyclohexanol,
Alcohols such as ethylene glycol, propylene glycol, hexylene glycol, ketones such as acetone, cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, holon, isophorone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, calpitol, methyl calpitol, butyl Ethers such as carpitol and dioxane, esters such as ethyl acetate, petroleum naphthas such as hexane and cyclohexane, pensoles such as toluene, xylene and solvent naphtha, N-methyl-2-pyrrolidone and its derivatives, etc. alone or Used in combination. Such (c) diluent is used in an amount to provide a viscosity that is easy to process for various applications. Furthermore, when (b) a water-soluble resin is used as the base resin, water can also be used as the diluent (c).

本発明に係る導電性樹脂組成物を製造するには、前記の
ような(a)導電性充填材および(b)ベース樹脂を、
必要に応じて(c)希釈剤に加えて均一に混合すれば良
い。ざらに必要に応じて、導電性充填Hの分散性を向上
させ凝集を防止するため、アニオン系、ノニオン系、カ
チオン系等の界面活性剤、あるいはシラン系、チタン系
、アルミニウム系、ジルコニウム系、マグネシウム系の
カップリング剤を添加することができる。
In order to produce the conductive resin composition according to the present invention, (a) the conductive filler and (b) the base resin as described above,
If necessary, it may be added to (c) diluent and mixed uniformly. If necessary, in order to improve the dispersibility of the conductive filler H and prevent agglomeration, anionic, nonionic, cationic surfactants, silane-based, titanium-based, aluminum-based, zirconium-based, etc. A magnesium-based coupling agent can be added.

このようにして得られた導電性樹脂組成物を、基材上に
、該組成物に含まれている(a)導電性充填材の粒径と
ほぼ等しい膜厚に塗布するなどして膜状に形成すると、
本発明に係る異方導電性膜が得られる。
The conductive resin composition obtained in this manner is coated onto a substrate to a thickness that is approximately equal to the particle size of the conductive filler (a) contained in the composition to form a film. When formed into
An anisotropically conductive film according to the present invention is obtained.

この際導電性樹脂組成物に前述したような(c)希釈剤
を含ませて塗布しやすいような粘度としておき、該組成
物をワイヤバー法、スクリーン印刷法などの従来公知の
塗布法により、基板上に塗イfiすることによって、本
発明に係る異方導電性膜を形成することが好ましい。
At this time, the conductive resin composition is impregnated with the diluent (c) as described above to have a viscosity that makes it easy to coat, and the composition is applied to the substrate by a conventionally known coating method such as a wire bar method or a screen printing method. It is preferable to form the anisotropically conductive film according to the present invention by coating on top.

本発明に係る異方導電性膜の模式図を第1図に示すと、
たとえば基材1上に異方導電性膜2が設けられており、
この異方導電性膜2は、(a)導電性充填材と(b)ベ
ース樹脂とからなっている。この異方導電性膜の膜厚d
は、(a)導電性充填材の粒径とほぼ等しく形成されて
いる。
A schematic diagram of the anisotropically conductive film according to the present invention is shown in FIG.
For example, an anisotropic conductive film 2 is provided on a base material 1,
This anisotropically conductive film 2 consists of (a) a conductive filler and (b) a base resin. The thickness d of this anisotropic conductive film
is formed to have approximately the same particle size as the conductive filler (a).

このような異方導電性膜2では、厚み方向(縦方向)で
は(a)導電性充填材を介して電流が流れるため大きな
導電性を有し、一方長さ方向(横方向)では導電性は小
さく、方向によって導電率が異なっている。
Such an anisotropic conductive film 2 has high conductivity in the thickness direction (vertical direction) because current flows through (a) the conductive filler, while it has high conductivity in the length direction (horizontal direction). is small, and the conductivity differs depending on the direction.

ここでもし基板1と異方導電性膜2との間に、インジウ
ム−スズ酸化物などの導電膜を介在させると、この導電
膜と異方導電性膜とにより、異方導電性電極が得られる
If a conductive film such as indium-tin oxide is interposed between the substrate 1 and the anisotropically conductive film 2, an anisotropically conductive electrode can be obtained by this conductive film and the anisotropically conductive film. It will be done.

発明の効果 本発明に係る異方導電性膜では、膜に導電性を付与する
ために導電性樹脂組成物中に含まれている導電性充填材
はベース樹脂との比重差が小さく分散性が良好であり、
しかも安価である。
Effects of the Invention In the anisotropic conductive film according to the present invention, the conductive filler contained in the conductive resin composition in order to impart conductivity to the film has a small difference in specific gravity from the base resin and has low dispersibility. in good condition,
Moreover, it is inexpensive.

以下本発明を実施例により説明するが、本発明はこれら
実施例に限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 エチルアルコール4879と水389gとの混合液を撹
拌しなから35°Cに保ち、この混合液にアンモニアガ
ス71.iを溶解させた。この混合液に28%エチルシ
リケート17.4gを加え、その後2時間撹拌を続けて
SiO2換算として0.5重量%に相当するシード粒子
が分散した白濁液を得た。
Example 1 A mixture of 4,879 g of ethyl alcohol and 389 g of water was kept at 35°C without stirring, and 71 g of ammonia gas was added to the mixture. i was dissolved. 17.4 g of 28% ethyl silicate was added to this mixed solution, and stirring was continued for 2 hours to obtain a cloudy white liquid in which seed particles equivalent to 0.5% by weight in terms of SiO2 were dispersed.

この白濁液に直ちにNaOH0,039が溶解した水溶
液3.3gを加え、シード粒子が水−アルコール分散液
中に分散したヒールゾル(A>を1qだ。
Immediately, 3.3 g of an aqueous solution in which NaOH0,039 was dissolved was added to this cloudy liquid, and 1 q of heel sol (A>) in which seed particles were dispersed in a water-alcohol dispersion was prepared.

得られたヒールゾル(A>のうち9’lを撹拌下35°
Cに保ち、アンモニアガスでpHを11.5にコントロ
ールしながら、エチルアルコール455gと水886g
との混合液および28%エチルシリケート5709を同
時に19時間かけて徐々に添加した。全量添加後、液中
に、NaOH1gが溶解した水溶液1039を加え、こ
れを70℃に加熱して2時間保持し分散液(I>を得た
。この分散液(I>を200℃で乾燥し粉末粒子■を得
た。この粉末粒子■は、粒子径が2.0μmでσ−0,
1μmであった。
9'l of the obtained heel sol (A>) was heated at 35° while stirring.
455 g of ethyl alcohol and 886 g of water while controlling the pH to 11.5 with ammonia gas.
and 28% ethyl silicate 5709 were simultaneously added gradually over 19 hours. After adding the entire amount, an aqueous solution 1039 in which 1 g of NaOH was dissolved was added to the liquid, and this was heated to 70°C and held for 2 hours to obtain a dispersion (I>. This dispersion (I>) was dried at 200°C. Powder particles (■) were obtained.The powder particles (■) had a particle size of 2.0 μm and σ-0,
It was 1 μm.

一方24重量%のアンモニア水溶液28dを水800g
で希釈した液に、硝酸銀29.29を溶解した。撹拌下
にある水6009に粉末粒子■209を加え、さらに前
記アンモニア性硝酸銀水溶液を添加して充分分散させた
。この混合液を攪拌しながら、30%ホルマリン32.
8dを水180gで希釈した液を滴下し、粉末粒子表面
に銀メッキを施した。次いで、濾過洗浄後90℃で乾燥
させて導電性充填材を得た。得られた導電性充填材は、
比重3.12であり、メッキ膜の厚さは400人であり
、比抵抗は3×10−3Ω・cmであった。
On the other hand, add 28 d of 24 wt% ammonia aqueous solution to 800 g of water.
In the diluted solution, 29.29 g of silver nitrate was dissolved. Powder particles (1) 209 were added to water 6009 under stirring, and the ammoniacal silver nitrate aqueous solution was added to thoroughly disperse the mixture. While stirring this mixture, add 30% formalin 32.
A solution prepared by diluting 8d with 180 g of water was dropped onto the surface of the powder particles, and the surfaces of the powder particles were plated with silver. Then, after filtering and washing, it was dried at 90°C to obtain a conductive filler. The obtained conductive filler is
The specific gravity was 3.12, the thickness of the plating film was 400 mm, and the specific resistance was 3×10 −3 Ω·cm.

得られた導電性充填材1.0gと、メチルエチルケトン
/トルエン(重量化1/1)75yと、エポキシ樹脂(
商品名:エピコート、油化シェル製〉49gとをホモジ
ナイザーで充分分散して導電性樹脂組成物を得た。この
塗料を、ITO硝子板に硬化後の膜厚が1.9μmとな
るようにワイヤーバーで塗布し、160℃5分間硬化さ
せて異方導電性膜を)qた。この膜が形成されたITO
硝子板の抵抗を、電極セル(Y)−(P製)で測定した
1.0 g of the obtained conductive filler, 75 y of methyl ethyl ketone/toluene (weighted 1/1), and epoxy resin (
Trade name: Epicoat, manufactured by Yuka Shell Co., Ltd.>49g was sufficiently dispersed using a homogenizer to obtain a conductive resin composition. This paint was applied to an ITO glass plate using a wire bar so that the film thickness after curing would be 1.9 μm, and was cured at 160° C. for 5 minutes to form an anisotropically conductive film. ITO on which this film was formed
The resistance of the glass plate was measured using an electrode cell (Y)-(manufactured by P).

得られた異方導電性膜の縦方向の抵抗は、2×10 Ω
、横方向の抵抗は、5X1014Ωであった。
The longitudinal resistance of the obtained anisotropic conductive film was 2 × 10 Ω.
, the lateral resistance was 5×10 14 Ω.

実施例2 実施例1で得られた分散液(I>1”14gを攪拌下3
5℃に保ち、エチルアルコール63gと水51gを加え
アンモニアガスでF)Hll、5にコントロールしなが
ら、エチルアルコール638gと水8149との混合液
および28%エチルシリケート325gを同時に19時
間かけて徐々に添加した。全量添加後、液中にNaOH
0,7gが溶解した水溶液657を加え、これを70℃
に加熱して2時間保持しヒールゾル(B)を得た。
Example 2 14 g of the dispersion obtained in Example 1 (I>1") was stirred for 3
While keeping the temperature at 5°C, add 63 g of ethyl alcohol and 51 g of water, and while controlling the F Added. After adding the entire amount, add NaOH to the solution.
Add an aqueous solution 657 in which 0.7 g of
Heel sol (B) was obtained by heating and holding for 2 hours.

このヒールゾル(B)94..6yを攪拌下65℃に保
ち、エチルアルコール116qと水95gを加えアンモ
ニアガスでl)Hを11.5にコントロールしながら、
エチルアルコール307gと水438gとの混合液およ
び28%エチルシリケート207gを同時に19時間か
けて徐々に添加した。全量添加後、液中にNaOHO,
iが溶解した水溶液659を加え、これを70℃に加熱
して2時間保持し分散液(II)を得た。
This heal sol (B) 94. .. 6y was maintained at 65°C with stirring, 116q of ethyl alcohol and 95g of water were added, and while controlling l)H to 11.5 with ammonia gas,
A mixture of 307 g of ethyl alcohol and 438 g of water and 207 g of 28% ethyl silicate were simultaneously added gradually over 19 hours. After adding the entire amount, NaOHO,
An aqueous solution 659 in which i was dissolved was added, and the mixture was heated to 70°C and held for 2 hours to obtain a dispersion (II).

得られた分散液(II)1126gを攪拌下65°Cに
保ち、この分散液(II>にエチルアルコール1558
と水127gを加えアンモニアガスでt)Hを11.5
にコントロールしながら、エチルアルコール1643と
水275qとの混合液および28%エチルシルケート1
56gを同時に19時間かけて徐々に添加した。全量添
加後、液中にNaOH0,7gが溶解した水溶液65g
を加え、これを70℃に加熱して2時間保持して、ヒー
ルゾル(c)を得た。
1,126 g of the obtained dispersion (II) was kept at 65°C with stirring, and 1,558 g of ethyl alcohol was added to the dispersion (II).
Add 127 g of water and reduce t)H to 11.5 with ammonia gas.
A mixture of 1643 ethyl alcohol and 275 q of water and 28% ethyl silicate 1
56 g were simultaneously added slowly over 19 hours. After adding the entire amount, 65 g of an aqueous solution with 0.7 g of NaOH dissolved in the liquid.
was added and heated to 70°C and held for 2 hours to obtain heelsol (c).

このヒールゾル(c)1321を攪拌下65°Cに保ち
、エチルアルコール185gと水1519を加えアンモ
ニアガスでI)Hを11.5にコントロールしながら、
エチルアルコール939と水150gとの混合液および
28%エチルシリケート82gを同時に19時間かけて
徐々に添加した。
This Healsol (c) 1321 was kept at 65 ° C while stirring, 185 g of ethyl alcohol and 1519 of water were added, and while controlling I)H to 11.5 with ammonia gas,
A mixed solution of 939 g of ethyl alcohol and 150 g of water and 82 g of 28% ethyl silicate were simultaneously added gradually over 19 hours.

全量添加後、液中にNa O80,6SFが溶解した水
溶液58gを加え、これを70℃に加熱して2時間保持
し分散液(I)を得た。この分散液(III)を200
℃で乾燥し粉末粒子■を得た。この粉末粒子■は、粒子
径が7.9μmで、σ−0,2μ瓦であった。
After adding the entire amount, 58 g of an aqueous solution in which NaO80,6SF was dissolved was added, and the mixture was heated to 70°C and held for 2 hours to obtain a dispersion (I). This dispersion (III) was added to
It was dried at ℃ to obtain powder particles (■). The powder particles (1) had a particle size of 7.9 μm and a σ-0.2 μm tile.

一方24重量%のアンモニア水溶液28Inlを水ao
ogで希釈した液に、硝酸銅38.09を溶解した。攪
拌下にある水6009に粉末粒子■15gを加え、さら
に前記アンモニア性硝酸銅水溶液を添加して充分分散さ
せた。この混合液を攪拌しながら、30%ホルマリン3
2.8rId!を水180gで希釈した液を滴下し、粉
末粒子表面に銅メッキを施した。次いで、濾過洗浄後9
0℃で乾燥させて導電性充填材を得た。得られた導電性
充填材は、比重2.40であり、メッキ膜の厚さは40
0人であり、比抵抗は5X10’Ω・ctnであった。
On the other hand, add 28 Inl of 24% by weight ammonia aqueous solution to water ao
Copper nitrate (38.09 g) was dissolved in the solution diluted with O.G. 15 g of powder particles (1) were added to Water 6009 under stirring, and the ammoniacal copper nitrate aqueous solution was added to thoroughly disperse the mixture. While stirring this mixture, add 30% formalin 3
2.8rId! A solution prepared by diluting the powder with 180 g of water was dropped onto the powder particles, and the surfaces of the powder particles were plated with copper. Then, after filtration and washing 9
A conductive filler was obtained by drying at 0°C. The obtained conductive filler has a specific gravity of 2.40, and the thickness of the plating film is 40.
There were 0 people, and the specific resistance was 5×10'Ω·ctn.

得られた導電性充填材4.0gと、メチルイソブチルケ
トン/酢酸エチル/エチレングリコールモノブチルエー
テル(重量比4/3/3)1259と、アクリル樹脂(
商品名ニアクリデックA307、大日本インキ化学工業
(株)製)96gとを三本ロールで充分に分散して導電
性樹脂組成物を得た。この塗料を、NESAフィルムに
硬化後の膜厚が7.7μmとなるようにスクリーン印刷
し、110℃10分間硬化させて異方導電性膜を得た。
4.0 g of the obtained conductive filler, 1259 methyl isobutyl ketone/ethyl acetate/ethylene glycol monobutyl ether (weight ratio 4/3/3), and acrylic resin (
A conductive resin composition was obtained by thoroughly dispersing 96 g of Niacrydec A307 (trade name, manufactured by Dainippon Ink and Chemicals Co., Ltd.) using a triple roll. This coating material was screen printed on a NESA film so that the film thickness after curing would be 7.7 μm, and was cured at 110° C. for 10 minutes to obtain an anisotropically conductive film.

この膜が形成されたNESAフィルムの抵抗を、電極セ
ル(YHP製)で測定した。得られた異方導電性膜の縦
方向の抵抗は、4X103Ω、横方向の抵抗は、7X1
015Ωであった。
The resistance of the NESA film on which this film was formed was measured using an electrode cell (manufactured by YHP). The longitudinal resistance of the obtained anisotropic conductive film was 4X103Ω, and the horizontal resistance was 7X1.
It was 0.015Ω.

実施例3 実施例1で得られた粉末粒子■を、空気雰囲気下で35
0℃3時間熱処理して黒色系粒子を得た。
Example 3 The powder particles obtained in Example 1 were heated to 35% in an air atmosphere.
Heat treatment was performed at 0° C. for 3 hours to obtain black particles.

得られた黒色系粒子は、JIS  Z  8701によ
って定義されるY値が7.0%であった。
The obtained black particles had a Y value of 7.0% as defined by JIS Z 8701.

一方24重量%のアンモニア水溶液28m1を水800
gで希釈した液に、硝酸銅19.4gを溶解した。攪拌
下にある水6007に黒色系粒子209を加え、ざらに
前記アンモニア性硝酸銅水溶液を添加して充分分散させ
た。この混合液を攪拌しながら、30%ホルマリン32
.8mf!を水1809で希釈した液を滴下し、粉末粒
子表面に銅メッキを施した。次いで、濾過洗浄後90℃
で乾燥させて銅メツキ粒子を得た。この銅メツキ粒子の
メッキ膜の厚さは200人であった。
On the other hand, add 28ml of 24% by weight ammonia aqueous solution to 800ml of water.
19.4 g of copper nitrate was dissolved in the diluted solution. Black particles 209 were added to water 6007 under stirring, and the ammoniacal copper nitrate aqueous solution was roughly added to sufficiently disperse the particles. While stirring this mixture, 30% formalin 32
.. 8mf! A solution obtained by diluting the powder with water 1809 was added dropwise, and the surfaces of the powder particles were plated with copper. Then, after filtration and washing, 90°C
was dried to obtain copper-plated particles. The thickness of the plating film of the copper plating particles was 200 mm.

次に24%アンモニア水溶液28dを水800びで希釈
した液に、硝酸銀18.0gを溶解した。
Next, 18.0 g of silver nitrate was dissolved in a solution prepared by diluting 28 d of a 24% ammonia aqueous solution with 800 g of water.

攪拌下にある水6009に前記銅メツキ粒子を加え、さ
らに前記アンモニア性硝酸銀水溶液を添加して充分分散
させた。この混合液を攪拌しながら、30%ホルマリン
32.8dを水1809で希釈した液を滴下し、銅メツ
キ粒子表面に銀メッキを施した。次いで、濾過洗浄後9
0℃で乾燥させて導電性充填材を得た。この導電性充填
材は、比重3.03であり、銀メッキ膜の厚さは200
人であり、比抵抗は1×10−3Ω・cmであった。
The copper plating particles were added to water 6009 under stirring, and the ammoniacal silver nitrate aqueous solution was further added to sufficiently disperse the particles. While stirring this mixed solution, a solution prepared by diluting 32.8 d of 30% formalin with 180 9 d of water was dropped, and the surface of the copper plating particles was plated with silver. Then, after filtration and washing 9
A conductive filler was obtained by drying at 0°C. This conductive filler has a specific gravity of 3.03, and the thickness of the silver plating film is 200.
It was a human being, and its specific resistance was 1×10 −3 Ω·cm.

得られた導電性充填材0.2gと、シクロヘキサノン/
酢酸エチル/エチレングリコールモノエチルエーテル(
重量比1/1/1 )909と、エポキシ樹脂(商品名
:アラルダイト、チバガイギー製)49.857とを高
速ディスパーザ−で充分に分散して導電性樹脂組成物を
得た。この塗料を、アルミ板に硬化後の膜厚が1.9μ
mとなるようにワイヤーバーで塗布し、180℃5分間
硬化させて異方導電性膜を得た。この膜が形成されたア
ルミ板の抵抗を、電極セル(YHP製)で測定した。異
方導電性膜の縦方向の抵抗は、1×10−3Ω、横方向
の抵抗は、1×1016Ωであった。
0.2 g of the obtained conductive filler and cyclohexanone/
Ethyl acetate/ethylene glycol monoethyl ether (
A conductive resin composition was obtained by sufficiently dispersing 909 (weight ratio 1/1/1) and epoxy resin (trade name: Araldite, manufactured by Ciba Geigy) 49.857 using a high-speed disperser. This paint was applied to an aluminum plate with a film thickness of 1.9 μm after curing.
The film was coated with a wire bar so as to have a thickness of m, and was cured at 180° C. for 5 minutes to obtain an anisotropic conductive film. The resistance of the aluminum plate on which this film was formed was measured using an electrode cell (manufactured by YHP). The longitudinal resistance of the anisotropic conductive film was 1×10 −3 Ω, and the lateral resistance was 1×10 16 Ω.

実施例4 エチルアルコール487gと水389gと硝酸ニッケル
六水塩0.02!7どの混合液を攪拌しながら35°C
に保ち、この混合液にアンモニアガス71、7gを溶解
させた。この混合液に28%エチルシリケート17.4
!?を加え、その後2時間攪拌を続(プてSiO2換算
として0.5重量%に相当するシード粒子が分散した白
濁液を得た。この白濁液に直ちにNa1l−(0,03
gが溶解した水溶液3.33を加え、シード粒子が水−
アルコール分散液中に分散したヒールゾル(D)を得た
。得られたヒールゾル(D)のうち973を攪拌下35
°Cに保ち、アンモニアガスでl)Hを11.5にコン
トロールしながら、エチルアルコール455gと28%
エチルシリケート5707との混合液、及び水886g
と硝酸ニッケル穴水塩0.63gとの混合液を同時に1
9時間かけて徐々に添加した。全量添加後、液中にNa
 0HIJが溶解した水溶液1039を加え、これを7
0℃に加熱して2時間保持し分散液(IV>を得た。得
られた分散液(IV)のうち114qを攪拌下35°C
に保ち、エチルアルコール63gと水51gを加えアン
モニアガスでpHを11.5にコントロールしながら、
エチルアルコール6383と28%エチルシリケート3
25gとの混合液及び水8149と硝酸ニッケル六水塩
0.3CIとの混合液を同時に19時間かけて徐々に添
加した。全量添加後、液中にNa OH0,73が溶解
した水溶液653を加え、これを70℃に加熱して2時
間保持しヒールゾル(E)を得た。得られたヒールゾル
(E)のうち94.69を攪拌下65°Cに保ち、エチ
ルアルコール116Jと水959を加えアンモニアガス
で叶1を11.5にコントロールしながら、エチルアル
コール3073と28%エチルシリケート207gとの
混合液、及び水4387と硝酸ニッケル穴水塩0.23
gとの混合液を同時に19時間かけて徐々に添加した。
Example 4 A mixture of 487 g of ethyl alcohol, 389 g of water, and 0.02!7 nickel nitrate hexahydrate was heated at 35°C while stirring.
71.7 g of ammonia gas was dissolved in this mixed solution. Add 17.4% of 28% ethyl silicate to this mixture.
! ? was added, followed by continued stirring for 2 hours (to obtain a white cloudy liquid in which seed particles equivalent to 0.5% by weight in terms of SiO2 were dispersed. Na1l-(0,03
Add 3.33 g of an aqueous solution in which the seed particles are dissolved in water.
A heelsol (D) dispersed in an alcohol dispersion was obtained. Of the obtained heel sol (D), 973 was stirred for 35 minutes.
While keeping the temperature at °C and controlling l)H to 11.5 with ammonia gas, add 455 g of ethyl alcohol and 28%
Mixed liquid with ethyl silicate 5707 and 886 g of water
and 0.63 g of nickel nitrate anhydrous salt at the same time.
It was added gradually over 9 hours. After adding the entire amount, Na
Add aqueous solution 1039 in which 0HIJ is dissolved, and add this to 7
It was heated to 0°C and held for 2 hours to obtain a dispersion (IV). 114q of the obtained dispersion (IV) was heated at 35°C with stirring.
63g of ethyl alcohol and 51g of water were added while controlling the pH to 11.5 with ammonia gas.
Ethyl alcohol 6383 and 28% ethyl silicate 3
A mixed solution of 25 g of water and a mixed solution of 8149 water and 0.3 CI of nickel nitrate hexahydrate were simultaneously added gradually over 19 hours. After adding the entire amount, an aqueous solution 653 in which NaOH0.73 was dissolved was added, and this was heated to 70° C. and held for 2 hours to obtain a heel sol (E). Of the obtained heel sol (E), 94.69 was kept at 65°C with stirring, 116 J of ethyl alcohol and 959 of water were added, and while controlling the height of heel 1 to 11.5 with ammonia gas, 3073 of ethyl alcohol and 28% ethyl were added. A mixture of 207 g of silicate, 4387 water and 0.23 nickel nitrate anhydrous salt
At the same time, the mixture with g was gradually added over 19 hours.

全量添加後、液中にNaOH0,7sが溶解した水溶液
65gを加え、これを70℃に加熱して2時間保持し分
散液(V)を得た。
After adding the entire amount, 65 g of an aqueous solution in which 0.7s of NaOH was dissolved in the solution was added, and this was heated to 70° C. and held for 2 hours to obtain a dispersion (V).

得られた分散液(V)のうち11269を攪拌下65°
Cに保ち、エチルアルコール1553と水127gを加
えアンモニアガスでI)Hを11.5にコントロールし
ながら、エチルアルコール164gと28%エチルシリ
ケート156gとの混合液、及び水2758と硝酸ニッ
ケル六水塩0.17gとの混合液を同時に19時間かけ
て徐々に添加した。全量添加後、液中にNa OH0,
73が溶解した水溶液653を加え、これを70℃に加
熱して2時間保持しヒールゾル(F)を得た。得られた
ヒールゾル(F)のうち13249を攪拌下65°Cに
保ち、エチルアルコール185gと水1517を加えア
ンモニアガスで1)l−1を11.5にコントロールし
ながら、エチルアルコール93gと28%エチルシリケ
ート82gとの混合液、及び水1509と硝酸ニッケル
穴水塩0.099との混合液を同時に19時間かけて徐
々に添加した。全量添加後、液中にNaOH0,69が
溶解した水溶液583を加え、これを70℃に加熱して
2時間保持し分散液< vr >を得た。この分散液(
vI)を200℃で乾燥し粉末粒子■を得た。この粉末
粒子■は、粒子径が8.011mで、0”=0.2μ7
77、であった。
11269 of the obtained dispersion (V) was stirred at 65°
C, add ethyl alcohol 1553 and water 127 g, and while controlling I)H to 11.5 with ammonia gas, a mixed solution of ethyl alcohol 164 g and 28% ethyl silicate 156 g, water 2758 and nickel nitrate hexahydrate. At the same time, a mixture of 0.17 g and 0.17 g was gradually added over 19 hours. After adding the entire amount, NaOH0,
An aqueous solution 653 in which 73 was dissolved was added, and this was heated to 70° C. and held for 2 hours to obtain Heal Sol (F). Of the obtained Healsol (F), 13249 was kept at 65 °C with stirring, 185 g of ethyl alcohol and 1517 of water were added, and while controlling l-1 to 11.5 with ammonia gas, 93 g of ethyl alcohol and 28% A mixture of 82 g of ethyl silicate and a mixture of 1,509 g of water and 0.099 g of nickel nitrate anhydrous salt were simultaneously added gradually over 19 hours. After adding the entire amount, an aqueous solution 583 in which NaOH0,69 was dissolved was added, and this was heated to 70°C and held for 2 hours to obtain a dispersion <vr>. This dispersion (
vI) was dried at 200°C to obtain powder particles (■). This powder particle ■ has a particle diameter of 8.011 m, and 0'' = 0.2 μ7
It was 77.

一方24重量%のアンモニア水溶液28dを水800g
で希釈した液に、硝酸ニッケル穴水塩41、iを溶解し
た。攪拌下にある水60CH7に粉末粒子■20gを加
え、さらに前記アンモニア性硝酸ニッケル水溶液を添加
して充分分散させた。この混合液を攪拌しながら、30
%ホルマリン32.8mlを水180yで希釈した液を
滴下し、粉末粒子表面にニッケルメッキを施した。次い
で、濾過洗浄後90°Cで乾燥させてニッケルメッキ粒
子を得た。このニッケルメッキ粒子のメッキ膜の厚さは
200人であった。
On the other hand, add 28 d of 24 wt% ammonia aqueous solution to 800 g of water.
Nickel nitrate anhydrous salt 41,i was dissolved in the diluted solution. 20g of powder particles (1) were added to 60CH7 of water under stirring, and the ammoniacal nickel nitrate aqueous solution was added to thoroughly disperse the mixture. While stirring this mixture,
A solution obtained by diluting 32.8 ml of % formalin with 180 y of water was dropped, and the surfaces of the powder particles were plated with nickel. Next, the particles were filtered, washed, and dried at 90°C to obtain nickel-plated particles. The thickness of the plating film of these nickel-plated particles was 200 mm.

次に24重量%のアンモニア水溶液28dを水800g
で希釈した液に、シアン化金カリウム48.09を溶解
した。攪拌下にある水6009に前記ニッケルメッキ粒
子を加え、ざらに前記アンモニア性シアン化金カリウム
水溶液を添加して充分分散させた。この混合液を攪拌し
ながら、30%ホルマリン32.8威を水180Jで希
釈した液を滴下し、ニッケルメッキ粒子表面に金メッキ
を施した。次いで、濾過洗浄後90℃で乾燥させて導電
性充填材を得た。この導電性充填材は、比重4.43で
あり、金メッキ膜の厚さは2000人であり、比抵抗は
2X10’Ω・cmであった。
Next, add 28 d of 24 wt% ammonia aqueous solution to 800 g of water.
48.09 g of potassium gold cyanide was dissolved in the diluted solution. The nickel plating particles were added to water 6009 under stirring, and the ammoniacal gold potassium cyanide aqueous solution was added to the colander to thoroughly disperse the particles. While stirring this liquid mixture, a solution prepared by diluting 32.8 parts of 30% formalin with 180 J of water was dropped to plate the surfaces of the nickel-plated particles with gold. Then, after filtering and washing, it was dried at 90°C to obtain a conductive filler. This conductive filler had a specific gravity of 4.43, a thickness of the gold plating film of 2000 μm, and a specific resistance of 2×10′Ω·cm.

得られた導電性充填材7.09と、水1ooyと、水溶
性ビニル樹脂(商品名:ビニゾール、大同化成工業(株
)製)403とをホモジナイザーで充分に分散して導電
性樹脂組成物を得た。この塗料を、鉄板に硬化後の膜厚
が7.9μmとなるようにワイヤーバーで塗布し、12
0℃30分間硬化させて異方導電性膜を得た。この膜が
形成された鉄板の抵抗を、電極セル(YHP製)で測定
した。異方導電性膜の縦方向の抵抗は、3X10 Ω、
横方向の抵抗は、2X1014Ωであった。
The obtained conductive filler 7.09, 100 y of water, and water-soluble vinyl resin (trade name: Vinizol, manufactured by Daido Kasei Kogyo Co., Ltd.) 403 were sufficiently dispersed with a homogenizer to form a conductive resin composition. Obtained. This paint was applied to an iron plate with a wire bar so that the film thickness after curing was 7.9 μm.
It was cured at 0°C for 30 minutes to obtain an anisotropically conductive film. The resistance of the iron plate on which this film was formed was measured using an electrode cell (manufactured by YHP). The longitudinal resistance of the anisotropic conductive film is 3×10 Ω,
The lateral resistance was 2×10 14 Ω.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明により得られる異方導電性膜の断面図
である。 1・・・基板      2・・・異方導電性膜a・・
・導電性充填材  b・・・ベース樹脂代理人  弁理
士  鈴 本 俊一部 第  1  図
FIG. 1 is a cross-sectional view of an anisotropically conductive film obtained by the present invention. 1...Substrate 2...Anisotropic conductive film a...
・Conductive filler b...Base resin agent Patent attorney Shunichi Suzumoto Figure 1

Claims (1)

【特許請求の範囲】 1)金属酸化物あるいは金属水酸化物がシードとして分
散された水−アルコール系分散液に、該分散液をアルカ
リ性に保ちながら金属アルコキシドを添加して加水分解
し、前記シード上に金属アルコキシド分解生成物を付着
させて得られた粒子、あるいは前記粒子を250℃以上
で熱処理して得られた黒色系粒子の表面に、金属メッキ
を施してなる(a)導電性充填材が、(b)ベース樹脂
中に分散されてなる導電性膜であつて、この導電性薄膜
の膜厚が、前記(a)導電性充填材の粒径とほぼ等しい
ことを特徴とする異方導電性膜。2)金属酸化物あるい
は金属水酸化物がシードとして分散された水−アルコー
ル系分散液に、該分散液をアルカリ性に保ちながら金属
アルコキシドを添加して加水分解し、前記シード上に金
属アルコキシド分解生成物を付着させて得られた粒子、
あるいは前記粒子を250℃以上で熱処理して得られた
黒色系粒子の表面に、金属メッキを施してなる(a)導
電性充填材が(b)ベース樹脂中に分散されてなる導電
性樹脂組成物を、基材上に、該組成物に含まれる(a)
導電性充填材の粒径とほぼ等しい膜厚に形成することを
特徴とする異方導電性膜の製造方法。 3)前記導電性樹脂組成物が、さらに(c)希釈剤を含
むことを特徴とする特許請求の範囲第2項に記載の方法
[Scope of Claims] 1) A metal alkoxide is added to a water-alcohol dispersion in which metal oxides or metal hydroxides are dispersed as seeds and hydrolyzed while keeping the dispersion alkaline. (a) A conductive filler obtained by applying metal plating to the surface of particles obtained by adhering a metal alkoxide decomposition product thereon, or black particles obtained by heat-treating the particles at 250° C. or higher. (b) An anisotropic conductive film dispersed in a base resin, wherein the thickness of the conductive thin film is approximately equal to the particle size of the conductive filler (a). conductive film. 2) A metal alkoxide is added to a water-alcohol dispersion in which a metal oxide or metal hydroxide is dispersed as a seed, while keeping the dispersion alkaline, and hydrolyzed to produce metal alkoxide decomposition on the seed. Particles obtained by attaching things,
Alternatively, a conductive resin composition in which (a) a conductive filler is dispersed in (b) a base resin, which is obtained by applying metal plating to the surface of black particles obtained by heat-treating the particles at 250° C. or higher. (a) contained in the composition on a substrate.
A method for producing an anisotropically conductive film, characterized in that the film is formed to have a thickness approximately equal to the particle size of a conductive filler. 3) The method according to claim 2, wherein the conductive resin composition further contains (c) a diluent.
JP8435587A 1987-04-06 1987-04-06 Anisotropically conductive film and method for manufacturing the same Expired - Fee Related JPH0726032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8435587A JPH0726032B2 (en) 1987-04-06 1987-04-06 Anisotropically conductive film and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8435587A JPH0726032B2 (en) 1987-04-06 1987-04-06 Anisotropically conductive film and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPS63251470A true JPS63251470A (en) 1988-10-18
JPH0726032B2 JPH0726032B2 (en) 1995-03-22

Family

ID=13828207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8435587A Expired - Fee Related JPH0726032B2 (en) 1987-04-06 1987-04-06 Anisotropically conductive film and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0726032B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354126A (en) * 1989-07-20 1991-03-08 Hai Miller:Kk Production of powder coated with metallic oxide
JP2007297636A (en) * 2007-06-14 2007-11-15 Nippon Zeon Co Ltd Resin composition for anisotropic electric conduction
JP2008007590A (en) * 2006-06-28 2008-01-17 Mitsui Chemicals Inc Heat-conductive resin composition and its application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354126A (en) * 1989-07-20 1991-03-08 Hai Miller:Kk Production of powder coated with metallic oxide
JP2008007590A (en) * 2006-06-28 2008-01-17 Mitsui Chemicals Inc Heat-conductive resin composition and its application
JP2007297636A (en) * 2007-06-14 2007-11-15 Nippon Zeon Co Ltd Resin composition for anisotropic electric conduction

Also Published As

Publication number Publication date
JPH0726032B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
US8524786B2 (en) Process for producing fine silver particle colloidal dispersion, fine silver particle colloidal dispersion, and conductive silver film
US5997775A (en) Electrically conductive barium sulfate-containing composition and process of producing
JP2985286B2 (en) Flake glass having dense protective coating layer, method for producing the same, and paint containing the flake glass
KR101301634B1 (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP2002245854A (en) Colloidal solution of metal, and manufacturing method of the same
CN110170650B (en) Method for preparing high-compactness and completely-coated silver-coated copper powder
US7438835B2 (en) Transparent conductive film, coating liquid for forming such film, transparent conductive layered structure, and display device
JP3167119B2 (en) Manufacturing method of conductive barium sulfate
JP3832938B2 (en) Electroless silver plating powder and method for producing the same
KR100880742B1 (en) Spherical NiP micro-particles and producing method thereof, conductive particles for anisotropic conductive film
JPS63251470A (en) Anisotropically conductive film and production thereof
CN114260450A (en) Silver-plated micron-sized particles and preparation method and application thereof
CN1132885C (en) Process for preparing conducting light colour flaky pigment
JP3536788B2 (en) Manufacturing method of metal coated powder
JPS63251469A (en) Electrically conductive resin composition
WO2017012177A1 (en) Precious metal-silicon composite powder prepared by means of galvani reaction, and application thereof
US20030089199A1 (en) Copper powder for electrically conductive paste
JP2571222B2 (en) Method for producing conductive filler
JPH10101962A (en) Electroconductive electrolessly plated powder
JP3498184B2 (en) Highly conductive composition
JP2005502183A (en) Particularly conductive particles dispersed in a liquid medium, and a method for producing the same
JP4046785B2 (en) Non-conductive carbonaceous powder and method for producing the same
CN107216775B (en) A kind of electromagnetic screen coating and preparation method thereof
CN112719264A (en) Preparation method of polystyrene/silver composite microspheres
JP3350116B2 (en) Method for producing conductive fine particles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees