JPH10101962A - Electroconductive electrolessly plated powder - Google Patents
Electroconductive electrolessly plated powderInfo
- Publication number
- JPH10101962A JPH10101962A JP27395396A JP27395396A JPH10101962A JP H10101962 A JPH10101962 A JP H10101962A JP 27395396 A JP27395396 A JP 27395396A JP 27395396 A JP27395396 A JP 27395396A JP H10101962 A JPH10101962 A JP H10101962A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- electroless plating
- conductive
- metal
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
- H05K1/095—Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/321—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、プラスチック材料
に分散配合して電子機器類の微小部位を電気的接続する
優れた耐湿安定性を有する導電性無電解めっき粉体に関
し、例えばACF(異方導電フィルム)やHSC(ヒー
トシールコネクター)等の目的に好適な優れた耐熱性、
分散性、密着性ならびに高導電性能を付与する導電性無
電解めっき粉体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroless electroless plating powder having excellent moisture resistance, which is dispersed and blended in a plastic material to electrically connect minute parts of electronic equipment. Excellent heat resistance suitable for purposes such as conductive film) and HSC (heat seal connector),
The present invention relates to a conductive electroless plating powder that imparts dispersibility, adhesion, and high conductivity.
【0002】[0002]
【従来の技術】導電性を付与したプラスチックス材料
は、電子機器や部品の静電防止、電波吸収あるいは電磁
波シールド等の部材に広く使用されている。プラスチッ
ク材料に導電性を付与する方法としては、従来からマト
リックス樹脂成分に微粉状の導電性フィラーを分散複合
化する手段がある。このような、導電性フィラーとして
は、カーボン粉末やカーボン繊維、カーボンフレーク等
のカーボン系、Ag、Ni、Cu、Zn、Al、ステン
レス等の金属粉末及び金属フレーク、金属繊維等の金属
系、SnO2 (Sbドープ)、In2 O3 (Snドー
プ)、ZnO(Alドープ)等の微粒子の金属酸化物
系、マイカ、ガラスビーズ、ガラス繊維、炭素繊維、チ
タン酸カリなどのホイスカー、硫酸バリウム、酸化亜
鉛、酸化チタンなどのベースフィラーに無電解めっき及
び真空蒸着等で導電被覆する系が知られている。2. Description of the Related Art Plastics materials provided with conductivity are widely used for members for preventing static electricity, absorbing radio waves or shielding electromagnetic waves of electronic devices and parts. As a method for imparting conductivity to a plastic material, there is a means for dispersing and complexing a fine powdered conductive filler into a matrix resin component. Examples of such conductive fillers include carbon powders such as carbon powder, carbon fiber, and carbon flake; metal powders such as Ag, Ni, Cu, Zn, Al, and stainless steel; and metal powders such as metal flake and metal fiber; 2 (Sb-doped), in 2 O 3 (Sn-doped), ZnO (Al-doped) fine particles of a metal oxide such as, mica, glass beads, glass fibers, whiskers such as carbon fiber, potassium titanate, barium sulfate, There is known a system in which a base filler such as zinc oxide or titanium oxide is conductively coated by electroless plating, vacuum deposition, or the like.
【0003】このほかに、無電解めっき法を利用して導
電性を付与したもので、二酸化チタン、シリカ、マイ
カ、シリケート、アルミナ、硫酸バリウムなどの白色粉
末の基材表面に、アンチモンをドープして酸化第二錫を
被覆するもの(特開昭56−41603号公報、特開昭
62−181371号公報、特開平2−218768号
公報、特開平5−116930号公報、特開平7−50
8491号公報)、また扁平状または燐片状細粉のステ
ンレスやニッケル等の卑金属粒子にパラジウム、金等の
貴金属を被覆するもの(特開平2−66101号公
報)、卑金属粒子の表面に2層以上の異なった貴金属を
被覆し、表面層がパラジウムとなる様にしたもの(特開
昭60−233166号公報)、無機粉体にめっきした
もの(特開昭60−181294号公報、特開昭59−
182961号公報)、無機質又は有機質の各種基材に
めっきしたもの(特開平1−242782号公報)、ま
た、ベンゾグアナミンやスチレン等の特殊な樹脂粒子に
金属めっきを施したもの(特開昭57−49632号公
報、特開昭60−12603号公報)などが提案されて
いる。[0003] In addition, antimony is doped on the surface of a white powder base material such as titanium dioxide, silica, mica, silicate, alumina, barium sulfate, etc., which is made conductive by electroless plating. (See JP-A-56-41603, JP-A-62-181371, JP-A-2-218768, JP-A-5-116930, and JP-A-7-50)
No. 8491), a flat or scaly fine powder of base metal particles such as stainless steel or nickel coated with a noble metal such as palladium or gold (Japanese Patent Laid-Open No. 2-66101), and two layers on the surface of the base metal particles. Those coated with the different noble metals described above so that the surface layer becomes palladium (JP-A-60-233166) and those coated with inorganic powder (JP-A-60-181294, JP-A-60-181294, 59-
182961), those obtained by plating various inorganic or organic base materials (Japanese Patent Application Laid-Open No. 1-224282), and those obtained by applying metal plating to special resin particles such as benzoguanamine and styrene (Japanese Patent Application Laid-Open No. No. 49632, JP-A-60-12603) and the like have been proposed.
【0004】また、液晶ディスプレーパネルの電極と駆
動用LSIチップの回路基板への接続、その他微小ピッ
チの電極端子間の接続など電子機器類の微小部位を電気
的接続するための導電材料として上記のような導電性フ
ィラーによって導電性を付与したプラスチック材料が使
用されているが、これらの用途目的には特に高度かつ再
現性の良好な導電性能が要求されている。Further, the above-mentioned conductive material is used as a conductive material for electrically connecting minute parts of electronic equipment, such as connection between electrodes of a liquid crystal display panel and a circuit board of a driving LSI chip, and connection between electrode terminals of a fine pitch. Plastic materials provided with conductivity by such conductive fillers are used, but for these purposes, particularly high conductive properties with good reproducibility are required.
【0005】その他に、TAB(Tape Autom
ated Bonding)の入力側電極とPCB(P
rinted Circuit Board)とは電極
との接続などは、従来はんだで接続されているが、接続
密度が高くなったことや、はんだに関する環境問題の点
から、他の接続方法が求められてきた。入力側は出力側
に比べて接続抵抗は低いが、ICを安定に動作させるた
めに低抵抗での安定した接続が必要となる。また、出力
側に比べて大きな電流が流れるために、通常、熱が放射
量よりも大きくなり接続部は昇温し接続抵抗が高くなる
といった問題がある。In addition, TAB (Tape Automated)
electrodes (attached bonding) and PCB (P
Conventionally, the connection with the printed circuit board (printed circuit board) is performed by soldering, but other connection methods have been demanded in view of an increase in connection density and environmental problems related to soldering. Although the input side has a lower connection resistance than the output side, a stable connection with a low resistance is required to operate the IC stably. In addition, since a larger current flows than the output side, there is a problem in that heat is usually larger than the radiation amount, the connection is heated, and the connection resistance is increased.
【0006】[0006]
【発明が解決しようとする課題】上記のような高い電圧
箇所に使用する場合は、芯材の粒子表面が酸化され導電
性が低下するといった欠点を有し、その要求に十分応え
ることができない。本発明者らは、かかる未解決課題に
ついて鋭意研究をかさねた結果、例えばACFやHSC
の様な高い導電性能や使用電圧の高い場所に使用する導
電性粒子としては、芯材粒子の表面に金又はパラジウム
を無電解めっき法で金属被覆した特定の粒子が、マトリ
ックス成分に対し高い導電性能や高い熱信頼性を示すこ
とを知見し、本発明を完成した。When used in such a high voltage area as described above, there is a drawback that the particle surface of the core material is oxidized and the conductivity is reduced, and the demand cannot be sufficiently satisfied. The present inventors have made extensive studies on such unresolved issues, and as a result, for example, ACF and HSC
As for conductive particles used in places with high conductive performance and high operating voltage, specific particles in which the surface of the core material particles are coated with gold or palladium by electroless plating are highly conductive to matrix components. The present inventors have found that the present invention exhibits high performance and high thermal reliability, and have completed the present invention.
【0007】[0007]
【課題を解決するための手段】すなわち、本発明は、平
均粒子径が1〜50μmの芯材粒子の最表面層に金又は
パラジウムを無電解めっき法で芯材粒子に対して0.0
3〜65wt%被覆してなる導電性無電解めっき粉体に
おいて、縦横の長さ比が2以下であり、且つ500時間
のエージング試験後の電気抵抗が0.1Ω・cm以下で
あって、またその抵抗変化率Ωv=|Ωa−Ωb|/Ω
a≦20(但し、Ωaはエージング試験前の電気抵抗、
Ωbはエージング試験後の電気抵抗を示す。)であるこ
とを特徴とする導電性無電解めっき粉体を提供するもの
である。That is, according to the present invention, gold or palladium is applied to the outermost surface layer of the core material particles having an average particle size of 1 to 50 μm by electroless plating with respect to the core material particles.
In a conductive electroless plating powder coated with 3 to 65 wt%, the length ratio of the length and width is 2 or less, and the electric resistance after an aging test for 500 hours is 0.1 Ω · cm or less, and The resistance change rate Ωv = | Ωa−Ωb | / Ω
a ≦ 20 (where Ωa is the electrical resistance before the aging test,
Ωb indicates the electric resistance after the aging test. The present invention provides a conductive electroless plating powder characterized in that:
【0008】本発明においては、上記の芯材粒子は金属
粒子が好ましく、その金属粒子としてはニッケル粒子が
好ましい。また、ニッケル粒子は、表面が微小凹凸を有
するニッケル粒子が好適である。また、芯材粒子は予め
導電性金属で少なくとも一層被覆されていてもよい。In the present invention, the core particles are preferably metal particles, and the metal particles are preferably nickel particles. Further, as the nickel particles, nickel particles having fine irregularities on the surface are preferable. Further, the core material particles may be previously coated with at least one layer of a conductive metal.
【0009】[0009]
【発明の実施の形態】以下、本発明に対し詳細に説明す
る。本発明で適用できる芯材粒子は、金属及び無機質、
有機質の粉体であって、無電解めっき可能な材質全てを
包含する。これらは、天然物または合成物のいずれであ
ってもよい。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. Core material particles applicable in the present invention, metal and inorganic,
Organic powder, including all materials that can be electrolessly plated. These may be either natural products or synthetic products.
【0010】かかる芯材粒子を挙げれば、例えば金属粉
体としては、ニッケル、銅、鉄等あるいはそれらの合金
を挙げることが出来る。With respect to such core material particles, for example, as the metal powder, nickel, copper, iron and the like or alloys thereof can be mentioned.
【0011】また、無機質粉体としては、ガラス、セラ
ミックス、金属酸化物、金属水酸化物、アルミノ珪酸塩
を含む金属珪酸塩、金属炭酸塩、金属窒化物、金属硫酸
塩、金属燐酸塩、金属硫化物、金属酸塩、金属ハロゲン
化物または炭素などである。The inorganic powder includes glass, ceramics, metal oxides, metal hydroxides, metal silicates including aluminosilicates, metal carbonates, metal nitrides, metal sulfates, metal phosphates, metal phosphates, and the like. Sulfides, metal salts, metal halides or carbon.
【0012】有機質粉体としては、天然繊維、天然樹
脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、
ポリスチレン、ポリブデン、ポリアミド、ポリアクリル
酸エステル、ポリアクリルニトリル、ポリアセタール、
アイオノマー、ポリエステルなどの熱可塑性樹脂、アル
キッド樹脂、フェノール樹脂、尿素樹脂、メラミン樹
脂、キシリレン樹脂、シリコーン樹脂、エポキシ樹脂ま
たはジアリールフタレート樹脂などの熱硬化性樹脂等あ
るいは、それらの二元系又は三元系の共重合樹脂が挙げ
られる。Organic powders include natural fibers, natural resins, polyethylene, polypropylene, polyvinyl chloride,
Polystyrene, polybutene, polyamide, polyacrylate, polyacrylonitrile, polyacetal,
Thermoplastic resins such as ionomers, polyesters, etc., alkyd resins, phenolic resins, urea resins, melamine resins, xylylene resins, silicone resins, epoxy resins or diaryl phthalate resins, or their binary or ternary resins Based copolymer resins.
【0013】また、ACFやHSC用として使用する場
合は、金属粒子、特にニッケル粒子が好ましい。ニッケ
ル粒子は、その表面形状が微小凹凸になって比表面積が
大きく、高電流を流すために接続面積を大きくするため
に比表面積が大きい方が好ましい。When used for ACF or HSC, metal particles, particularly nickel particles, are preferred. It is preferable that the nickel particles have a large specific surface area due to minute irregularities in their surface shape, and a large specific surface area in order to increase a connection area in order to flow a high current.
【0014】上記の芯材粒子の粒子径は、特に制限され
るものではないが、平均粒子径1〜50μm、好ましく
は4〜20μmである。この理由は、この範囲外のもの
は、粒度分布がシャープなものが得られなかったり、工
業的な製造が実用的用途の点からみても必要性に欠ける
からである。The particle diameter of the core particles is not particularly limited, but is 1 to 50 μm, preferably 4 to 20 μm in average particle diameter. The reason for this is that a material having a sharp particle size distribution cannot be obtained for a material outside this range, and there is no necessity for industrial production from the viewpoint of practical use.
【0015】本発明に係る導電性無電解めっき粉体の特
徴は、上記芯材粒子そのままか、または芯材粒子に無電
解めっき法でニッケル、銀、鉄、パラジウムなどの導電
性の良好な金属を少なくとも一種以上被覆したものに、
その最表層に金又はパラジウムをコーティングさせてな
るものである。The feature of the electroless electroless plating powder according to the present invention is that the core material particles are used as they are, or the core material particles are electrolessly plated by nickel, silver, iron, palladium or other metal having good conductivity. To at least one coated
The outermost layer is coated with gold or palladium.
【0016】次に、本発明の導電性無電解めっき粉体の
特徴は、粒子の縦横の長さ比が2以下、好ましくは1.
7以下であることが望ましい。この長さ比が2を越える
様な扁平状や燐片状粒子の場合は、ACFやHSC等の
用途に使用する場合は、お互の粒子が接触して導通しや
すくなり、好ましくない。Next, the feature of the electroless electroless plating powder of the present invention is that the length-to-width ratio of the particles is 2 or less, preferably 1.
It is desirably 7 or less. In the case of flat or scaly particles having a length ratio of more than 2, when used in applications such as ACF and HSC, the particles are likely to come into contact with each other and become conductive, which is not preferable.
【0017】次に、本発明の導電性無電解めっき粉体の
特徴は、かかる粒子が500時間のエージング試験後の
電気抵抗が0.1Ω・cm以下であり、且つその抵抗変
化率Ωv=|Ωa−Ωb|/Ωa≦20であるものであ
る。Next, the conductive electroless plating powder of the present invention is characterized in that the particles have an electric resistance of 0.1 Ω · cm or less after an aging test for 500 hours and a resistance change rate Ωv = | Ωa−Ωb | / Ωa ≦ 20.
【0018】ここで、500時間のエージング試験と
は、導電性無電解めっき粉末を恒温高湿槽で60℃、9
5%RHの条件で500時間放置した後の電気抵抗であ
る。その抵抗変化率Ωvは、エージング試験前の電気抵
抗Ωaとエージング試験後の電気抵抗Ωbとの差の絶対
値をエージング試験前の電気抵抗で割った値である。Here, the aging test for 500 hours means that the electroless electroless plating powder is heated at 60 ° C. and 9 ° C. in a constant temperature and high humidity bath.
This is the electric resistance after being left for 500 hours under the condition of 5% RH. The resistance change rate Ωv is a value obtained by dividing the absolute value of the difference between the electric resistance Ωa before the aging test and the electric resistance Ωb after the aging test by the electric resistance before the aging test.
【0019】また、該試験後の電気抵抗値が0.1Ω・
cmを越える場合は、導電性粒子としての耐久性に欠
け、多くの場合、かかる粒子の表面が酸化されており、
導電性能としての性能が劣化したものであって好ましく
ない。The electric resistance after the test is 0.1 Ω ·
cm, the durability as conductive particles is lacking, and in many cases, the surface of such particles is oxidized,
It is not preferable because the performance as the conductive performance is deteriorated.
【0020】特に、エージング試験後の電気抵抗変化率
Ωvが20以下であることが必要である。この理由は、
上記した精密電子材料用の機能性導電材としては、使用
環境雰囲気下での長期安定な導電性を持つことが必要
で、この数値以下であれば、充分に信頼性が得られるか
らである。In particular, the rate of change in electric resistance Ωv after the aging test needs to be 20 or less. The reason for this is
This is because the above-mentioned functional conductive material for precision electronic materials needs to have long-term stable conductivity under an atmosphere of use environment, and if it is less than this value, sufficient reliability can be obtained.
【0021】なお、5000時間のエージング試験後の
抵抗変化率Ωvが20を越える場合は、粒子表面が濃密
に連続的に金属が被覆されなかつたり、耐剥離性など、
そのめっき被覆処理に問題がある場合が多く、機能性導
電材料としては不適である。If the rate of change in resistance Ωv after the aging test for 5000 hours exceeds 20, the particle surface may not be densely and continuously coated with a metal,
In many cases, there is a problem in the plating coating treatment, and it is not suitable as a functional conductive material.
【0022】無電解めっき法による金属コーティングに
は置換、化学還元、不均化反応などの反応に基づく全て
の無電解めっき反応を適用することができる。このよう
な金属めっき被覆は、芯材粒子と強固に密着して被覆さ
れ、耐剥離性の良好な無電解めっき層を形成するので、
上記の効果を具備できる。All electroless plating reactions based on reactions such as substitution, chemical reduction, and disproportionation reaction can be applied to the metal coating by the electroless plating method. Since such a metal plating coating is coated in tight contact with the core material particles and forms an electroless plating layer having good peel resistance,
The above effects can be provided.
【0023】本発明における芯材粒子の最表面層に被覆
される金又はパラジウムの被覆量は、使用目的や芯材、
被覆金属等によって異なるが、芯材粒子に対して0.0
3〜65wt%であり、好ましくは0.3〜15wt%
である。また、かかる金属膜厚は10〜1000Åであ
り、好ましくは50〜500Åの範囲である。In the present invention, the coating amount of gold or palladium coated on the outermost surface layer of the core material particles depends on the purpose of use, the core material,
Depending on the coating metal, etc., 0.0
3 to 65 wt%, preferably 0.3 to 15 wt%
It is. Further, such a metal film thickness is 10 to 1000 °, preferably 50 to 500 °.
【0024】本発明にかかる導電性無電解めっき粉体
は、特に異方導電フィルム(ACF)やヒートシールコ
ネクタ(HSC)等に極めて有用なものとなる。通常、
ACFは、主に液晶パネル(LCD)またはTCP(T
ape Carrier Package)とFPC
(Flexible Printed Circui
t)との接続に用いられるものである。The electroless electroless plating powder according to the present invention is extremely useful especially for an anisotropic conductive film (ACF), a heat seal connector (HSC) and the like. Normal,
ACF is mainly used for liquid crystal panel (LCD) or TCP (T
ape Carrier Package) and FPC
(Flexible Printed Circuit
t).
【0025】また、ヒートシールコネクタはポリエステ
ルフィルム上に熱硬化性樹脂系銀カーボンインクの導電
ラインを有し、その表面に導電性粒子を有する熱可塑性
合成ゴム系接着剤で覆われた熱圧着コネクタである。そ
のヒートシール剤塗布面を接続すべき電極それぞれに位
置決めして押しつけ加熱固着する方法で使用される。[0025] The heat seal connector has a thermocompression resin silver carbon ink conductive line on a polyester film, and the surface thereof is covered with a thermoplastic synthetic rubber adhesive having conductive particles. It is. The method is used in a method in which the heat-sealing agent application surface is positioned on each of the electrodes to be connected, pressed and fixed by heating.
【0026】本発明の金属粒子を芯材粒子とした導電性
無電解めっき粉体からなる導電材料は、上記の用途にお
いてマトリックス成分に対し高い導電性能や高い熱信頼
性を示し、優れた性能を示すものである。The conductive material comprising the electroless electroless plating powder of the present invention, in which the metal particles are used as core material particles, exhibits high conductivity and high thermal reliability with respect to the matrix component in the above-mentioned applications, and exhibits excellent performance. It is shown.
【0027】かかる導電性無電解めっき粉末を得るに
は、芯材粒子の水性スラリーに錯化剤を添加して十分に
分散させ、次いで金属無電解めっき液を構成する薬液の
少なくとも2種を添加して金属被覆を形成する無電解め
っき工程を施すことによって得ることができる。或い
は、予め構成する薬剤を溶解し、所望のpHに調整して
なる無電解めっき浴に芯材粒子を投入して、金属被膜を
形成する無電解めっき工程を施してもよい。In order to obtain such a conductive electroless plating powder, a complexing agent is added to an aqueous slurry of core material particles and sufficiently dispersed, and then at least two kinds of chemicals constituting a metal electroless plating solution are added. And performing an electroless plating step of forming a metal coating. Alternatively, an electroless plating step may be performed in which a core material particle is put into an electroless plating bath prepared by dissolving a pre-configured chemical and adjusting to a desired pH to form a metal film.
【0028】かかる無電解めっき法の具体的手段は、次
のように行われる。ニッケル粒子を水に十分均一に分散
し、分散濃度2〜500g/l,好ましくは5〜300
g/lの水性スラリーを調製する。分散操作には、通常
攪拌、高速攪拌或いはコロイドミルまたはホモジナイザ
ーのような剪断分散装置を用いて行うことができる。次
いで、水性スラリーに錯化剤を添加して十分に分散させ
る。錯化剤としては、例えばクエン酸、ヒドロキシ酢
酸、酒石酸、リンゴ酸、乳酸、グルコン酸またはそのア
ルカリ金属塩やアンモニウム塩等のカルボン酸(塩)、
グリシンなどのアミノ酸、エチレンジアミン、アルキル
アミンなどのアミン酸、その他のアンモニウム、EDT
A、ピロリン酸(塩)など、金属イオンに対し錯化作用
のある化合物の少なくとも1種が用いられる。錯化剤
は、通常水溶液の状態で添加されるが、その濃度は1〜
100g/l、好ましくは5〜50g/lの範囲に設定
する。この段階での好ましい水性スラリーのpHは、4
〜14の範囲である。The specific means of the electroless plating method is performed as follows. The nickel particles are sufficiently uniformly dispersed in water, and the dispersion concentration is 2 to 500 g / l, preferably 5 to 300 g / l.
A g / l aqueous slurry is prepared. The dispersing operation can be usually performed by stirring, high-speed stirring, or a shearing dispersing device such as a colloid mill or a homogenizer. Next, a complexing agent is added to the aqueous slurry and sufficiently dispersed. Examples of complexing agents include carboxylic acids (salts) such as citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, gluconic acid or alkali metal salts or ammonium salts thereof,
Amino acids such as glycine, amine acids such as ethylenediamine and alkylamine, other ammonium, EDT
At least one compound having a complexing effect on metal ions, such as A or pyrophosphoric acid (salt), is used. The complexing agent is usually added in the form of an aqueous solution.
It is set in the range of 100 g / l, preferably 5 to 50 g / l. The preferred pH of the aqueous slurry at this stage is 4
~ 14.
【0029】このようにして調製した水性スラリーに、
無電解めっき液として、例えば、シアン化金カリウム、
塩化パラジウム等のめっき金属塩、水素化ホウ素、次亜
リン酸ナトリウム等の還元剤及び水酸化ナトリウム等の
pH調整剤の各水溶液を添加することにより無電解めっ
き反応を行う。[0029] The aqueous slurry thus prepared is
As an electroless plating solution, for example, potassium gold cyanide,
The electroless plating reaction is performed by adding each aqueous solution of a plating metal salt such as palladium chloride, a reducing agent such as borohydride and sodium hypophosphite, and a pH adjusting agent such as sodium hydroxide.
【0030】また、かかる無電解めっき法において、そ
の逆の方法である無電解めっき浴にニッケル粒子を添加
して金属被覆を行ってもよいことは勿論である。上記の
工程により金属被膜が濃密で連続的薄膜として形成され
る。以下、常法により後処理することにより製品として
回収する。In the electroless plating method, nickel particles may be added to the electroless plating bath, which is the reverse of the electroless plating method. Through the above steps, the metal film is formed as a dense and continuous thin film. Hereafter, it is collected as a product by post-processing in a conventional manner.
【0031】このようにして無電解めっき法により金属
被膜が施された導電性無電解めっき粉体は、被覆金属層
が緻密で連続性の薄膜として形成されているため、その
粒子性状は、ニッケル粒子基材に比べてわずかに粒径が
大きくなる程度で、粒度分布等に実質的に相違をもたら
すことはない。The conductive electroless plating powder coated with the metal film by the electroless plating method as described above has a coating metal layer formed as a dense and continuous thin film. The particle size is slightly larger than that of the particle base material, and does not substantially change the particle size distribution and the like.
【0032】また、本発明の導電性無電解めっき粉体
は、ACFやHSC等に利用されるが、かかるACFや
HSC等は、大別して熱可塑性樹脂及び熱硬化性樹脂を
接着剤とするタイプ、例えば特願昭59−120436
号公報、特願昭60−191228号公報、特願昭60
−274394号公報、特願昭61−287974号公
報、特願昭62−244142号公報、特願昭63−1
53534号公報、特願昭63−305591号公報、
特願昭64−47084号公報、特願昭64−8187
8号公報、特願平1−46549号公報、特願平1−2
51787号公報、特願平1−261478号公報、特
願平5−32799号公報等に記載されている公知の方
法に基づいて作製することができる。The conductive electroless plating powder of the present invention is used for ACF, HSC, etc., and such ACF, HSC, etc. are roughly classified into a type using a thermoplastic resin and a thermosetting resin as an adhesive. For example, Japanese Patent Application No. 59-120436
Gazette, Japanese Patent Application No. 60-191228, Japanese Patent Application No. 60-191228,
-274394, Japanese Patent Application No. 61-287974, Japanese Patent Application No. 62-244142, Japanese Patent Application No. 63-1.
No. 53534, Japanese Patent Application No. 63-305591,
Japanese Patent Application No. 64-47084, Japanese Patent Application No. 64-8187
No. 8, Japanese Patent Application No. 1-4649, Japanese Patent Application No. 1-2
It can be prepared based on known methods described in Japanese Patent Application No. 51787, Japanese Patent Application No. 1-261478, Japanese Patent Application No. 5-32799, and the like.
【0033】[0033]
【実施例】以下、本発明を実施例に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.
【0034】実施例1〜3 真比重8.9、平均粒子径9.0μm、且つ縦横長さ比
1.1で粒子表面が微小凹凸を有するニッケル粒子10
0gを、塩酸50ml/lの水溶液中で5分間攪拌し
た。これを濾過し、1回リパルプ水洗したニッケル粉末
を、EDTA−4Na(10g/l)、クエン酸−2N
a(10g/l)からなる組成でpH6に調製した液温
60℃の混合水溶液1リットルに撹拌しながら添加し
た。次いで、シアン化金カリウム(10g/1、Auと
して6.8g/l)、EDTA−4Na(10g/l)
およびクエン酸−2Na(10g/l)の混合水溶液
(A液)と水素化ホウ素カリウム(30g/l)、水酸
化ナトリウム(60g/l)の混合水溶液(B液)を送
液ポンプを通して個別かつ同時に20分間で添加した。
この際のA液量、B液量は、表1に示す量に設定した。Examples 1 to 3 Nickel particles 10 having a true specific gravity of 8.9, an average particle diameter of 9.0 μm, an aspect ratio of 1.1 and a particle surface having fine irregularities.
0 g was stirred in an aqueous solution of hydrochloric acid 50 ml / l for 5 minutes. This was filtered, and the nickel powder washed once with repulping water was mixed with EDTA-4Na (10 g / l) and citric acid-2N.
a (10 g / l) was added to 1 liter of a mixed aqueous solution having a temperature of 60 ° C. and adjusted to pH 6 with stirring. Then, potassium gold cyanide (10 g / 1, 6.8 g / l as Au), EDTA-4Na (10 g / l)
And a mixed aqueous solution (liquid A) of citric acid-2Na (10 g / l) and a mixed aqueous solution (liquid B) of potassium borohydride (30 g / l) and sodium hydroxide (60 g / l) were individually and separately passed through a liquid sending pump. It was added at the same time for 20 minutes.
At this time, the liquid A amount and the liquid B amount were set to the amounts shown in Table 1.
【0035】[0035]
【表1】 [Table 1]
【0036】引き続き、液を濾過し、濾過物を3回リパ
ルプ洗浄した後、熱風乾燥機で100℃の温度で乾燥し
てニッケル粉末上に無電解めっき被覆処理を施し、粒子
表面に金被膜を形成した。Subsequently, the solution was filtered, and the filtrate was washed three times with repulping, dried at a temperature of 100 ° C. with a hot air drier, and subjected to electroless plating coating on nickel powder to form a gold coating on the particle surface. Formed.
【0037】実施例4〜5 真比重8.9、平均粒子径10μm、且つ縦横長さ比
1.2で粒子表面が微小凹凸を有するニッケル粒子10
0gを、塩酸50ml/lの水溶液中で5分間攪拌し
た。これを濾過し、1回リパルプ水洗したニッケル粉末
を、塩化パラジウム1.77g/l、エチレンジアミン
4.81g/l、次亜リン酸ナトリウム6.36g/
l、チオグリコール酸20mg/lからなる組成で、塩
酸でpH8に調整した液温60℃の無電解めっき液に攪
拌しながら添加し、30分間めっき処理を施した。この
際の無電解パラジウムめっき液を表2に示す。Examples 4-5 Nickel particles 10 having a true specific gravity of 8.9, an average particle diameter of 10 μm, and a vertical / horizontal length ratio of 1.2 and having fine irregularities on the particle surface.
0 g was stirred in an aqueous solution of hydrochloric acid 50 ml / l for 5 minutes. This was filtered, and the nickel powder washed once with repulping water was added to palladium chloride (1.77 g / l), ethylenediamine (4.81 g / l), and sodium hypophosphite (6.36 g / l).
1 and 20 mg / l of thioglycolic acid, which were added with stirring to an electroless plating solution at a solution temperature of 60 ° C. adjusted to pH 8 with hydrochloric acid, and subjected to a plating treatment for 30 minutes. Table 2 shows the electroless palladium plating solution at this time.
【0038】[0038]
【表2】 [Table 2]
【0039】引き続き、液を濾過し、濾過物を3回リパ
ルプ洗浄した後、熱風乾燥機で100℃の温度で乾燥し
てニッケル粉末上に無電解めっき被覆処理を施し、粒子
表面に金被膜を形成した。Subsequently, the solution was filtered, and the filtrate was washed three times with repulping, dried at a temperature of 100 ° C. with a hot air drier, and subjected to electroless plating coating on nickel powder to form a gold coating on the particle surface. Formed.
【0040】なお、金及びパラジウム被覆量の測定は、
得られためっき粉末を王水に溶解し、ICP及び化学分
析により定量した。導電性(電気抵抗)の評価は、めっ
き粉末1.5gを垂直に立てた内径10mmの樹脂製円
筒内に入れ、5kgの加重をかけた状態で上下電極間の
電気抵抗を測定する方法で行った。The gold and palladium coating amounts were measured by
The obtained plating powder was dissolved in aqua regia and quantified by ICP and chemical analysis. The conductivity (electric resistance) was evaluated by placing 1.5 g of the plating powder in a vertically-standing resin cylinder having an inner diameter of 10 mm and measuring the electric resistance between the upper and lower electrodes under a load of 5 kg. Was.
【0041】実施例6 真比重1.05、平均粒子径3.0μm、且つ縦横長さ
比1.01のスチレン樹脂を芯材として無電解めっき法
によりNiめっきを被覆させた後、実施例1と同様な方
法で金被覆を行った。その結果を表3に併載した。Example 6 A styrene resin having a true specific gravity of 1.05, an average particle diameter of 3.0 μm, and an aspect ratio of 1.01 was coated with Ni plating by an electroless plating method using a core material. Gold coating was performed in the same manner as described above. The results are shown in Table 3.
【0042】実施例7 真比重1.40、平均粒子径4.6μm、且つ縦横長さ
比1.0のベンゾグアナミン樹脂を芯材としてNiめっ
きを行いNiを被覆させた後、実施例1と同様な方法で
金被覆を行った。その結果を表3に併載した。Example 7 Ni plating was performed using a benzoguanamine resin having a true specific gravity of 1.40, an average particle diameter of 4.6 μm, and an aspect ratio of 1.0 as a core material, followed by coating with Ni. Gold coating was performed in a suitable manner. The results are shown in Table 3.
【0043】比較例1〜2 比較のために、実施例1〜3の芯材に用いたニッケル粉
末(比較例1)と、該ニッケル粉末を還元処理して電気
特性を向上させたニッケル粉末(比較例2)についても
表3に併記した。Comparative Examples 1-2 For comparison, a nickel powder (Comparative Example 1) used for the core material of Examples 1-3 and a nickel powder obtained by reducing the nickel powder to improve its electrical properties ( Table 3 also shows Comparative Example 2).
【0044】比較例3 実施例1の芯材粒子500gを、実施例1と同一条件で
前処理をしたのち、実施例1の同一組成の混合水溶液1
リットルに撹拌しながら投入した。次いで、実施例1と
同一組成のA液及びB液各15mlを送液ポンプを通し
て個別かつ同時に5分間で添加した。めっき液を濾過
し、濾過物を3回リパルプ洗浄した後、熱風乾燥機で1
00℃の温度で乾燥した。このようにして得られためっ
き被膜を実施例1と同様にして分析し、表3に併載し
た。Comparative Example 3 500 g of the core material particles of Example 1 were pretreated under the same conditions as in Example 1, and then mixed aqueous solution 1 of Example 1 with the same composition was prepared.
It was charged into a liter with stirring. Next, 15 ml each of solution A and solution B having the same composition as in Example 1 were added separately and simultaneously for 5 minutes through a liquid sending pump. The plating solution was filtered, and the filtrate was washed three times with repulping.
Dry at a temperature of 00 ° C. The plating film thus obtained was analyzed in the same manner as in Example 1, and is shown in Table 3.
【0045】(エージング試験)実施例1〜7で得られ
ためっき粉末及び比較例1〜2のニッケル粉末及び比較
例3のめっき粉末を恒温恒湿槽で60℃、95%RHの
条件で250時間及び500時間のエージング試験を行
った後の導電性(電気抵抗)の評価の結果を表3に併載
した。また、各エージング試験結果後の抵抗変化率を表
4に示す。(Aging test) The plating powder obtained in Examples 1 to 7, the nickel powder of Comparative Examples 1 and 2, and the plating powder of Comparative Example 3 were subjected to a constant temperature and humidity bath at 60 ° C. and 95% RH for 250 days. Table 3 also shows the results of the evaluation of the conductivity (electric resistance) after the aging test for 500 hours and 500 hours. Table 4 shows the resistance change rate after each aging test result.
【0046】[0046]
【表3】 [Table 3]
【0047】[0047]
【表4】 [Table 4]
【0048】(注)Ωv1はエージング250時間後の
抵抗変化率を示す。Ωv2はエージング500時間後の
抵抗変化率を示す。(Note) Ωv1 indicates a resistance change rate after 250 hours of aging. Ωv2 indicates a resistance change rate after 500 hours of aging.
【0049】表3及び表4に示すように本発明の要件を
満たす実施例品の導電性は、比較例に比べて優れてお
り、特にエージング後の電気抵抗値の劣化が少なく、耐
環境性に優れていることが分かる。As shown in Tables 3 and 4, the conductivity of the examples satisfying the requirements of the present invention is superior to that of the comparative examples. In particular, the deterioration of the electric resistance after aging is small, and the environmental resistance is low. It turns out that it is excellent.
【0050】(導電性フィルム試験)実施例1〜2の導
電性無電解めっき粉体3gを、アクリル樹脂100g、
メチルエチルケトン120g、トルエン25gの樹脂溶
液に均一に分散した後、アプリケータを用い剥離紙に塗
布し、乾燥を行い厚み25μmの導電性フィルムを得
た。また、比較例4として、真比重8.9、平均粒子径
40μm、且つ縦横長さ比2.5の扁平状ニッケル粒子
を用いて同様に導電性フィルムを得た。(Conductive Film Test) 3 g of the electroless electroless plating powder of Examples 1 and 2 was added to 100 g of acrylic resin,
After uniformly dispersing in a resin solution of 120 g of methyl ethyl ketone and 25 g of toluene, it was applied to release paper using an applicator and dried to obtain a conductive film having a thickness of 25 μm. In addition, as Comparative Example 4, a conductive film was similarly obtained using flat nickel particles having a true specific gravity of 8.9, an average particle diameter of 40 μm, and an aspect ratio of 2.5.
【0051】次に、導電性フィルムを導電性基材が形成
されたフレキシブル基板(導電性基材の幅0.1mm、
導電性基材の間隔0.1mm)二枚間に置き、加熱プレ
スを用いて温度110℃、圧力50kg/cm2 で15
秒間二枚の基板を接着した。実施例1〜2の粒子は導通
したが、比較例4の試料は電極間でショートした。Next, the conductive film is formed on a flexible substrate having a conductive substrate formed thereon (the conductive substrate has a width of 0.1 mm,
The distance between the conductive bases is 0.1 mm) and placed between two sheets, and heated at a temperature of 110 ° C. under a pressure of 50 kg / cm 2 for 15 minutes.
The two substrates were adhered for a second. Although the particles of Examples 1 and 2 were conductive, the sample of Comparative Example 4 was short-circuited between the electrodes.
【0052】[0052]
【発明の効果】以上のとおり、本発明によれば耐湿試験
に基づくエージング後の導電率の劣化が少ない導電性無
電解めっき粉体を提供することが可能となる。従って、
従来ACFやHSC用の高度な導電性能が要求される用
途に極めて有用である。As described above, according to the present invention, it is possible to provide a conductive electroless plating powder with little deterioration in conductivity after aging based on a moisture resistance test. Therefore,
Conventionally, it is extremely useful for applications requiring high conductive performance for ACF and HSC.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 9/00 H05K 9/00 W ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H05K 9/00 H05K 9/00 W
Claims (5)
最表面層に金又はパラジウムを無電解めっき法で芯材粒
子に対して0.03〜65wt%被覆してなる導電性無
電解めっき粉体において、縦横の長さ比が2以下であ
り、且つ500時間のエージング試験後の電気抵抗が
0.1Ω・cm以下であって、またその抵抗変化率Ωv
=|Ωa−Ωb|/Ωa≦20(但し、Ωaはエージン
グ試験前の電気抵抗、Ωbはエージング試験後の電気抵
抗を示す。)であることを特徴とする導電性無電解めっ
き粉体。1. An electroless electroless material comprising a core material particle having an average particle size of 1 to 50 μm and the outermost surface layer coated with gold or palladium by 0.03 to 65 wt% with respect to the core material particle by an electroless plating method. The plating powder has a length-to-width ratio of 2 or less, and an electric resistance after an aging test for 500 hours of 0.1 Ω · cm or less, and a resistance change rate Ωv
= | Ωa−Ωb | / Ωa ≦ 20 (where Ωa indicates the electric resistance before the aging test, and Ωb indicates the electric resistance after the aging test).
の導電性無電解めっき粉体。2. The conductive electroless plating powder according to claim 1, wherein the core material particles are metal particles.
記載の導電性無電解めっき粉体。3. The metal particles are nickel particles.
A conductive electroless plating powder as described in the above.
るニッケル粒子である請求項3記載の導電性無電解めっ
き粉体。4. The conductive electroless plating powder according to claim 3, wherein the nickel particles are nickel particles having fine irregularities on the surface.
一層被覆されていてもよい請求項1記載の導電性無電解
めっき粉体。5. The conductive electroless plating powder according to claim 1, wherein the core material particles may be previously coated with at least one layer of a conductive metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27395396A JP3596646B2 (en) | 1996-09-26 | 1996-09-26 | Conductive electroless plating powder for anisotropic conductive film and heat seal connector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27395396A JP3596646B2 (en) | 1996-09-26 | 1996-09-26 | Conductive electroless plating powder for anisotropic conductive film and heat seal connector |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004137668A Division JP4188278B2 (en) | 2004-05-06 | 2004-05-06 | Anisotropic conductive film and heat seal connector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10101962A true JPH10101962A (en) | 1998-04-21 |
JP3596646B2 JP3596646B2 (en) | 2004-12-02 |
Family
ID=17534879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27395396A Expired - Lifetime JP3596646B2 (en) | 1996-09-26 | 1996-09-26 | Conductive electroless plating powder for anisotropic conductive film and heat seal connector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3596646B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002057485A (en) * | 2000-06-01 | 2002-02-22 | Yokohama Rubber Co Ltd:The | Composition of electric wave absorbing body |
JP2002151884A (en) * | 2000-11-15 | 2002-05-24 | Yokohama Rubber Co Ltd:The | Radio wave absorbing structure |
US6940024B2 (en) | 2001-07-19 | 2005-09-06 | Alps Electric Co., Ltd. | Printed wiring board having wiring patterns and connection terminals |
WO2007004765A1 (en) * | 2005-07-05 | 2007-01-11 | Cheil Industries Inc. | Conductive particles comprising complex metal layer with density gradient, method for preparing the particles, and anisotropic conductive adhesive composition comprising the particles |
WO2009054386A1 (en) | 2007-10-22 | 2009-04-30 | Nippon Chemical Industrial Co., Ltd. | Coated conductive powder and conductive adhesive using the same |
EP2282314A1 (en) | 2009-08-06 | 2011-02-09 | Hitachi Chemical Co., Ltd. | Conductive fine particles and anisotropic conductive material |
US8124232B2 (en) | 2007-10-22 | 2012-02-28 | Nippon Chemical Industrial Co., Ltd. | Coated conductive powder and conductive adhesive using the same |
JP2012178270A (en) * | 2011-02-25 | 2012-09-13 | Hitachi Chem Co Ltd | Conductive particle and manufacturing method of the same, adhesive composition, circuit connection material, connection structure, and connection method of circuit member |
JPWO2011001910A1 (en) * | 2009-06-30 | 2012-12-13 | 東海ゴム工業株式会社 | Flexible conductive materials and transducers |
-
1996
- 1996-09-26 JP JP27395396A patent/JP3596646B2/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002057485A (en) * | 2000-06-01 | 2002-02-22 | Yokohama Rubber Co Ltd:The | Composition of electric wave absorbing body |
JP2002151884A (en) * | 2000-11-15 | 2002-05-24 | Yokohama Rubber Co Ltd:The | Radio wave absorbing structure |
US6940024B2 (en) | 2001-07-19 | 2005-09-06 | Alps Electric Co., Ltd. | Printed wiring board having wiring patterns and connection terminals |
WO2007004765A1 (en) * | 2005-07-05 | 2007-01-11 | Cheil Industries Inc. | Conductive particles comprising complex metal layer with density gradient, method for preparing the particles, and anisotropic conductive adhesive composition comprising the particles |
JP4812834B2 (en) * | 2005-07-05 | 2011-11-09 | チェイル インダストリーズ インコーポレイテッド | Conductive fine particles comprising a composite metal layer having a density gradient, a method for producing the conductive fine particles, and an anisotropic conductive adhesive composition comprising the conductive fine particles |
US8828543B2 (en) | 2005-07-05 | 2014-09-09 | Cheil Industries Inc. | Conductive particles comprising complex metal layer with density gradient, method for preparing the particles, and anisotropic conductive adhesive composition comprising the particles |
WO2009054386A1 (en) | 2007-10-22 | 2009-04-30 | Nippon Chemical Industrial Co., Ltd. | Coated conductive powder and conductive adhesive using the same |
US8124232B2 (en) | 2007-10-22 | 2012-02-28 | Nippon Chemical Industrial Co., Ltd. | Coated conductive powder and conductive adhesive using the same |
JPWO2011001910A1 (en) * | 2009-06-30 | 2012-12-13 | 東海ゴム工業株式会社 | Flexible conductive materials and transducers |
JP5711124B2 (en) * | 2009-06-30 | 2015-04-30 | 住友理工株式会社 | Flexible conductive materials and transducers |
CN101996696A (en) * | 2009-08-06 | 2011-03-30 | 日立化成工业株式会社 | Conductive fine particles and anisotropic conductive material |
US8383016B2 (en) | 2009-08-06 | 2013-02-26 | Hitachi Chemical Company, Ltd. | Conductive fine particles and anisotropic conductive material |
EP2282314A1 (en) | 2009-08-06 | 2011-02-09 | Hitachi Chemical Co., Ltd. | Conductive fine particles and anisotropic conductive material |
JP2012178270A (en) * | 2011-02-25 | 2012-09-13 | Hitachi Chem Co Ltd | Conductive particle and manufacturing method of the same, adhesive composition, circuit connection material, connection structure, and connection method of circuit member |
Also Published As
Publication number | Publication date |
---|---|
JP3596646B2 (en) | 2004-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4235227B2 (en) | Conductive fine particles and anisotropic conductive materials | |
CN102089832B (en) | Conductive particle, anisotropic conductive film, joined body, and connecting method | |
JP5838541B2 (en) | Silver paste for conductive film formation | |
JP5358328B2 (en) | Conductive particles, anisotropic conductive film, joined body, and connection method | |
JP4638341B2 (en) | Conductive fine particles and anisotropic conductive materials | |
JP4243279B2 (en) | Conductive fine particles and anisotropic conductive materials | |
JP4674096B2 (en) | Conductive fine particles and anisotropic conductive materials | |
KR101261184B1 (en) | Coated conductive particles and method for producing same | |
JP5650611B2 (en) | Anisotropic conductive film, method for manufacturing anisotropic conductive film, connection method, and joined body | |
KR20170012529A (en) | Conductive particle, conductive material, and method for manufacturing the conductive particle | |
JP6089462B2 (en) | Conductive particles, manufacturing method thereof, and conductive material including the same | |
JP3596646B2 (en) | Conductive electroless plating powder for anisotropic conductive film and heat seal connector | |
JP4188278B2 (en) | Anisotropic conductive film and heat seal connector | |
JP2007324138A (en) | Conductive particulate and anisotropic conductive material | |
JP2015133301A (en) | Coated conductive powder, production method for coated conductive powder, and conductive adhesive containing coated conductive powder, and adhesive structure | |
JPH09171714A (en) | Conductive powder | |
JPH0734325B2 (en) | Conductive particles for anisotropic conductive adhesive and anisotropic conductive adhesive | |
JP7144472B2 (en) | Conductive particles, conductive materials and connecting structures | |
JP6469817B2 (en) | Coated conductive powder, method for producing coated conductive powder, conductive adhesive containing coated conductive powder, and bonded structure | |
JP4347974B2 (en) | Method for producing conductive fine particles, anisotropic conductive adhesive, and conductive connection structure | |
JP5796232B2 (en) | Conductive particles, anisotropic conductive materials, and connection structures | |
JP5707247B2 (en) | Method for producing conductive particles | |
JP4589810B2 (en) | Conductive fine particles and anisotropic conductive materials | |
JP2964790B2 (en) | Metal-coated novolak-epoxide spherical resin | |
JP2006086104A (en) | Conductive fine particle and anisotropic conductive material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20031024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20031224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040310 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040223 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040506 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040602 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040726 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040805 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040901 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040901 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100917 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130917 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |