JPS63247297A - Method of controlling overhead travelling crane - Google Patents

Method of controlling overhead travelling crane

Info

Publication number
JPS63247297A
JPS63247297A JP62076087A JP7608787A JPS63247297A JP S63247297 A JPS63247297 A JP S63247297A JP 62076087 A JP62076087 A JP 62076087A JP 7608787 A JP7608787 A JP 7608787A JP S63247297 A JPS63247297 A JP S63247297A
Authority
JP
Japan
Prior art keywords
address
load
crane
height
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62076087A
Other languages
Japanese (ja)
Other versions
JP2518176B2 (en
Inventor
堀川 恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP62076087A priority Critical patent/JP2518176B2/en
Publication of JPS63247297A publication Critical patent/JPS63247297A/en
Application granted granted Critical
Publication of JP2518176B2 publication Critical patent/JP2518176B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は天井走行クレーンの制御方法、特に貯品ヤード
を複数の区画に区分して各区画に番地を附し、貯品の在
庫状況を番地毎に管理するとともに貯品運搬用の天井ク
レーンを制御する計算機システムの天井走行クレーンの
制御方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for controlling an overhead traveling crane, and in particular to a method for controlling an overhead traveling crane, in particular, dividing a storage yard into a plurality of sections, assigning an address to each section, and monitoring the inventory status of stored goods. This invention relates to a method of controlling an overhead traveling crane using a computer system that manages each address and controls an overhead crane for transporting stored goods.

〔従来の技術〕[Conventional technology]

従来、この種の天井クレーンの制御方法は、安全性を重
んじるあまりに、運搬する荷が運搬経路途中の障害物を
避けるのに絶対安全な高さにまで巻き上げた後任意に走
行と横行を行い、目的区画まで運搬していた。
Conventionally, the control method for this type of overhead crane places too much emphasis on safety, so the load is hoisted up to a height that is absolutely safe to avoid obstacles on the transport route, and then the crane moves and traverses at will. It was being transported to the destination area.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の天井走行クレーンの制御方法は、運転効
率や省エネルギ等が考慮されていないため、デユーティ
サイクルが長く、また消費電力に無駄があるという欠点
がある。
The conventional overhead crane control method described above does not take operational efficiency, energy saving, etc. into consideration, and therefore has the drawbacks of a long duty cycle and wasteful power consumption.

C問題点を解決するための手段) 本発明の天井走行クレーンの制御方法は、荷を任意の番
地Aから他の任意の番地Bに運搬するとき、まず、番地
Aと番地Bの両区両開を真直ぐに結ぶ帯状領域を定め、
該領域と区画の全部または  一部が重畳するすべての
番地を検出し、次に、これらの検出した番地および番地
Bについて、それぞれの番地に積み上げられた貯品の高
さにおける該番地の区画線のうち番地Aに近い側の区画
線を番地Aの運搬材を除く貯品の高さにおける区画線の
うち移動方向側の区画線から眺めた面の水平面からの正
または負の仰角を演算して、それらのうち最大仰角を有
する番地Cを選出し、次に、番地Cと番地Aの運搬材を
除く貯品の高さをそれぞれhCおよびhaとして、それ
らの差h(−hc−ha)を荷の巻上げをするのに要す
る時間thまたは荷の巻下げをするのに要する時間1゜
を、巻上げまたは巻下げ最高速度とそれらの加減速度と
より求め、一方、番地A、B間の長手方向距離と幅方向
距離の比に等しくクレーンの走行速度と横行速度の比お
よびそれらの加減速度の比を定め、該比を有する最大の
クレーン合成速度Uを求めてクレーンが移動を開始して
から該合成速度Uに立上がる時間t uを計算し、時間
tuを用いて荷が番地Cの区画線に到達するまでの時間
tclまたは荷が番地Cの区画内に到達するまでの時間
tc2を求めた後、まず、荷の巻上げを開始して一定の
巻上げ補正量Δhたけ巻上げを行い、次に、高さhcか
高さhaよりも大きいか高さhaに等しい場合で、th
≦trIのときは、引続き巻上げを行いながらクレーン
の移動を開始して前記合成速度Uで荷を運搬し、高さの
差りの巻−]二げ終了時に荷の高さをその高さに保持し
たまま番地Cの区画内上部に荷を移動させ、tH>te
lのときは、クレーンの移動の開始を上述した時点より
時間tI、とtelの差だけ遅らせること以外は、−]
二述のth≦tc1のときと同様の方法で荷を移動させ
、高さhCが高さhaよりも小さい場合で、1、≧tc
2のときはクレーンの巻下げを開始するとともにクレー
ンの移動を開始し、1.<1C2のときは、荷の高さを
ha+Δhに保持したままクレーンの移動を開始し、時
間の差tc2 t、たけ遅らせて巻下げを開始し、いず
れのときも、荷を高さの差ha−hCたけ巻下げながら
番地Cの区画内」二部に移動させ、次に」−述したいず
れの場合にも、番地Cの区画と番地Bの区画の間につい
て同様の演算を行い、最初の巻」−げ補正量Δhたけ巻
トげる動作を除く他の動作をくり返して荷を次の目標と
する番地の区画内に移動さ せ、一方、荷の移動を合成速度Uから停止させるまでの
時間中のクレーンの走行または横行距離を演算し、荷が
番地Bより該距離手前に到達した地点よりクレーンの減
速を開始して、荷が番地Bの区画内に到達したとき、ク
レーンの移動を停止し、最終的に、荷を最初の補正量Δ
hたけ巻下げる方法である。
Means for Solving Problem C) In the overhead crane control method of the present invention, when transporting a load from an arbitrary address A to another arbitrary address B, first, both areas of address A and address B are transported. Define a belt-like area that connects the openings straight,
All the addresses where all or part of the area and the section overlap are detected, and then, for these detected addresses and address B, the division line of the address at the height of the stored goods stacked at each address is determined. Calculate the positive or negative elevation angle from the horizontal plane of the surface viewed from the moving direction side of the lot line at the height of the stored goods excluding the transported materials at address A. Then, select the address C that has the maximum elevation angle among them, and then set the heights of the stored goods excluding the transported materials at addresses C and A, respectively, as hC and ha, and calculate the difference between them h(-hc-ha). The time th required to hoist the load or the time 1° required to lower the load are calculated from the maximum hoisting or lowering speed and their acceleration/deceleration. Determine the ratio of the crane's running speed and traversing speed and the ratio of their acceleration/decelerations to be equal to the ratio of the direction distance and the width direction distance, and calculate the maximum combined crane speed U having these ratios after the crane starts moving. Calculate the time t u for the composite speed U to rise, and use the time tu to find the time tcl until the load reaches the compartment line at address C or the time tc2 until the load reaches the compartment line at address C. After that, first, start hoisting the load and perform hoisting by a certain hoisting correction amount Δh. Next, if the height hc is greater than or equal to the height ha, th
When ≦trI, the crane starts moving while continuing to hoist the load, transports the load at the above-mentioned combined speed U, and adjusts the height of the load to that height at the end of lifting. Move the load to the upper part of the compartment at address C while holding it, and tH>te
l, except that the start of crane movement is delayed from the above-mentioned time by the difference between time tI and tel -]
The load is moved in the same way as when th≦tc1 described above, and when the height hC is smaller than the height ha, 1, ≧tc
At the time of 2, the crane starts lowering and moves the crane, and 1. <1C2, the crane starts moving while maintaining the height of the load at ha + Δh, and starts lowering after a delay of tc2 t; in both cases, the load is kept at the height difference ha - Move it to the second part of the section at address C while lowering it by hC, and then perform the same calculation between the section at address C and the section at address B in both cases described above. The load is moved to the next target address section by repeating the other operations except the winding and towing operation by the winding correction amount Δh. Meanwhile, the load is moved from the composite speed U until it is stopped. Calculate the travel or traversal distance of the crane during the time, start decelerating the crane from the point where the load reaches the specified distance before address B, and when the load reaches the section of address B, start the crane movement. Finally, the load is adjusted to the initial correction amount Δ
This is a method of lowering the wire by h.

〔作用〕[Effect]

このようにして、まず、荷を移動する番地間を結ぶ帯状
領域と重畳する区域を選出し、これらの区域のうち、移
動を開始する区域の貯品の高さから終点の区域の貯品の
高さを眺める視線より上方に突出する高さの貯品が存在
する最初の区画を求めて、該区画との高度差に安全」−
1分な補正量を加えて、巻上げまたは巻下げを行いなが
ら終点区画に直線的に荷を移動させ、該区画の区画線(
巻」−げ時)または」二部(巻下げ時)に到達する前に
、ふたたび同様の演算をくり返して、上述した帯状区域
内のすべての障害となる貯品の山積みをかわしながら、
直線状の最短距離を可能な最大速度で荷を移動させるこ
とができる。
In this way, we first select an area that overlaps with the strip-shaped area connecting the addresses where the cargo is to be moved, and calculate the height of the stored goods in the destination area from the height of the stored goods in the area where the movement starts. Find the first compartment where there is a stored item with a height that protrudes above the line of sight looking at the height, and there is a safe altitude difference with that compartment.''
Add a correction amount of 1 minute, move the load linearly to the end point section while hoisting or lowering, and mark the section line (
Before reaching the "winding" or "lowering" stage, the same operation is repeated again, avoiding all the obstructing piles of hoardings in the above-mentioned strip,
Loads can be moved at the maximum speed possible over the shortest distance in a straight line.

〔実施例〕〔Example〕

本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の天井走行クレーンの制御方法の一実施
例が適用される貯品ヤードの番地区画(番地は未記入)
を示す平面図、第2図は本実施例により番地Aの区画か
ら番地Bの区画まて貯品を運搬するときの演算に用いら
れる、両区画を結ぶ帯状領域1を示す貯品ヤード平面図
、第3図および第4図は、それぞれ番地Cにおける貯品
の異なる高さに対する巻−]二げ方法の説明図である。
Figure 1 shows the address section of a storage yard to which an embodiment of the overhead crane control method of the present invention is applied (the address is not written).
FIG. 2 is a plan view of a storage yard showing a strip-shaped area 1 connecting both sections, which is used for calculations when transporting stored goods from the section with address A to the section with address B according to this embodiment. , FIG. 3, and FIG. 4 are explanatory diagrams of the winding method for different heights of stored goods at address C, respectively.

貯品ヤードは長手方向および長手方向に対して直角方向
に、それぞれ一定の長さ81幅すで碁盤目状に区分され
、それぞれの区画には番地が与えられており、貯品はす
べて各区画内に積み上げられて別置の(不図示)計算機
システムにより番地毎に在庫管理され、同時に貯品ヤー
ドに設置された貯品運搬用の天井走行クレーンも、この
計算機システムにより制御される。すなわち、各区画内
に置かれている個々の貯品の識別コードやサイズ等の諸
元およびその積み上げ高さが、常時、計算機システムに
入力されて番地毎に管理されており、これらの情報は必
要な場合、任意にクレーン制御に利用される。これらの
情報中の貯品梢みI−げ高さは、運搬された荷の着床検
出により自動的に、あるいはCRT等で監視して人手に
より、容易に修正できる。
The storage yard is divided in the longitudinal direction and in the direction perpendicular to the longitudinal direction into a grid of fixed lengths and 81 widths, each section is given a street address, and all stored goods are stored in each section. The inventory is managed by address by a separate computer system (not shown), and at the same time, an overhead traveling crane for transporting stored goods installed in the storage yard is also controlled by this computer system. In other words, the identification codes, sizes, and other specifications of individual stored items placed in each compartment, as well as their stacking heights, are constantly input into a computer system and managed for each address. Optionally used for crane control if necessary. The height of the stored goods in this information can be easily corrected automatically by detecting the landing of the transported load, or manually by monitoring with a CRT or the like.

次に、第1図に示した貯品ヤードにおいて、本実施例を
用いて貯品を横持ちする場合の動作を説明する。
Next, an explanation will be given of the operation of horizontally holding stored goods using this embodiment in the stored goods yard shown in FIG.

いま、番地への区画内に高さhaに111梢みされた貯
品の頂上から番地Bの区画内に山積みされた貯品の頂上
まで指定された1個の貯品を運搬する場合、まず、番地
A、Bの各区画の対応する角を直線で結んで形成された
真直ぐな帯状領域1(第2図中のドツトを打って示され
た範囲)を想定し、この帯状領域1と区画の全部または
一部が重畳するすべての番地を選出する。
Now, when transporting one designated stored item from the top of the stored items that are piled up at a height of 111 hectares in the block for address B to the top of the stored items that are piled up in the block for address B, first Assuming a straight strip area 1 (the area indicated by the dots in Figure 2) formed by connecting the corresponding corners of each section with addresses A and B with straight lines, this strip area 1 and the section are Select all addresses that overlap in whole or in part.

次に、これらの選出された各番地毎に、それぞれの区画
内に積み上げられた貯品の高さを検索し、荷の移動を開
始する番地Aの運搬材を除く山積みの高さhaにおける
区画線のうち移動方向側の区画線から、選出された各番
地の山積みの高さにおける区画線のうち番地Aに近い区
画線を眺めた水平面からの仰角(正または負)を算出し
て、そのうちの最大角度を有する番地を決定する。例え
ば第3図中の番地Cにおける山積みの高さをhc−ha hcとすると、この仰角θ。はtan−1−a であることは容易に理解される。いまの場合、これらの
算出された各角度のうち、番地Cの仰角次に、番地Aよ
り番地Cに至るクレーンの走行速度と横行速度の比およ
びそれらの加減速度の比を、番地Aおよび番地Bの長手
方向の距1i19aと幅方向の間隔2bの比に等しく設
定する。さらに、この条件で走行速度または横行速度の
いずれかが達し得る最高速度に達する時間を求めてt。
Next, for each of these selected addresses, the height of the stored goods piled up in each section is searched, and the section at the height ha of the pile excluding the material to be transported at address A where the movement of goods is to start is performed. From the lot line on the moving direction side of the line, calculate the elevation angle (positive or negative) from the horizontal plane when looking at the lot line near address A among the lot lines at the height of the pile of each selected address, and Determine the address with the maximum angle. For example, if the height of the pile at address C in FIG. 3 is hc-hahc, then this elevation angle θ. It is easily understood that is tan-1-a. In this case, among these calculated angles, the elevation angle of address C, then the ratio of the traveling speed and traversing speed of the crane from address A to address C, and the ratio of their acceleration/deceleration, are calculated from address A and address C. It is set equal to the ratio of the distance 1i19a in the longitudinal direction of B and the interval 2b in the width direction. Furthermore, the time required for either the running speed or the traversing speed to reach the maximum speed that can be reached under these conditions is calculated as t.

とする。時間tuを考慮に入れて、クレーンの荷(長さ
81幅すと想定)が番地Cの領域に入るまでの時間t[
:Iを求める。一方、番地Cと番地Aの山積みの高さの
差hc−haを巻上げ量りとして、この値りと巻上げの
最高速度とその加減速度とから、巻上げに要する時間1
.を求める。
shall be. Taking into account the time tu, the time t[
: Find I. On the other hand, the difference hc-ha between the heights of the piles at address C and address A is used as the hoisting measure, and from this value, the maximum hoisting speed, and its acceleration/deceleration, the time required for hoisting is 1
.. seek.

そこで、まずクレーンの巻上げを開始して、設定された
補正量Δhだけ荷を巻上げた後に、(1)th≦tc+
の場合 番地Aから、荷の巻上げを続けながら、設定した加速度
と速度にしたがいクレーンの走行と横行を開始する。第
3図はth”tcIの場合を示しており、荷を巻上げな
がら運搬すると、時間th後、巻上げが終った時点で荷
は番地Cの区画線に到着しており、番地Cの高さhcを
補正量Δhだけクリアすることが可能となっており、荷
をそのまま一定の高さとして番地Cの山積みの上方に進
入させる。1h<1C,の場合は、荷が番地Cの区画線
に到達するまで巻上げは終り、荷をその高さで番地Cの
区画内に進入させる。
Therefore, first, the crane starts hoisting, and after hoisting the load by the set correction amount Δh, (1) th≦tc+
In this case, the crane starts traveling and traversing from address A according to the set acceleration and speed while continuing to hoist the load. Figure 3 shows the case of th"tcI, and when the load is transported while being hoisted, the load has arrived at the lot line at address C when the hoisting is finished after time th, and the height of address C is hc can be cleared by the correction amount Δh, and the load is made to enter above the pile at address C at a constant height.If 1h<1C, the load reaches the division line at address C. The hoisting is completed until the load reaches the height, and the load enters the compartment at address C.

(2) th > tcIの場合 上述した(1)の場合のような運転をすれば、巻上げ量
りを巻上げる以前に番地Cの山積みに荷が衝突してしま
うので、この場合は第4図に示すように、まず巻上げの
みを継続して、クレーンの走行と横行は時間を1h−1
c、たけ遅らせて開始することにより、荷は番地Cをク
リアすることができる。
(2) If th > tcI If the operation is as in case (1) above, the load will collide with the pile at address C before the hoisting scale is hoisted. As shown, first, only hoisting is continued, and the traveling and traversing of the crane takes 1 h-1.
c. By starting a long time later, the load can clear address C.

次に、荷が番地Cの区画内に入るまでに、ふたたび最初
の場合と同様に、番地Cの中心から見た帯状領域1内の
各番地について角度の最大のものを求める。第3図、第
4図はいずれも終点Bの仰角(負)が唯一最大であるの
で終点の番地Bが選ばれて、荷をその高さのまNとして
クレーンの横行と走行を継続する。巻下げを開始する地
点は、終点の番地Bの山積みの高さhbと番地Cの山積
みの高さhcとの差から巻下げ量が求まり、上述した前
段の計算と全く同様にして巻下げに必要な時間を計算し
、この時間中にクレーンが移動を停止するまで走行、横
行を行う距離を演算することにより算出できる。また、
合成速度の減速を開始する地点は、荷の現在位置と番地
Bの間の残り走行または横行距離と走行または横行速度
とそれぞれの減速度より容易に計算できる。
Next, until the load enters the compartment at address C, the maximum angle is determined for each address in the strip area 1 viewed from the center of address C, again as in the first case. In both FIGS. 3 and 4, the elevation angle (negative) of the end point B is the only one that is the largest, so the end point address B is selected and the crane continues to traverse and travel with the load at that height N. The lowering point is determined from the difference between the height hb of the pile at address B and the height hc of the pile at address C at the end point, and the lowering is done in exactly the same way as the calculation in the previous step. It can be calculated by calculating the required time and calculating the distance that the crane travels and traverses until it stops moving during this time. Also,
The point at which deceleration of the composite speed is started can be easily calculated from the remaining traveling or traversing distance between the current position of the load and address B, the traveling or traversing speed, and the respective decelerations.

このようにして荷が番地Bの区画内に到達したとき、補
正値Δhだけ巻下して荷を置くことができる。
In this manner, when the load reaches the compartment at address B, it is possible to lower the load by the correction value Δh and place the load.

上述の例においては、途中障害となる山積みは番地Cの
みとしたが、番地C以後にも障害となる山積みを有する
番地が存在するときは同様の計算をくり返すことにより
、目的を達することができる。
In the above example, only the address C has a pile that becomes an obstacle, but if there are addresses after address C that have a pile that becomes an obstacle, the goal can be achieved by repeating the same calculation. can.

実際の運用上は、次に記すような理由から運転方法や演
算に補正を行うことが必要となる。例えば第3図でいえ
ば、材料同士でこすらないように番地Cの領域では高さ
hCよりも少し持ち」二げてクリアさせるであろうし、
また番地Bの真上に来て少し巻き下すことにより終点の
番地Bの山積み上に載せる運転とすることが必要であり
、クリアすべき高さの計算に当っては補正項Δhを導入
することにより可能とされる。すなわち、補正項Δhは
、積荷高さの計測誤差、衝突回避のための安全、あるい
は吊下げられた荷のたわみ等を全て含んだ補正量を表わ
している。
In actual operation, it is necessary to correct the operating method and calculations for the following reasons. For example, in Figure 3, in order to prevent the materials from rubbing against each other, the area at address C would be held a little higher than the height hC to clear it.
In addition, it is necessary to operate so that it comes directly above address B and lowers a little to place it on the pile of address B at the end point, and when calculating the height to be cleared, a correction term Δh must be introduced. This is made possible by That is, the correction term Δh represents a correction amount that includes all of the measurement error of the load height, safety for collision avoidance, deflection of the suspended load, and the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、貯品ヤード内の任意の番
地Aから他の任意の番地Bに荷を天井クレーンにより運
搬するとき、まず、番地Aから番地Bを眺めて、途中の
山積みのうち視線から山積みがはみ出している区画を選
定し、その高さをクリアする荷の高さで荷を保持して該
区画を通過するように巻上げまたは巻下げ量とそのタイ
ミングを演算して制御するとともに、荷が平面上直線的
に番地Aから番地Bに向かうようにクレーンの走行およ
び横行の速度と加減速を定めてクレーンを移動させ、途
中、障害となった山積みの区画をクリアする都度、同様
の演算をくり返すことにより、荷を最短の経路て運搬す
ることができるのでクレーンのデユーティサイクルを短
縮し、かつ省エネルギを達成できるという効果がある。
As explained above, in the present invention, when transporting a load from any address A to any other address B in a storage yard using an overhead crane, first look from address A to address B, and check the piles on the way. Select the section where the pile is protruding from the line of sight, hold the load at the height that clears that height, and calculate and control the hoisting or lowering amount and its timing so that the load passes through the section. At the same time, the speed and acceleration/deceleration of the crane's travel and traverse are determined so that the load goes straight from address A to address B on a plane, and the crane is moved. By repeating similar calculations, the load can be transported along the shortest route, which has the effect of shortening the duty cycle of the crane and achieving energy savings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の天井走行クレーンの制御方法の一実施
例が適用される貯品ヤードの番地区画を示す平面図、第
2図は本実施例により番地Aの区画から番地Bの区画ま
で貯品を運搬するときの演算に用いられる、両区画を結
ぶ帯状領域1を示す貯品ヤード平面図、第3図および第
4図はそれぞれ番地Cの区画における貯品の異なる高さ
に対する巻上げ方法の説明図である。 1・・・・・・帯状領域、 A、B、C・・・区画の番地、 a・・・・・・一区画の長手方向の長さ、b・・・・・
・一区画の幅方向の長さ、ha・・・番地Aの貯品山積
み高さ、 hb・・・番地Bの貯品山積み高さ、 hc・・・番地Cの貯品山積み高さ、 Δh・・・巻上げ補正量、 θ。・・・番地Aの区画線(移動側)から番地Cの区画
線(番地A側)を眺めた仰角。
FIG. 1 is a plan view showing the address sections of a storage yard to which an embodiment of the overhead traveling crane control method of the present invention is applied, and FIG. 2 is a plan view showing the sections from address A to address B according to this embodiment. A floor plan of the storage yard showing the strip area 1 connecting both compartments, which is used for calculations when transporting stored goods, and Figures 3 and 4 respectively show hoisting methods for different heights of stored goods in the compartment with address C. FIG. 1... Band-shaped area, A, B, C... Address of the section, a... Length in the longitudinal direction of one section, b...
・Length in the width direction of one section, ha...height of the stock pile at address A, hb...height of the stock pile at address B, hc...height of the stock pile at address C, Δh ... Winding correction amount, θ. ...The elevation angle when viewing the lot line of address C (address A side) from the lot line of address A (movement side).

Claims (1)

【特許請求の範囲】 1、貯品ヤードの長手方向および長手方向に直角の幅方
向がそれぞれ一定の長さで区分されて碁盤目状の複数の
区画が構成され、それぞれの区画にはその区画を示す番
地が附されており、常時、各番地区画内に積み上げられ
た個々の貯品の種別、寸法等の諸元およびそれらの積み
上げ高さを記録して、これらの貯品の在庫管理を行うと
ともに、貯品ヤードに設置された貯品運搬用の天井走行
クレーンの現在位置を常時入力して、その制御を行う計
算機システムの天井走行うレーンの制御方法であって、 前記天井走行うレーンにより、荷を任意の番地Aから他
の任意の番地Bに運搬するとき、まず、番地Aと番地B
の両区画間を真直ぐに結ぶ帯状領域を定め、該領域と区
画の全部または一部が重畳するすべての番地を検出し、 次に、これらの検出した番地および番地Bについて、そ
れぞれの番地に積み上げられた貯品の高さにおける該番
地の区画線のうち番地Aに近い側の区画線を番地Aの運
搬材を除く貯品の高さにおける区画線のうち移動方向側
の区画線から眺めた面の水平面からの正または負の仰角
を演算して、それらのうち最大仰角を有する番地Cを選
出し、 次に、番地Cと運搬材を除く番地Aの貯品の高さをそれ
ぞれh_cおよびh_aとして、それらの差h(=h_
c−h_a)を荷の巻上げをするのに要する時間t_h
または荷の巻下げをするのに要する時間t_lを、巻上
げまたは巻下げ最高速度とそれらの加減速度とより求め
、一方、番地A、B間の長手方向距離と幅方向距離の比
に等しくクレーンの走行速度と横行速度の比およびそれ
らの加減速度の比を定め、該比を有する最大のクレーン
合成速度uを求めてクレーンが移動を開始してから該合
成速度uに立上がる時間t_uを計算し、時間t_uを
用いて荷が番地Cの区画線に到達するまでの時間をt_
c_1または荷が番地Cの区画内に到達するまでの時間
t_c_2を求めた後、 まず、荷の巻上げを開始して一定の巻上げ補正量Δhだ
け巻上げを行い、 次に、高さh_cが高さh_aよりも大きいか高さh_
aに等しい場合で、t_h≦t_c_1のときは、引続
き巻上げを行いながらクレーンの移動を開始して前記合
成速度uで荷を運搬し、高さの差hの巻上げ終了時に荷
の高さをその高さに保持したまま番地Cの区画内上部に
荷を移動させ、t_h>t_c_1のときは、クレーン
の移動の開始を上述した時点より時間t_hとt_c_
1の差だけ遅らせること以外は、上述のt_h≦t_c
_1のときと同様の方法で荷を移動させ、 高さh_cが高さh_aよりも小さい場合で、t_l≧
t_c_2のときはクレーンの巻下げを開始するととも
にクレーンの移動を開始し、t_l<t_c_2のとき
は、荷の高さをh_a+Δhに保持したままクレーンの
移動を開始し、時間の差t_c_2−t_lだけ遅らせ
て巻下げを開始し、いずれのときも、荷を高さの差h_
a−h_cだけ巻下げながら番地Cの区画内上部に移動
させ、 次に上述したいずれの場合にも、番地Cの区画と番地B
の区画の間について同様の演算を行い、最初の巻上げ補
正量Δhだけ巻上げる動作を除く他の動作をくり返して
荷を次の目標とする番地の区画内に移動させ、一方、荷
の移動を合成速度uから停止させるまでの時間中のクレ
ーンの走行または横行距離を演算し、荷が番地Bより該
距離だけ手前に到達した地点よりクレーンの減速を開始
して、荷が番地Bの区画内に到達したとき、クレーンの
移動を停止し、最終的に、荷を最初の補正量Δhだけ巻
下げる天井走行クレーンの制御方法。 2、前記補正量Δhは、貯品の積み上げ高さの誤差や、
貯品相互間の摩擦および衝突回避のための安全、あるい
は、クレーンに荷を吊下げたときのクレーンおよび荷の
撓み量を考慮して設定された値である特許請求の範囲第
1項に記載の天井走行クレーンの制御方法。
[Scope of Claims] 1. The storage yard is divided into a plurality of sections in a grid pattern by dividing each of the longitudinal direction and the width direction perpendicular to the longitudinal direction by a certain length, and each section has its own section. Inventory management of these stored items is carried out by constantly recording the types, dimensions, and other specifications of the individual stored items piled up in each address block, as well as their stacking height. A computer system for controlling an overhead traveling lane by constantly inputting the current position of an overhead traveling crane for transporting stored goods installed in a storage yard and controlling the overhead traveling crane, the method comprising: Therefore, when transporting a load from an arbitrary address A to another arbitrary address B, first, address A and address B are transported.
A strip area is defined that connects the two sections in a straight line, and all addresses where all or part of the area overlaps with the section are detected. Next, these detected addresses and address B are stacked in their respective addresses. The lot line on the side closer to address A of the lot lines at the address at the height of the stored goods stored at address A is viewed from the lot line on the moving direction side among the lot lines at the height of the stored goods excluding transported materials at address A. Calculate the positive or negative elevation angle of the surface from the horizontal plane, select the address C with the maximum elevation angle among them, and then calculate the heights of the stored goods at address C and address A excluding the transported materials as h_c and h_c, respectively. As h_a, their difference h(=h_
c-h_a) is the time t_h required to hoist the load
Alternatively, the time t_l required to lower the load is calculated from the maximum hoisting or lowering speed and their acceleration/deceleration, and on the other hand, the crane Determine the ratio of the traveling speed and the traversing speed and the ratio of their acceleration/deceleration, find the maximum crane composite speed u having these ratios, and calculate the time t_u for the crane to rise to the composite speed u after it starts moving. , time t_u is used to calculate the time t_u for the load to reach the lot line at address C.
c_1 or the time t_c_2 until the load reaches the compartment with address C, first, start hoisting the load and perform hoisting by a certain hoisting correction amount Δh, and then calculate the height h_c from the height Greater than h_a or height h_
a, and when t_h≦t_c_1, the crane starts moving while continuing to hoist the load and transports the load at the above-mentioned combined speed u, and when the height difference h is finished hoisting, the height of the load is adjusted to that level. The load is moved to the upper part of the compartment at address C while being held at the same height, and when t_h>t_c_1, the crane movement starts at the time t_h and t_c_
Except for delaying by a difference of 1, the above t_h≦t_c
Move the load in the same way as in _1, and when the height h_c is smaller than the height h_a, t_l≧
At t_c_2, the crane starts lowering and moves, and when t_l<t_c_2, the crane starts moving while maintaining the height of the load at h_a+Δh, and the time difference is t_c_2-t_l. Start lowering with a delay, and in either case, lower the load by height difference h_
Move it to the upper part of the section of address C while lowering it by a-h_c, then in both cases mentioned above, move the section of address C and address B.
A similar calculation is performed between the compartments, and the other operations except for the operation of hoisting by the initial hoisting correction amount Δh are repeated to move the load to the compartment with the next target address. The traveling or traversing distance of the crane during the time from the composite speed u until it is stopped is calculated, and the crane is decelerated from the point where the load reaches the specified distance from address B, and the load is within the section of address B. A control method for an overhead traveling crane, in which the movement of the crane is stopped when Δh is reached, and the load is finally lowered by an initial correction amount Δh. 2. The correction amount Δh is based on the error in the stacking height of stored items,
According to claim 1, the value is set in consideration of safety for avoiding friction and collision between stored items, or the amount of deflection of the crane and the load when the load is suspended from the crane. control method for an overhead traveling crane.
JP62076087A 1987-03-31 1987-03-31 Control method for overhead traveling crane Expired - Lifetime JP2518176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62076087A JP2518176B2 (en) 1987-03-31 1987-03-31 Control method for overhead traveling crane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076087A JP2518176B2 (en) 1987-03-31 1987-03-31 Control method for overhead traveling crane

Publications (2)

Publication Number Publication Date
JPS63247297A true JPS63247297A (en) 1988-10-13
JP2518176B2 JP2518176B2 (en) 1996-07-24

Family

ID=13595046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076087A Expired - Lifetime JP2518176B2 (en) 1987-03-31 1987-03-31 Control method for overhead traveling crane

Country Status (1)

Country Link
JP (1) JP2518176B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129707A (en) * 1988-11-09 1990-05-17 Toshiba Corp Crane controller
JPH02261793A (en) * 1989-04-03 1990-10-24 Toshiba Corp Crane operation control device
JPH06144779A (en) * 1992-11-06 1994-05-24 Taisei Corp Crane control system
JP2012020795A (en) * 2010-07-12 2012-02-02 Jfe Steel Corp Slab carrying device
JP2021054585A (en) * 2019-09-30 2021-04-08 株式会社日立プラントメカニクス Collision prevention device in crane
JP2022079534A (en) * 2018-08-01 2022-05-26 Jfe物流株式会社 Route search method and creation method of crane operation pattern

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129707A (en) * 1988-11-09 1990-05-17 Toshiba Corp Crane controller
JPH02261793A (en) * 1989-04-03 1990-10-24 Toshiba Corp Crane operation control device
JPH06144779A (en) * 1992-11-06 1994-05-24 Taisei Corp Crane control system
JP2012020795A (en) * 2010-07-12 2012-02-02 Jfe Steel Corp Slab carrying device
JP2022079534A (en) * 2018-08-01 2022-05-26 Jfe物流株式会社 Route search method and creation method of crane operation pattern
JP2021054585A (en) * 2019-09-30 2021-04-08 株式会社日立プラントメカニクス Collision prevention device in crane

Also Published As

Publication number Publication date
JP2518176B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
TWI804513B (en) Storage and retrieval system
US4753357A (en) Container crane
CN209275405U (en) High density intelligent warehousing system
WO2020082812A1 (en) High-density intelligent warehousing system and warehousing loading and unloading method
JP4418195B2 (en) Container terminal
JPS63247297A (en) Method of controlling overhead travelling crane
JP2000255786A (en) Container terminal
JP2513696B2 (en) Control method for overhead traveling crane
JP4426499B2 (en) Container delivery method and delivery device for foreign chassis in container terminal
CN114030906B (en) Automatic wharf container loading and unloading system and loading and unloading method
JPS6316442Y2 (en)
JPS6143279B2 (en)
JPS6025341B2 (en) Automatic warehouse for coils
JPH11322271A (en) Spreader position controlling method for transfer crane and controller thereof
JP5105671B2 (en) Container terminal system
JPS6131035B2 (en)
JPH11322049A (en) Conveying system
JP2000203720A (en) Container terminal
JPS59115400U (en) Hazardous material handling equipment
JPH05286527A (en) Control of crane for stocking/delivery work and device therefor
JPS62121193A (en) Method of automatically operating crane
JPH1159812A (en) High-rise storage house
JP2001163448A (en) Container terminal and portal container crane
JP2751708B2 (en) Shelf equipment
JPH082682A (en) Multistage piling for metal strip coil