JPS63248170A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63248170A
JPS63248170A JP62082318A JP8231887A JPS63248170A JP S63248170 A JPS63248170 A JP S63248170A JP 62082318 A JP62082318 A JP 62082318A JP 8231887 A JP8231887 A JP 8231887A JP S63248170 A JPS63248170 A JP S63248170A
Authority
JP
Japan
Prior art keywords
gate
oxide film
input terminal
electrons
mos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62082318A
Other languages
Japanese (ja)
Inventor
Kazuo Shibata
一雄 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62082318A priority Critical patent/JPS63248170A/en
Publication of JPS63248170A publication Critical patent/JPS63248170A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To inhibit the injection of hot electrons into a gate oxide film by an applied surge by forming a section between an input terminal and a gate electrode for a parasitic MOS transistor with a resistance material. CONSTITUTION:A resistor R3 is shaped between a gate electrode 7a on a channel region existing between the regions of mutually opposed source 5b and drain 5a in a parasitic MOS transistor TR1 and an input terminal IN. When surge voltage is applied at the terminal IN, gate voltage generates a voltage drop because there is the resistance load R3 in a gate section for the Tr TR1, thus preventing the generation of electrons on the interface between a field oxide film 3 and an Si substrate 1 in the channel region in the Tr TR1, then obviating the flow of channel currents. Accordingly, the injection of hot electrons to the film 3 is difficult to be generated, and the leakage currents of the terminal IN are hardly generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、入力端子に加えられる静電気などの外部サー
ジから装置を保護するための入力保護回路を備え、特に
、−導電型の半導体基板と逆導電型の不純物層から匠る
、抵抗と寄生MOSトランジスタを有するMOS型半導
体装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention includes an input protection circuit for protecting a device from external surges such as static electricity applied to an input terminal, and is particularly applicable to a semiconductor substrate of a -conductivity type. The present invention relates to a MOS semiconductor device having a resistor and a parasitic MOS transistor manufactured from an impurity layer of opposite conductivity type.

〔従来の技術〕[Conventional technology]

上記入力保護回路の一般的な例を第2回し)に、マスク
パターンを(b)に示す。通常は、入力端子INはAt
(アルミニウム)等の金属配線で形成され、抵抗(第2
図(alのR1,R2および(b)の5a)は、不純物
拡散層や多結晶シリコン層で形成される。
A general example of the above input protection circuit is shown in Part 2), and a mask pattern is shown in Part (b). Normally, the input terminal IN is At
(aluminum), etc., and a resistor (second
R1 and R2 in the figure (al) and 5a in (b) are formed of an impurity diffusion layer or a polycrystalline silicon layer.

そこで、この入力保護回路の動作原理について説明する
Therefore, the operating principle of this input protection circuit will be explained.

第2図(alにおいて、入力端子INにサージ電圧が印
加されると、サージ電圧は、抵抗R,で緩和され、寄生
MOS)ランジスタTR,のドレイン節点■に加わり、
すてに導通状態になっている寄生A108)ランジスタ
TR,によって節点■の電位は接地電位(OV)に放電
される。
In FIG. 2 (al), when a surge voltage is applied to the input terminal IN, the surge voltage is relaxed by the resistor R, and is applied to the drain node of the parasitic MOS transistor TR,
The potential at the node (2) is discharged to the ground potential (OV) by the parasitic transistor (A108) transistor TR, which is already in a conductive state.

ここで、抵抗R2は、入力サージ電圧による節点0の電
位上昇によって、入力トランジスタTR。
Here, the resistor R2 is connected to the input transistor TR due to an increase in the potential of the node 0 due to the input surge voltage.

のゲート電圧を、寄生MOS)ランジスタテ几1のスイ
ヴチングスピードより時定数R2C5t分だけ遅らせて
節点■の電位を早く接地電位に放電させ、入力トランジ
スタTRoのゲート酸化膜を保護する効果を持つ。
By delaying the gate voltage of the parasitic MOS (parasitic MOS transistor) by a time constant R2C5t from the switching speed of the transistor transistor 1, the potential of the node (2) is quickly discharged to the ground potential, which has the effect of protecting the gate oxide film of the input transistor TRo.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第2図(a)に示すように、入力サージ電圧による節点
■が高電位になることにより、寄生MOS)ランジスタ
TR1のドレイン近傍において、ホットエレクトロンが
発生し、寄生MOSトランジスタT Rlのドレイン近
傍のゲート酸化膜(第2図(C)の3)ヘホダトエレク
トロンが以下のプロセスで注入される。
As shown in FIG. 2(a), hot electrons are generated in the vicinity of the drain of the parasitic MOS transistor TR1 due to the high potential of the node ■ due to the input surge voltage, and Electrons are injected into the gate oxide film (3 in FIG. 2C) by the following process.

第3図(a) 、 (b)は、第2図(1)を拡大した
もので、第3図(alに示すように、入力端子7aに正
のサージが加わると、寄生MOSトランジスタT Rt
のゲート酸化膜(特にフィールド酸化膜)3直下のシリ
コン基板1にエレクトロンが誘導される。この誘導され
たエレクトロンは、寄生MOSトランジスタTR,のド
レイン5aが正の高電位のために、ソース5bからドレ
イン5aへ向かって流れていき、チャネル電流iが流れ
る。
3(a) and 3(b) are enlarged views of FIG. 2(1). As shown in FIG. 3(al), when a positive surge is applied to the input terminal 7a, the parasitic MOS transistor T Rt
Electrons are induced into the silicon substrate 1 directly under the gate oxide film (particularly the field oxide film) 3. Since the drain 5a of the parasitic MOS transistor TR has a high positive potential, the induced electrons flow from the source 5b to the drain 5a, causing a channel current i to flow.

ソース5bからドレイン5aへ流れていくエレクトロン
は、ドレイン近傍で最大のエネルギーを得るだめに、ホ
ットエレクトロン化し、これらのホットエレクトロンは
本来ドレイン5aに引かれるが、一部散乱を受けて方向
がランダムになり、P型シリコン基板(P−8i)−寄
生MOSトランジスタのゲート酸化膜(Si02)界面
にやって来る確率がある。これがSiO2のエレクトロ
ンに対するバリアを飛び越えるだけの十分なエネルギー
を持っていると5iOz中に入シ込む。
Electrons flowing from the source 5b to the drain 5a turn into hot electrons in order to obtain maximum energy near the drain. These hot electrons are originally attracted to the drain 5a, but some of them are scattered and their direction becomes random. Therefore, there is a probability that it will arrive at the interface between the P-type silicon substrate (P-8i) and the gate oxide film (Si02) of the parasitic MOS transistor. If it has enough energy to jump over the SiO2 barrier to electrons, it will enter 5iOz.

したがって第3図(b)に示すように入力サージ電圧印
加によって寄生MOS)ジンジスタのドレイン近傍のゲ
ート酸化膜、特にP型シリコン基板1に接しているフィ
ールド酸化膜3内にエレクトロンが注入される。フィー
ルド酸化膜3内に注入されたエレクトロンによってドレ
イン5a−フィールド酸化膜3間のシリコン基板1に高
密度の正電荷が誘導される。この状態でデバイスを通常
動作させると、つま多入力端子7aにバイアスが加わる
と、入力端子7aと接続された不純物密度層5aの下に
形成される空乏層9はドレイン5a−フィールド酸化膜
3間で非常に狭まる。したがって、不純物密度層5aと
シリコン基板1との耐圧は下がシ、入力端子7aにバイ
アスをかけるとリーク電流iTが発生する。
Therefore, as shown in FIG. 3(b), electrons are injected into the gate oxide film near the drain of the parasitic MOS transistor, particularly into the field oxide film 3 in contact with the P-type silicon substrate 1, by applying the input surge voltage. High-density positive charges are induced in the silicon substrate 1 between the drain 5a and the field oxide film 3 by the electrons injected into the field oxide film 3. When the device is normally operated in this state, when a bias is applied to the multiple input terminal 7a, the depletion layer 9 formed under the impurity density layer 5a connected to the input terminal 7a is formed between the drain 5a and the field oxide film 3. becomes very narrow. Therefore, the breakdown voltage between the impurity density layer 5a and the silicon substrate 1 is low, and when a bias is applied to the input terminal 7a, a leakage current iT is generated.

以上のように、入力サージ電圧印加によって、寄生MO
Sトランジスタ直下にチャネルが発生し、チャネル内の
キャリヤであるエレクトロンの流れによるホーy)エレ
クトロンが8 iCh内へ注入される。その結果、5i
02内へ注入されたエレクトロンに誘導されて正電荷が
発生し、入力端子に接続される不純物密度層の耐圧が低
下し、デバイスの動作時にリーク電流が発生するという
問題があった。
As mentioned above, by applying input surge voltage, parasitic MO
A channel is generated directly under the S transistor, and electrons, which are carriers, flow within the channel and are injected into the 8 iCh. As a result, 5i
There was a problem in that positive charges were generated by the electrons injected into the device, lowering the withstand voltage of the impurity density layer connected to the input terminal, and causing leakage current during device operation.

したがって、本発明の目的は、上記の問題を解決し、入
力端子に印加されたサージによってゲート酸化膜内への
ホットエレクトロンの注入を抑制し、高サージ耐圧のM
OS型半導体装置を提供することにある。
Therefore, an object of the present invention is to solve the above problems, suppress the injection of hot electrons into the gate oxide film due to the surge applied to the input terminal, and improve the
An object of the present invention is to provide an OS type semiconductor device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、半導体装置の入力保護回路に具
備された、−導電型の半導体基板と逆導電型の不純物層
から成る抵抗および寄生MOSトランジスタを有するM
OS型半導体装置において、入力端子と前記寄生MOS
)ランジスタのゲート電極間を抵抗材料で形成すること
を特徴としているO 〔実施例〕 次に、本発明の実施例について図面を参照して説明する
。第1図(a)は本発明の回路図を示し、第2図(a)
に対応しており、第1図(b)は本発明の一実施例のマ
スクパターン図を示し、第2図(b)に対応している。
A semiconductor device of the present invention includes a resistor and a parasitic MOS transistor comprising a -conductivity type semiconductor substrate and an opposite conductivity type impurity layer, which are included in an input protection circuit of the semiconductor device.
In an OS type semiconductor device, an input terminal and the parasitic MOS
) The transistor is characterized in that the space between the gate electrodes is formed of a resistive material. [Example] Next, an example of the present invention will be described with reference to the drawings. FIG. 1(a) shows a circuit diagram of the present invention, and FIG. 2(a) shows a circuit diagram of the present invention.
FIG. 1(b) shows a mask pattern diagram of an embodiment of the present invention, and corresponds to FIG. 2(b).

本実施例が従来例と異なる点は第1図(a)において寄
生MOS)ランジスタTR1のゲートに抵抗が存在する
点にあり、第1図(b)においては寄生MOSトランジ
スタの相対向するソース5b、ドレイン5aの領域間内
に存在するチャネル領域上のゲート電極7aと入力端子
間に抵抗(ポリ抵抗、拡散抵抗など)が存在する点にあ
る。入力端子9aにサージ電圧が加わった時、寄生MO
S)ランジスタTR1のゲート部分に抵抗負荷が存在し
ているため、ゲート電圧が電圧降下を起こしそのために
寄生MOS)ランジスタTRtのチャネル領域内のフィ
ールド酸化膜3−シリコン基板1界面にエレクトロンが
発生しに<<、チャネル電流が流れにくい。したがって
フィールド酸化膜3へのホットエレクトロン注入現象は
発生しに〈〈なり、入力端子9aのリーク電流は発生し
にくくなる。
This embodiment differs from the conventional example in that in FIG. 1(a) there is a resistance at the gate of the parasitic MOS transistor TR1, and in FIG. 1(b), the opposing sources 5b of the parasitic MOS transistor , there is a resistance (poly resistance, diffused resistance, etc.) between the input terminal and the gate electrode 7a on the channel region existing between the regions of the drain 5a. When a surge voltage is applied to the input terminal 9a, the parasitic MO
S) Since there is a resistive load on the gate of transistor TR1, the gate voltage drops and electrons are generated at the field oxide film 3-silicon substrate 1 interface in the channel region of parasitic MOS) transistor TRt. <<, the channel current is difficult to flow. Therefore, the phenomenon of hot electron injection into the field oxide film 3 is less likely to occur, and leakage current at the input terminal 9a is less likely to occur.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は寄生MOS)ランジスタに
おいてチャネル上のゲート電極に抵抗負荷を加えること
によってチャネル領域内のフィールド酸化膜直下にエレ
クトロンが発生しにくくなシ、ホットエレクトロンによ
る酸化膜内への注入現象を抑制する効果がある。
As explained above, the present invention makes it difficult for electrons to be generated directly under the field oxide film in the channel region by applying a resistive load to the gate electrode on the channel in a parasitic MOS transistor, and prevents hot electrons from entering the oxide film. It has the effect of suppressing the injection phenomenon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は、本発明の等価回路図、第1図(b)は
そのマスクパターンの一実施例、第1図(C)は第1図
(b)の断面図を示す図、第2図(a)は従来の入力保
護回路を示し、第2図(b)は、第2図(a)のマスク
パターンの一実施例、第2図(C)は、第2図(b)の
■−■の断面図を示す。第3図(a) 、 (b)は第
2図(C)の(1)の拡大図を示す。 IN・・・・・・入力端子、几1.R2,几3・・・・
・・抵抗、TR,・・・・・・MOS)ランジスタ、 
IIIR,o・・・・・・入力トランジスタ、Cat・
・・・・・浮遊容量。 代理人 弁理士  内 原   晋。 芽 /T!!l? b
FIG. 1(a) is an equivalent circuit diagram of the present invention, FIG. 1(b) is an example of the mask pattern, and FIG. 1(C) is a cross-sectional view of FIG. 1(b). FIG. 2(a) shows a conventional input protection circuit, FIG. 2(b) shows an example of the mask pattern of FIG. 2(a), and FIG. 2(C) shows a conventional input protection circuit. ) is shown. FIGS. 3(a) and 3(b) show enlarged views of (1) in FIG. 2(C). IN...Input terminal, 1. R2, 几3...
...Resistance, TR, ...MOS) transistor,
IIIR, o... Input transistor, Cat.
... Stray capacitance. Agent: Susumu Uchihara, patent attorney. Bud /T! ! l? b

Claims (1)

【特許請求の範囲】[Claims] 半導体装置の入力保護回路に具備された、導電型の半導
体基板と逆導電型の不純物層から成る抵抗および保護M
OSトランジスタを有するMOS型半導体装置において
、入力端子と前記保護MOSトランジスタのゲート電極
間を抵抗で接続したことを特徴とする半導体装置。
Resistance and protection M comprised of a conductive type semiconductor substrate and an opposite conductive type impurity layer, provided in an input protection circuit of a semiconductor device
1. A MOS semiconductor device having an OS transistor, characterized in that an input terminal and a gate electrode of the protection MOS transistor are connected by a resistor.
JP62082318A 1987-04-02 1987-04-02 Semiconductor device Pending JPS63248170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62082318A JPS63248170A (en) 1987-04-02 1987-04-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62082318A JPS63248170A (en) 1987-04-02 1987-04-02 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63248170A true JPS63248170A (en) 1988-10-14

Family

ID=13771217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62082318A Pending JPS63248170A (en) 1987-04-02 1987-04-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63248170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371395A (en) * 1992-05-06 1994-12-06 Xerox Corporation High voltage input pad protection circuitry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371395A (en) * 1992-05-06 1994-12-06 Xerox Corporation High voltage input pad protection circuitry

Similar Documents

Publication Publication Date Title
US4009483A (en) Implementation of surface sensitive semiconductor devices
US5157573A (en) ESD protection circuit with segmented buffer transistor
JP4401500B2 (en) Semiconductor device and method for reducing parasitic bipolar effect in electrostatic discharge
JP2982785B2 (en) Depletion type MOS semiconductor device and MOS power IC
US6861711B2 (en) Thick gate oxide transistor and electrostatic discharge protection utilizing thick gate oxide transistors
KR0178980B1 (en) Semiconductor device provided with protection circuit
US5844280A (en) Device for protecting a semiconductor circuit
JPH06196634A (en) Depletion control type separation stage
US6900969B2 (en) ESD protection with uniform substrate bias
JP2000323666A (en) Protecting circuit for semiconductor device and its method
US7449751B2 (en) High voltage operating electrostatic discharge protection device
JPH04332173A (en) Planar type semiconductor device and its manufacture
KR100624911B1 (en) Device for protecting an electro static discharge
US8093121B1 (en) ESD protection transistor
KR20200066853A (en) Electrostatic Discharge Protection Device having Dual Emitter Structure
KR100196734B1 (en) Semiconductor device with large substrate contact region
JPS63248170A (en) Semiconductor device
JP2784458B2 (en) Surge protection element
JPS62126663A (en) Input protecting circuit
KR100612948B1 (en) Transistor with low breakdown voltage used for electro static discharge circuit
KR100189036B1 (en) A semiconductor device
KR101944190B1 (en) Electrostatic Discharge Protection Device
JPH1056187A (en) Semiconductor device
KR100289401B1 (en) Semiconductor device for protecting electrostatic discharge
KR20070058165A (en) Electrostatic discharge protection device of semiconductor device