JP2964790B2 - Metal-coated novolak-epoxide spherical resin - Google Patents

Metal-coated novolak-epoxide spherical resin

Info

Publication number
JP2964790B2
JP2964790B2 JP21364892A JP21364892A JP2964790B2 JP 2964790 B2 JP2964790 B2 JP 2964790B2 JP 21364892 A JP21364892 A JP 21364892A JP 21364892 A JP21364892 A JP 21364892A JP 2964790 B2 JP2964790 B2 JP 2964790B2
Authority
JP
Japan
Prior art keywords
metal
novolak
coated
epoxide
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21364892A
Other languages
Japanese (ja)
Other versions
JPH0633248A (en
Inventor
明 中林
正弘 萩原
明 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP21364892A priority Critical patent/JP2964790B2/en
Publication of JPH0633248A publication Critical patent/JPH0633248A/en
Application granted granted Critical
Publication of JP2964790B2 publication Critical patent/JP2964790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Epoxy Resins (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、液晶と駆動回路との間
の接続に用いる異方性導電膜の導体材料や、シリコンチ
ップのバンプレス接合に用いられる導体材料として有用
な金属被覆球状樹脂に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-coated spherical resin useful as a conductive material for an anisotropic conductive film used for connection between a liquid crystal and a driving circuit and a conductive material used for bumpless bonding of a silicon chip. About.

【0002】[0002]

【従来の技術】液晶ディスプレイ装置において、液晶パ
ネルの透明電極と液晶駆動回路の銅箔電極を接続するた
めのコネクタとして異方性導電膜が用いられている。こ
れは、球状の導体材料を接着剤に均一に単分散させたも
ので、電極間に挟んで熱圧着される。電極部の銅箔の厚
みにより導体材料が圧縮されて電極と接触することによ
り、厚み方向には導電性があり、面方向には導電性がな
い。即ち、導電性に異方性を有する膜となり、高密度の
接触が可能となる。上記導体材料としては、従来、ハン
ダ、ニッケル等の金属粒子が用いられていたが、粒子の
微細化・均一化が困難で高密度接続に対応できない上
に、硬くて弾性が乏しいために安定した接続が得られず
信頼性に欠けるという問題があった。これらの問題を解
決するため、球状樹脂に湿式めっきによって金属を被覆
したものを導体材料として使用することが試みられてい
る。この目的に使用可能な樹脂は被覆した金属との密着
性に優れ、適当な弾性と硬さを有したものでなければな
らない。しかし、ほとんどの樹脂は金属との密着性が悪
く、熱圧着により押し潰されて金属被膜が破れたり、剥
離したりすることによりショートや導電不良が発生し信
頼性に問題があった。こうした目的に適う樹脂としては
フェノール系の樹脂が考えられる。しかし、フェノール
樹脂はやや脆いため割れが発生しやすく、アルカリに侵
され易い。また、分子中に多数のフェノール性水酸基を
含むフェノール樹脂は、吸水率が大きく、めっき後に金
属被覆の腐食が発生して問題となることがあった。
2. Description of the Related Art In a liquid crystal display device, an anisotropic conductive film is used as a connector for connecting a transparent electrode of a liquid crystal panel and a copper foil electrode of a liquid crystal drive circuit. This is obtained by uniformly dispersing a spherical conductive material in an adhesive, and thermocompression-bonded between electrodes. When the conductive material is compressed by the thickness of the copper foil of the electrode portion and comes into contact with the electrode, the conductive material has conductivity in the thickness direction and has no conductivity in the surface direction. That is, a film having anisotropy in conductivity is obtained, and high-density contact is possible. As the conductor material, conventionally, metal particles such as solder and nickel have been used. However, it is difficult to miniaturize and uniformize the particles and cannot cope with high-density connection. There was a problem that connection was not obtained and reliability was lacking. In order to solve these problems, attempts have been made to use a spherical resin coated with metal by wet plating as a conductive material. Resins that can be used for this purpose must have good adhesion to the coated metal and have suitable elasticity and hardness. However, most resins have poor adhesion to metal, and are crushed by thermocompression bonding to break or peel off the metal film, resulting in short-circuits or poor conductivity, which has a problem in reliability. A phenolic resin is considered as a resin suitable for such purpose. However, the phenol resin is slightly brittle, so that it is easily cracked and easily attacked by alkali. Further, a phenol resin containing a large number of phenolic hydroxyl groups in a molecule has a large water absorption rate, which may cause a problem because corrosion of a metal coating occurs after plating.

【0003】[0003]

【発明の目的】本発明は、上記の問題点に鑑み、適当な
弾性と硬さを有するとともに、耐久性および耐湿性に優
れた信頼性の高い導体材料を提供することを目的とす
る。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a highly reliable conductor material having appropriate elasticity and hardness, and excellent durability and moisture resistance.

【0004】[0004]

【問題解決に至る知見】発明者らは上記目的を達成する
手段について検討した。そして、フェノールとホルムア
ルデヒドとを用いて微小球状樹脂を製造した後、エポキ
サイドを用いて三次元架橋処理を施し、次いで金属被覆
を施した金属被覆樹脂球が上記すべての課題を満たすこ
とを見出し本発明を完成するに至った。
[Knowledge to Solve the Problem] The inventors have studied means for achieving the above object. Then, after producing a microspherical resin using phenol and formaldehyde, the present inventors have found that a metal-coated resin sphere which has been subjected to three-dimensional crosslinking treatment using epoxide and then metal-coated satisfies all the above-mentioned problems. Was completed.

【0005】[0005]

【課題を解決するための手段】即ち、本発明によれば、
フェノールとホルムアルデヒドとを球状のノボラック型
縮合物とした後にエポキサイドを反応させた三次元架橋
構造物に金属を被覆したことを特徴とする金属被覆ノボ
ラック-エポキサイド球状樹脂が与えられる。ノボラッ
ク型縮合物は、公知のように、酸触媒の存在下にフェノ
ールとホルムアルデヒドとをゆるやかに加熱して反応さ
せることにより得られる。ここでフェノールとしてはフ
ェノール性水酸基を含有する化合物のいずれも使用する
ことができる。ホルムアルデヒドは、ホルマリン、パラ
ホルムアルデヒドのいずれのかたちでも使用することが
できる。ノボラック生成に使用される酸触媒としては、
例えば、塩酸、シュウ酸等が挙げられる。
That is, according to the present invention,
The present invention provides a metal-coated novolak-epoxide spherical resin obtained by forming a spherical novolak-type condensate of phenol and formaldehyde and then coating the three-dimensional crosslinked structure obtained by reacting an epoxide with a metal. The novolak-type condensate can be obtained by, as is known, reacting phenol and formaldehyde by gently heating in the presence of an acid catalyst. Here, as the phenol, any compound having a phenolic hydroxyl group can be used. Formaldehyde can be used in any form of formalin and paraformaldehyde. Acid catalysts used for novolak formation include:
For example, hydrochloric acid, oxalic acid and the like can be mentioned.

【0006】球状のノボラックを得るためには、酸触媒
とホルムアルデヒド、好ましくはホルマリンの混合物に
フェノールを添加して攪拌しながら反応させる。球状ノ
ボラックを得るための典型的な反応手順は、以下のとお
りである。水性媒体中のホルムアルデヒド、酸触媒を攪
拌下にホルムアルデヒドに対して重量比1〜20のフェ
ノールを滴下しながら、80〜90℃まで4〜8時間で
徐々に昇温し、80〜90℃で1〜2時間反応させる。
反応温度80℃以下では生成物の融着が起こり易く、9
0℃以上では好適な粒度分布が得られにくいため好まし
くない。好適な粒度分布を得るために、ポリビニルアル
コール、ゼラチン、アラビアゴム、グアーゴムなどの添
加剤を添加することが好ましい。これらの添加剤によ
り、ノボラツク粒子同士の接着が防止される。また、所
望の平均粒径のものを得るために攪拌速度を調節しても
よい。上記の反応で軟化点が60〜70℃程度であるノ
ボラックが得られる。
In order to obtain a spherical novolak, phenol is added to a mixture of an acid catalyst and formaldehyde, preferably formalin, and the mixture is reacted with stirring. A typical reaction procedure for obtaining a spherical novolak is as follows. While the formaldehyde in the aqueous medium and the acid catalyst were being stirred and the phenol having a weight ratio of 1 to 20 was added dropwise to formaldehyde, the temperature was gradually raised to 80 to 90 ° C over 4 to 8 hours. Let react for ~ 2 hours.
At a reaction temperature of 80 ° C. or lower, fusion of the product is liable to occur, and 9
A temperature of 0 ° C. or higher is not preferable because it is difficult to obtain a suitable particle size distribution. In order to obtain a suitable particle size distribution, it is preferable to add additives such as polyvinyl alcohol, gelatin, gum arabic, and guar gum. These additives prevent the adhesion between the novolak particles. Further, the stirring speed may be adjusted to obtain a desired average particle size. Novolak having a softening point of about 60 to 70 ° C. is obtained by the above reaction.

【0007】得られた球状ノボラックは熱可溶性で溶剤
に可溶な二次元架橋構造物で、これにエポキサイドを反
応させ、三次元架橋構造物とすることにより、不溶不融
性の樹脂となる。球状ノボラックとエポキサイドとの反
応手順は、以下のように行なうことができる。水性媒体
中またはエタノール等の極性溶媒中の球状ノボラックに
対して重量比1〜5のエポキサイド(例えば、エピクロ
ルヒドリン)を攪拌下に球状ノボラツクを投入し、40
〜90℃で5〜30時間反応させる。反応温度40℃以
下では架橋反応が進行せず、90℃以上では球状ノボラ
ックが融着するため好ましくない。好適な分散性を得る
ために、ポリビニルアルコール、ゼラチン、アラビアゴ
ム、グアーゴムなどの添加剤を添加することが好まし
い。ノボラックの架橋に使用されるエポキサイドは、エ
ポキサイド基またはこれと同等の基を有するものであれ
ば良い。例えば、スチレンオキサイド、オクテンオキサ
イド、エピクロロヒドリン等が用いられる。
The resulting spherical novolak is a two-dimensional crosslinked structure which is heat-soluble and soluble in a solvent, and is reacted with epoxide to form a three-dimensional crosslinked structure, thereby forming an insoluble and infusible resin. The reaction procedure between the spherical novolak and the epoxide can be performed as follows. Spherical novolak was added to the spherical novolak in an aqueous medium or a polar solvent such as ethanol while stirring epoxide (e.g., epichlorohydrin) at a weight ratio of 1 to 5;
React at ~ 90 ° C for 5-30 hours. At a reaction temperature of 40 ° C. or lower, the crosslinking reaction does not proceed, and at a temperature of 90 ° C. or higher, spherical novolaks are undesirably fused. In order to obtain suitable dispersibility, it is preferable to add additives such as polyvinyl alcohol, gelatin, gum arabic, and guar gum. The epoxide used for crosslinking the novolak may be any one having an epoxide group or a group equivalent thereto. For example, styrene oxide, octene oxide, epichlorohydrin and the like are used.

【0008】球状樹脂を異方性導電膜中に使用する場合
には、一次粒子の平均粒径が1〜30μmで、平均粒径
の±30%の粒径範囲に少なくとも70%以上の一次粒
子が存在しなければならない。一次粒子の粒径が1μm
より小さいと、凝集しやすく単分散しにくいので導電膜
に十分な異方性が得られない。また、30μmより大き
くてもファインピッチ化に対応できないため好ましくな
い。また、平均粒径の±30%の粒径範囲に少なくとも
70%以上の一次粒子が存在しないと、やはり凝集しや
すく単分散しにくいので導電膜等の用途に適さない。
When a spherical resin is used in the anisotropic conductive film, the primary particles have an average particle size of 1 to 30 μm, and at least 70% or more of the primary particles have a particle size range of ± 30% of the average particle size. Must be present. Primary particle size is 1μm
If the particle size is smaller than the above range, the conductive film does not easily have sufficient anisotropy because it is easy to aggregate and hardly monodisperse. Further, if it is larger than 30 μm, it is not preferable because fine pitch cannot be coped with. Further, if at least 70% or more of the primary particles are not present in the particle size range of ± 30% of the average particle size, the particles are also likely to aggregate and hardly monodisperse, and thus are not suitable for applications such as conductive films.

【0009】金属を被覆する方法は、無電解めっき法が
最も適しており、Sn/Pd系による触媒性付与を経て
無電解めっきに供される公知の一般的方法が利用でき
る。金属の被覆量は、コア材とする球状樹脂の粒径と被
覆する金属の比重により変化するが、十分な導電性を得
るための被覆量は10〜90重量%の範囲である。被覆
量が10重量%より少ないと比表面積の小さい粒径30
μmの球状樹脂を用いた場合でも金属被覆の膜厚が薄く
なり十分な導電性が得られない。90重量%より多いと
比表面積の大きい粒径1μmの球状樹脂を用いても十分
な導電性が得られ、それ以上に金属被覆の膜厚を厚くし
ても導電性が頭打ちとなるばかりでなく、比重が大きく
なり分散性が悪くなるので好ましくない。被覆する金属
は無電解めっきが可能な金属で、Au、Pd、Ag、C
u、Co、Niから選択される。金属層は、一層または
二層以上の何れでもよいが、金属被覆の厚さが0.05
μm以上なければ十分な導電性が得られないので、A
u、Pd等の貴金属を被覆する場合には、コストを下げ
るために二層以上として下層で必要な膜厚を与え、最外
層にのみ貴金属を被覆する方法が推奨される。
The most suitable method for coating a metal is an electroless plating method, and a known general method used for electroless plating after imparting a catalytic property by a Sn / Pd system can be used. The amount of metal coating varies depending on the particle size of the spherical resin used as the core material and the specific gravity of the metal to be coated, but the amount of coating for obtaining sufficient conductivity is in the range of 10 to 90% by weight. When the coating amount is less than 10% by weight, the particle size of the specific surface area is small.
Even when a spherical resin having a thickness of μm is used, the film thickness of the metal coating is so small that sufficient conductivity cannot be obtained. When the content is more than 90% by weight, sufficient conductivity can be obtained even when a spherical resin having a large specific surface area and a particle diameter of 1 μm is used, and even if the thickness of the metal coating is further increased, not only does the conductivity level off. , The specific gravity is increased, and the dispersibility is deteriorated. The metal to be coated is a metal that can be electrolessly plated, Au, Pd, Ag, C
u, Co, or Ni. The metal layer may be a single layer or two or more layers, and the thickness of the metal coating is 0.05.
If not more than μm, sufficient conductivity cannot be obtained.
In the case of coating a noble metal such as u or Pd, it is recommended to provide a required film thickness in the lower layer as two or more layers in order to reduce the cost, and to coat only the outermost layer with the noble metal.

【0010】[0010]

【発明の効果】本発明により得られる金属被覆ノボラッ
ク−エポキサイド球状樹脂では、エポキサイドがノボラ
ック樹脂と反応して三次元架橋を形成している。このた
め曲げ強さが改善されて割れの発生がなくなる。さら
に、エポキサイドとの反応によってノボラック樹脂中の
フェノール性水酸基がエーテル化するために、耐熱酸化
性、耐アルカリ薬品性が向上するとともに、単位重量当
たりの水酸基の数が減少するため吸水率が小さくなり、
金属被覆後の腐食の発生が抑えられる。したがって、本
発明の金属被覆樹脂球を導電体として用いることによ
り、信頼性の高い導電フィラーを得ることができる。
According to the metal-coated novolak-epoxide spherical resin obtained by the present invention, the epoxide reacts with the novolak resin to form three-dimensional crosslinks. For this reason, the bending strength is improved and the generation of cracks is eliminated. Furthermore, the phenolic hydroxyl group in the novolak resin is etherified by the reaction with the epoxide, so that the thermal oxidation resistance and alkali chemical resistance are improved, and the number of hydroxyl groups per unit weight is reduced, so that the water absorption is reduced. ,
The occurrence of corrosion after metal coating is suppressed. Therefore, by using the metal-coated resin ball of the present invention as a conductor, a highly reliable conductive filler can be obtained.

【0011】以下、実施例により本発明を具体的に説明
する。
Hereinafter, the present invention will be described specifically with reference to examples.

【実施例1】シュウ酸30gを37%ホルマリン500
mLに溶解し、これにフェノール650mL、アラビア
ゴム80gを加え攪拌しながら90℃まで5時間で加熱
した。90℃に達した時点で10%塩酸40mLを加
え、90℃に保ったまま1時間攪拌を続けた。得られた
球状ノボラック樹脂を系から取り出して水洗した。エピ
クロロヒドリン75重量%と水25重量%からなる混合
液を共沸、凝集させ、上層(7重量%エポクロロヒドリ
ン水溶液)のみを10Kg用意し、これに、アラビアゴ
ム120gを添加し、先の球状ノボラック樹脂を分散、
攪拌しながら80℃に加熱して8時間保持した。得られ
たノボラック−エポキサイド球状樹脂を系から取り出し
て水洗、乾燥した。収量は957gで、粒度は12μ
m、22%をピークに1〜29μmの範囲に分布してい
た。これをダミーのガラスビーズと共に超音波分級器に
かけ、10±1μmに分級した。収量は79gで、10
±1μmの範囲に92%以上の球状樹脂が存在してい
た。得られた樹脂を SnCl2 10g/L、HCl 2
0mL/Lの水溶液に浸漬して感受性化を行ない、次に、
PdCl2 1g/L、HCl 2mL/Lの水溶液に浸漬
して活性化を行なった後に、下記組成のめっき液を用い
てNi50重量%、Ag50重量%およびNi4
0重量%被覆後Au20重量%の3種類の金属被覆ノボ
ラック-エポキサイド球状樹脂を得た。Niめっき(め
っき浴温:70℃) クエン酸ナトリウム 20g/L 乳酸 20mL/L 硫酸ニッケル 25g/L 次亜硫酸ナトリウム 30g/L 酢酸鉛 5mg/L Agめっき(めっき浴温:25℃) エチレンジアミノ四酢酸四ナトリウム 100g/L 水酸化ナトリウム 30g/L ホルマリン 50mL/L 硝酸銀* 15g/L アンモニア水* 50mL/
L *:水に希釈して滴下する Auめっき(めっき浴温:70℃) シアン化ナトリウム 10g/L 水酸化ナトリウム 20g/L エチレンジアミン 20mL/
L シアン化第一金カリウム 4g/L 水素化ホウ素ナトリウム 20g/L
Example 1 30 g of oxalic acid was added to 37% formalin 500
650 mL of phenol and 80 g of gum arabic, and heated to 90 ° C. for 5 hours with stirring. When the temperature reached 90 ° C, 40 mL of 10% hydrochloric acid was added, and stirring was continued for 1 hour while maintaining the temperature at 90 ° C. The obtained spherical novolak resin was taken out of the system and washed with water. A mixed solution consisting of 75% by weight of epichlorohydrin and 25% by weight of water is azeotropically aggregated, and only 10 kg of the upper layer (7% by weight aqueous solution of epochlorohydrin) is prepared. To this, 120 g of gum arabic is added. Disperse the spherical novolak resin,
The mixture was heated to 80 ° C. with stirring and maintained for 8 hours. The obtained novolak-epoxide spherical resin was taken out of the system, washed with water and dried. The yield is 957 g and the particle size is 12 μm.
m and 22% were peaks and distributed in the range of 1 to 29 μm. This was put together with dummy glass beads in an ultrasonic classifier and classified to 10 ± 1 μm. The yield is 79 g, 10
92% or more of the spherical resin was present in the range of ± 1 μm. The obtained resin was treated with SnCl 2 10 g / L, HCl 2
To sensitize by immersing in 0 mL / L aqueous solution,
After activation by immersion in an aqueous solution of 1 g / L of PdCl 2 and 2 mL / L of HCl, 50% by weight of Ni, 50% by weight of Ag and
After coating with 0% by weight, three kinds of metal-coated novolak-epoxide spherical resins of 20% by weight of Au were obtained. Ni plating (plating bath temperature: 70 ° C) Sodium citrate 20g / L Lactic acid 20mL / L Nickel sulfate 25g / L Sodium hyposulfite 30g / L Lead acetate 5mg / L Ag plating (plating bath temperature: 25 ° C) Ethylenediaminotetraacetic acid Tetrasodium 100g / L Sodium hydroxide 30g / L Formalin 50mL / L Silver nitrate * 15g / L Ammonia water * 50mL /
L *: Dilute in water and add dropwise Au plating (plating bath temperature: 70 ° C) Sodium cyanide 10g / L Sodium hydroxide 20g / L Ethylenediamine 20mL /
L Potassium gold cyanide 4g / L Sodium borohydride 20g / L

【0012】[0012]

【比較例】市販の球状フェノール樹脂を10±1μm
(存在率:91%以上)に分級し、実施例と同様にN
i50重量%、Ag50重量%およびNi40重量
%被覆後Au20重量%の3種類の金属被覆フェノール
球状樹脂を得た。実施例、比較例ともに、相対湿度85
%×85℃の恒温恒湿槽に24時間放置した後、これら
の表面を走査型電子顕微鏡で観察したところ、実施例で
はシミ、フクレ等の異常は見られなかったが、比較例で
は、、の何れについてもピンホールからの液の滲
み出しによる黒ずんだシミが見られた。また、実施例、
比較例ともにおよびの金属被覆球状樹脂を相対湿度
85%×85℃の恒温恒湿槽に120時間放置した。放
置の前後に試料を1gずつ取り分け断面積1cm2の電
極に挟み、10kg/cm2の圧力を加えながら抵抗を
測定した結果、実施例では放置前後での変化はほとんど
見られず、、の何れも10-5Ω・cmオーダーであ
った。一方、比較例では、放置前はいずれも10-5 オー
ダーであったが、放置後はで10-3Ω・cmオーダ
ー、で10-4Ω・cmと一桁から二桁高い体積抵抗率を
示した。更に、圧力を100kg/cm2まで高くしたとこ
ろ、実施例では何れも10-5Ω・cmオーダーの体積抵
抗率を保ち、圧力を高くしても変化は見られなかった
が、比較例ではフェノール樹脂の割れが発生したために
何れも10-3Ω・cmオーダーまで体積抵抗率が高くな
った。
[Comparative Example] Commercially available spherical phenol resin is 10 ± 1μm
(Existence rate: 91% or more), and N
i 50% by weight, Ag 50% by weight and Ni 40% by weight
% Coated phenol of 20% by weight Au after coating
A spherical resin was obtained. In both Examples and Comparative Examples, the relative humidity was 85.
% X 85 ° C for 24 hours.
When the surface of was observed with a scanning electron microscope,
No abnormalities such as spots and blisters were observed, but in Comparative Examples
Means that the liquid seeps from the pinhole
Dark spots due to protrusion were seen. Examples,
In both comparative examples, the relative humidity of
It was left in a constant temperature and humidity chamber of 85% × 85 ° C. for 120 hours. Release
Separate the sample by 1g before and after placing, and cross-sectional area 1cmTwoNo electricity
Between the poles, 10kg / cmTwoResistance while applying pressure
As a result of measurement, in the example, the change before and after
Not seen, any of 10-FiveΩ · cm order
Was. On the other hand, in the comparative example, 10-Five Oh
It was 10-3Ω · cm order
ー, 10-FourΩ ・ cm and one or two digits higher volume resistivity
Indicated. Furthermore, the pressure is 100 kg / cmTwoThat was raised to
Of course, in the examples,-FiveΩ · cm order volume resistance
No change was observed even if the pressure was increased while maintaining the drag rate
However, in the comparative example, the phenol resin cracked,
All 10-3High volume resistivity up to the order of Ωcm
Was.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フェノールとホルムアルデヒドとを球状
のノボラック型縮合物とした後にエポキサイドを反応さ
せた三次元架橋構造物に金属を被覆したことを特徴とす
る金属被覆ノボラック−エポキサイド球状樹脂。
1. A metal-coated novolak-epoxide spherical resin, wherein a three-dimensional crosslinked structure obtained by converting phenol and formaldehyde into a spherical novolak-type condensate and then reacting with epoxide is coated with a metal.
【請求項2】 一次粒子の平均粒径が1〜30μmで、
平均粒径の±30%の粒径範囲に少なくとも70%以上
の一次粒子が存在することを特徴とする請求項1の金属
被覆ノボラック−エポキサイド球状樹脂。
2. The primary particles have an average particle size of 1 to 30 μm,
2. The metal-coated novolak-epoxide spherical resin according to claim 1, wherein at least 70% or more of the primary particles are present in a particle size range of ± 30% of the average particle size.
【請求項3】 金属を被覆する方法が無電解めっき法で
あることを特徴とする請求項1に記載の金属被覆ノボラ
ック−エポキサイド球状樹脂。
3. The metal-coated novolak-epoxide spherical resin according to claim 1, wherein the method of coating the metal is an electroless plating method.
【請求項4】 金属の被覆量が10〜90重量%である
ことを特徴とする請求項1に記載の金属被覆ノボラック
−エポキサイド球状樹脂。
4. The metal-coated novolak-epoxide spherical resin according to claim 1, wherein the coating amount of the metal is 10 to 90% by weight.
【請求項5】 被覆する金属がAu、Pd、Ag、C
u、Co、Niの一層または二層以上であることを特徴
とする請求項1に記載の金属被覆ノボラック−エポキサ
イド球状樹脂。
5. The metal to be coated is Au, Pd, Ag, C
The metal-coated novolak-epoxide spherical resin according to claim 1, wherein the metal-coated novolak-epoxide spherical resin is one or more layers of u, Co, and Ni.
JP21364892A 1992-07-17 1992-07-17 Metal-coated novolak-epoxide spherical resin Expired - Fee Related JP2964790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21364892A JP2964790B2 (en) 1992-07-17 1992-07-17 Metal-coated novolak-epoxide spherical resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21364892A JP2964790B2 (en) 1992-07-17 1992-07-17 Metal-coated novolak-epoxide spherical resin

Publications (2)

Publication Number Publication Date
JPH0633248A JPH0633248A (en) 1994-02-08
JP2964790B2 true JP2964790B2 (en) 1999-10-18

Family

ID=16642642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21364892A Expired - Fee Related JP2964790B2 (en) 1992-07-17 1992-07-17 Metal-coated novolak-epoxide spherical resin

Country Status (1)

Country Link
JP (1) JP2964790B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19518942C2 (en) * 1995-05-23 1998-12-10 Fraunhofer Ges Forschung Process for the production of metallized polymer particles and polymer material produced by the process and their use
KR100446203B1 (en) * 2002-03-11 2004-08-30 김기형 method for preparation of conductive ultra fine particles
GB201018379D0 (en) 2010-10-29 2010-12-15 Conpart As Conductive rf particles

Also Published As

Publication number Publication date
JPH0633248A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
CN102089832B (en) Conductive particle, anisotropic conductive film, joined body, and connecting method
JP4877407B2 (en) Coated conductive particles and method for producing the same
JP4235227B2 (en) Conductive fine particles and anisotropic conductive materials
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
JP2895872B2 (en) Anisotropic conductive material, anisotropic conductive adhesive, method for electrically connecting electrodes using the anisotropic conductive adhesive, and electric circuit board formed by the method
JP5440645B2 (en) Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive
JP4936678B2 (en) Conductive particles and anisotropic conductive materials
JP4640531B2 (en) Conductive particles
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
WO2006018995A1 (en) Conductive fine particle, method for producing conductive fine particle and electroless silver plating liquid
WO2013108740A1 (en) Conductive particles, conductive material and connection structure
CN104480455B (en) A kind of method that anisotropic conductive film conducting polymer microsphere is prepared by dopamine
JP6089462B2 (en) Conductive particles, manufacturing method thereof, and conductive material including the same
JP5844219B2 (en) Method for producing conductive particles
CN101622679B (en) Conductive fine particle and anisotropic conductive material
JP2964790B2 (en) Metal-coated novolak-epoxide spherical resin
JP4772490B2 (en) Method for producing conductive particles
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
JPH10101962A (en) Electroconductive electrolessly plated powder
JPH07268303A (en) Anisotropic electrically-conductive adhesive composition
JP6445833B2 (en) Conductive particles, conductive materials, and connection structures
JP5796232B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JPH09171714A (en) Conductive powder
JP6411194B2 (en) Conductive particle, method for producing conductive particle, conductive material, and connection structure
WO2007072912A1 (en) Conductive fine particle and anisotropic conductive material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees