JPS6143279B2 - - Google Patents
Info
- Publication number
- JPS6143279B2 JPS6143279B2 JP18801581A JP18801581A JPS6143279B2 JP S6143279 B2 JPS6143279 B2 JP S6143279B2 JP 18801581 A JP18801581 A JP 18801581A JP 18801581 A JP18801581 A JP 18801581A JP S6143279 B2 JPS6143279 B2 JP S6143279B2
- Authority
- JP
- Japan
- Prior art keywords
- command
- crane
- pile height
- transported
- height
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Control And Safety Of Cranes (AREA)
Description
この発明は、多段積みするスラブ、厚板等のス
トツクヤードに設置される自動運転クレーンの巻
上軸位置決め装置に関するものである。
一般に板状のスラブ、板厚等をストツクするヤ
ードでは第1図のごときクレーンが用いられ、第
2図のごとく多段積みされる。
第1図はクレーンの全体図で、1はクレーン本
体(ガーター)、2はトロリー、3は巻上装置、
4は横行装置、5は走行装置、6は吊具で、この
例ではリフテイングマグネツトを示している。7
は板状の被搬送物で、7aは吊上げ状態にある被
搬送物、7bは多段積みされた被搬送物を示す。
さて、走行装置5は図面上でXの方向、横行装置
4はYの方向、巻上装置3はZの方向に移動す
る。
第2図は第1図で示すクレーンで被搬送物7が
多段積みされた状態を示し、これら積山は、X、
Y方向に(Xi、Yj)なる位置と、Z方向に
(Zij)なる高さを持つている。
このようなストツクヤードでは、生産管理、物
流管理を適切に行うために、ヤードにおける被搬
送物7が置かれる位置(Xi、Yj)に対応して、
そこに積付けられる物の厚さ、幅、長さ、重量、
仕様などの管理情報と積まれた物の高さ(Zij)
などは、ヤード管理用の計算機が設けられて、上
記の管理を行うほか、被搬送物7の移動に当つて
は、上記管理情報に従がつて第1表のごとき指令
データをヤードの自動運転クレーンの制御装置に
与えて作業を行わせ、かつその作業完了により、
上記管理データの更新を行つている。
指令値の内容
The present invention relates to a hoisting shaft positioning device for an automatically operating crane installed in a stockyard for stacking slabs, thick plates, etc. in multiple stages. Generally, in yards where plate-shaped slabs, plate thicknesses, etc. are stocked, a crane as shown in Fig. 1 is used, and the materials are stacked in multiple stages as shown in Fig. 2. Figure 1 is an overall view of the crane, where 1 is the crane body (garter), 2 is the trolley, 3 is the hoisting device,
4 is a traversing device, 5 is a traveling device, and 6 is a hanging device, which in this example is a lifting magnet. 7
7a is a plate-shaped object to be transported, 7a is a lifted object, and 7b is a multi-layered object.
Now, the traveling device 5 moves in the X direction, the traversing device 4 moves in the Y direction, and the hoisting device 3 moves in the Z direction. FIG. 2 shows a state in which the objects 7 to be transported are stacked in multiple stages using the crane shown in FIG.
It has a position (Xi, Yj) in the Y direction and a height (Zij) in the Z direction. In such a stockyard, in order to properly manage production and logistics, the location (Xi, Yj) of the transported object 7 in the yard is
Thickness, width, length, weight of items stored there,
Management information such as specifications and height of stacked items (Zij)
etc., a yard management computer is installed to carry out the above management, and when moving the transported object 7, the command data as shown in Table 1 is sent to the automatic operation of the yard in accordance with the above management information. The control device of the crane is given to perform the work, and upon completion of the work,
The above management data is being updated. Contents of command value
【表】
次にクレーンは、上記指令に従つて自動運転を
行うために、第3図、第4図に示す構成を有して
いる。
第3図は自動運転クレーンの機器構成の一例
で、1〜6は第1図と同じものであり、吊具6に
吊上げられた被搬送物7aは厚さtaを有し、地
上に多段積みされた被搬送物7bは各々の厚さ
t1,t2,t3,…………を有し、全体高さはh1であ
る。ここで、各々の和t1+t2+t3、…………はh0
で示すが、実際には誤差Δh分があり、h1=h0+
Δhの関係がある。10,11,12は巻上軸、
横行軸、走行軸の位置検出器で、前記のX、Y、
Zの各方向の移動量を検出する。これらはシンク
ロレゾルバ、シヤフトエンコーダ、近接スイツチ
で実現できる。13は吊荷の有無検出装置で、本
例では吊具6にリミツトスイツチを設けた例を示
すが荷重計でもよい。
第4図はこのクレーンの制御装置のブロツク図
で、3〜5,10〜12は第1図、第3図の説明
と同一のものである。14はヤード管理用計算機
で、前述したような機能を持ち、クレーンの制御
装置19に指令データ15を与える。クレーンの
制御装置19はこれを指令受信装置16で受ける
と、位置決め制御装置18に各軸ごとに与える。
17は位置検出装置で、巻上軸検出器10、横行
軸検出器11、走行軸検出器12で得た電気信号
をデイジタル量に変換し位置信号を得る。なお、
巻上軸、横行軸、走行軸の各検出器10〜12が
直接デイジタル量で得られる場合には省略可能で
ある。位置決め制御装置18は、指令受信装置1
6で得た指令値と位置検出装置17で得た位置信
号を比較演算し、方向信号や速度信号を駆動制御
装置20に出力する。これにより駆動制御装置2
0が巻上装置3、横行装置4、走行装置5を動作
させ、位置の変化となつてくるので、位置信号を
常時監視して指令値と位置信号が一致した時に、
ヤード管理用計算機14に作業完了信号を出力す
る。
第5図はクレーンの制御装置19の動作をフロ
ーチヤートで示したものである。
すなわち、まずヤード管理用計算機14から第
1表の指令データ15がクレーンの制御装置19
に与えられると、クレーンは掴み位置に位置決め
し巻下げを行う。このとき、積山高さ指令値をも
とにZ軸の減速高さを算出し、吊具6が適当な位
置まで巻き下がると減速し低速運転に入り、吊具
6が積山上に着床すると巻下げを停止してリフト
マグネツトを吸引して掴み動作を行う。この後、
上限まで巻上げて掴み作業を完了する。次いで降
し位置まで位置決めした後、巻下げを行う。この
とき、積山高さ指令値をもとに減速高さを算出
し、吊具6が適当な位置まで巻き下がると減速し
低速に入り、吊具6が積山上に着床すると巻下げ
を停止してリフトマグネツトを釈放して降し動作
を行う。この後、上限まで巻上げて降し作業を完
了する。
なお、巻下げ時の減速点算出は、巻下げ速度が
十分に減速し低速になつたとき、吊具6が着床す
ることができるように減速距離Hlを決める。
また、着床の検出は、巻上軸の荷重の変化やリ
ミツトスイツチなどで実現している。
したがつて、このようなストツクヤードで作業
するクレーンは、正確な位置決めと高速な位置決
めおよび高い安全性が要求される。
なかでも巻上軸の位置決めは、前述したごとく
積山高さ指令値によつて吊具6の減速位置が決ま
るので、この値が実際と異なつていると、吊具6
と積山との衝突を生じ、吊具6や製品である被搬
送物7に損傷を与えることになる。これの差異の
原因は、ヤード管理用計算機14の記憶高さは積
板の厚さの単純加算であり、実際には板厚のバラ
ツキ、板のそり、地上面の高さのバラツキが考慮
されていなかつたり、ヤード管理用計算機14の
ダウン時にクレーン側で単独に作業をしたとき、
ヤード管理用計算機14の記憶装置のデータの更
新がなされない場合などが考えられる。
この発明は、クレーンの制御装置に積山高さ記
憶装置を設け、いずれか高い方の値を巻上軸の指
令値として選択することにより、上記不具合を除
去しようとするものである。以下、この発明につ
いて説明する。
第6図はこの発明の一実施例を示す図である。
この図で、21はヤードのX、Y方向位置対応の
積山高さZの記憶装置であり、22は指令値選択
装置である。その他の符号は第1図〜第5図のも
のと同一である。指令値選択装置22は指令受信
装置16が受けた高さh0と積山高さ記憶装置21
で得られる高さZijと比較演算し、いずれか高い
方の値を巻上軸の指令値として選択する装置であ
る。
第7図a,bに上記の詳細動作をフローチヤー
ドで示す。
第7図aは掴み作業、第7図bは降し作業の場
合を示し、指令値は第1表の値であり、Zijは積
山高さ記憶装置21で得られる高さ、Hは位置決
め時に選択された積山高さ、HDは減速高さで、
積山高さHに減速距離Hlを加えた値である。
次に同じ積山高さであつても、掴み作業と降し
作業では、吊上げできる板厚ta分を考慮して巻
上軸の減速点を決める必要がある。
第8図a,bは上記の状態を示したもので、第
8図aは掴み作業、第8図bは降し作業時の積山
高さh1と巻下げ速度カーブの関係を示す。ここに
おいて、ν0,ν1は速度で、ν0>ν1であ
り、HdL,Hduは減速点である。この場合、掴み
と降しの選択は吊荷の有無検出装置13で行い、
これが動作していないときは掴み作業、動作して
いるときは降し作業となり、第8図a,bのいず
れかにより位置決めを行う。
以上詳細に説明したように、この発明は積山高
さ記憶装置で得られる積山高さと、ヤード管理計
算機システムの指令を受信する指令受信装置で得
られる積山高さとのうち大きい方を指令値として
用いるようにしたので、常に安全な巻下時の位置
決めを行うことができる。また、この発明は吊荷
検出装置を備え、これが動作中は前記指令値に被
搬送物の厚さを加算した値を基準にして巻下げ時
の位置決めを行うようにしたので、巻下げの減速
点を適切に設定できる利点がある。[Table] Next, the crane has the configuration shown in FIGS. 3 and 4 in order to perform automatic operation in accordance with the above instructions. FIG. 3 shows an example of the equipment configuration of an automatic operation crane, in which 1 to 6 are the same as in FIG . The stacked objects 7b have different thicknesses.
It has t 1 , t 2 , t 3 , ......, and the overall height is h 1 . Here, each sum t 1 + t 2 + t 3 , ....... is h 0
However, there is actually an error of Δh, and h 1 = h 0 +
There is a relationship of Δh. 10, 11, 12 are winding shafts,
A position detector for the transverse axis and the traveling axis, and the above-mentioned X, Y,
Detect the amount of movement in each direction of Z. These can be realized with synchro resolvers, shaft encoders, and proximity switches. Reference numeral 13 denotes a device for detecting the presence or absence of a suspended load. In this example, a limit switch is provided on the hanging tool 6, but a load meter may also be used. FIG. 4 is a block diagram of the control device of this crane, and numerals 3 to 5 and 10 to 12 are the same as those explained in FIGS. 1 and 3. Reference numeral 14 denotes a yard management computer, which has the functions described above and provides command data 15 to the crane control device 19. When the crane control device 19 receives this with the command receiving device 16, it gives it to the positioning control device 18 for each axis.
A position detection device 17 converts electrical signals obtained by the hoisting axis detector 10, the transverse axis detector 11, and the traveling axis detector 12 into digital quantities to obtain a position signal. In addition,
This can be omitted if each of the detectors 10 to 12 for the hoisting axis, transverse axis, and running axis can be obtained directly in digital quantities. The positioning control device 18 includes the command receiving device 1
The command value obtained in step 6 and the position signal obtained by the position detection device 17 are compared and calculated, and a direction signal and a speed signal are output to the drive control device 20. As a result, the drive control device 2
0 operates the hoisting device 3, traversing device 4, and traveling device 5, resulting in a change in position, so the position signal is constantly monitored and when the command value and the position signal match,
A work completion signal is output to the yard management computer 14. FIG. 5 is a flowchart showing the operation of the crane control device 19. That is, first, the command data 15 in Table 1 is sent from the yard management computer 14 to the crane control device 19.
The crane positions itself in the grasping position and lowers the load. At this time, the Z-axis deceleration height is calculated based on the pile height command value, and when the hanging tool 6 is lowered to an appropriate position, it decelerates and enters low-speed operation, and when the hanging tool 6 lands on the pile. The lowering is stopped, the lift magnet is attracted, and the gripping operation is performed. After this,
Wind it up to the upper limit and complete the grasping work. Next, after positioning to the lowering position, lowering is performed. At this time, the deceleration height is calculated based on the pile height command value, and when the hanging tool 6 is lowered to an appropriate position, it decelerates and enters low speed, and when the hanging tool 6 lands on the pile, it stops lowering. Then release the lift magnet and perform the lowering operation. After that, it is hoisted up to the upper limit and the unloading operation is completed. In calculating the deceleration point during lowering, the deceleration distance H l is determined so that the hanging tool 6 can land on the floor when the lowering speed is sufficiently reduced to a low speed. In addition, detection of landing is realized by changes in the load on the hoisting shaft, a limit switch, etc. Therefore, cranes working in such stockyards are required to have accurate positioning, high-speed positioning, and high safety. In particular, when positioning the hoisting shaft, the deceleration position of the hoisting tool 6 is determined by the pile height command value as described above, so if this value differs from the actual value, the hoisting tool 6
This will cause a collision with the stack, causing damage to the hanging tool 6 and the transported object 7, which is a product. The reason for this difference is that the height stored in the yard management calculator 14 is a simple addition of the thickness of the stacked boards, and in reality, variations in board thickness, warping of the boards, and variations in the height of the ground surface are taken into account. When working alone on the crane side when the yard management computer 14 is down or the yard management computer 14 is down,
There may be cases where the data in the storage device of the yard management computer 14 is not updated. This invention attempts to eliminate the above-mentioned problems by providing a pile height storage device in the crane control device and selecting the higher value as the command value for the hoisting shaft. This invention will be explained below. FIG. 6 is a diagram showing an embodiment of the present invention.
In this figure, 21 is a storage device for the pile height Z corresponding to the position in the X and Y directions of the yard, and 22 is a command value selection device. Other symbols are the same as those in FIGS. 1 to 5. The command value selection device 22 receives the height h 0 received by the command receiving device 16 and the pile height storage device 21
This is a device that compares and calculates the height Zij obtained by , and selects the higher value as the command value for the hoisting axis. FIGS. 7a and 7b show the detailed operation described above in a flowchart. Figure 7a shows the case of grasping work, and Figure 7b shows the case of lowering work, the command values are the values in Table 1, Zij is the height obtained by the pile height storage device 21, and H is the height at the time of positioning. The selected pile height, H D is the deceleration height,
It is the value obtained by adding the deceleration distance H l to the pile height H. Next, even if the height of the stack is the same, it is necessary to determine the deceleration point of the hoisting shaft during the grasping and unloading operations, taking into account the thickness t a of the plates that can be lifted. Figures 8a and 8b show the above-mentioned conditions, with Figure 8a showing the relationship between the stack height h1 and the lowering speed curve during the grasping operation and Figure 8b during the lowering operation. Here, ν 0 and ν 1 are speeds, ν 0 >ν 1 , and H dL and H du are deceleration points. In this case, the selection between grabbing and lowering is performed by the hanging load presence/absence detection device 13,
When this is not operating, it is a grasping operation, and when it is operating, it is a lowering operation, and positioning is performed by either of Fig. 8a or b. As explained in detail above, the present invention uses the larger of the pile height obtained by the pile height storage device and the pile height obtained by the command receiving device that receives commands from the yard management computer system as a command value. This makes it possible to always perform safe positioning during lowering. In addition, the present invention is equipped with a suspended load detection device, and during operation, positioning during lowering is performed based on the value obtained by adding the thickness of the transported object to the above-mentioned command value, so that the lowering speed is reduced. It has the advantage of being able to set points appropriately.
第1図はクレーンの全体を示す構成図、第2図
は被搬送物の多段積状態を示す斜視図、第3図は
自動運転クレーンの構成図、第4図は第3図の自
動運転クレーンの制御装置のブロツク図、第5図
は第4図の制御装置の動作を説明するためのフロ
ーチヤート図、第6図はこの発明の一実施例を示
す構成図、第7図a,bは第6図の動作を説明す
るためのフローチヤート図、第8図a,bは第7
図の動作状況を示す説明図である。
図中、3は巻上装置、4は横行装置、5は走行
装置、10,11,12は位置検出器、13は吊
荷の有無検出装置、14はヤード管理用計算機、
15は指令データ、16は指令受信装置、17は
位置検出装置、18は位置決め制御装置、19は
クレーンの制御装置、20は駆動制御装置、21
は積山高さ記憶装置、22は指令選択装置であ
る。なお、図中の同一符号は同一または相当部分
を示す。
Fig. 1 is a block diagram showing the entire crane, Fig. 2 is a perspective view showing the state of stacking of objects to be transported, Fig. 3 is a block diagram of the self-driving crane, and Fig. 4 is the self-driving crane shown in Fig. 3. 5 is a flowchart for explaining the operation of the control device in FIG. 4, FIG. 6 is a block diagram showing an embodiment of the present invention, and FIGS. 7a and 7b are Flowchart diagram for explaining the operation of Fig. 6, Fig. 8 a and b are 7
FIG. 3 is an explanatory diagram showing the operating status of the figure. In the figure, 3 is a hoisting device, 4 is a traversing device, 5 is a traveling device, 10, 11, 12 are position detectors, 13 is a suspended load detection device, 14 is a yard management computer,
15 is command data, 16 is a command receiving device, 17 is a position detection device, 18 is a positioning control device, 19 is a crane control device, 20 is a drive control device, 21
2 is a pile height storage device, and 22 is a command selection device. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
るヤードに設置されるクレーンにおいて、前記ス
トツクされた被搬送物の位置に対応して積山高さ
を記憶する位置対応の積山高さ記憶装置と、ヤー
ド管理計算機システムからのデータを受信する指
令受信装置と、前記積山高さ記憶装置で得られる
積山高さと前記指令受信装置で得られる積山高さ
とを比較していずれか大きい方の値を選択する指
令選択装置とを有してなり、前記指令選択装置で
得られる値を指令値として巻下げ時の位置決めを
行うことを特徴とするクレーンの巻上軸位置決め
装置。 2 多段積みされる板状の被搬送物をストツクす
るヤードに設置されるクレーンにおいて、前記ス
トツクされた被搬送物の位置に対応して積山高さ
を記憶する位置対応の積山高さ記憶装置と、ヤー
ド管理計算システムからのデータを受信する指令
受信装置と、前記積山高さ記憶装置で得られる積
山高さと前記指令受信装置で得られる積山高さと
を比較していずれか大きい方の値を選択する指令
選択装置と、前記被搬送物の吊荷を検出する吊荷
検出装置を有してなり、前記吊荷検出装置が動作
していない時には前記指令選択装置の出力を指令
値とし、前記吊荷検出装置が動作しているときは
前記被搬送物の厚さを前記指令値に加算した値を
基準として巻下げ時の位置決めを行うことを特徴
とするクレーンの巻上軸位置決め装置。[Scope of Claims] 1. In a crane installed in a yard for storing plate-shaped objects to be transported stacked in multiple stages, a position corresponding to a height of the pile is stored in correspondence with the position of the stored objects to be transported. A pile height storage device, a command receiving device that receives data from a yard management computer system, and a pile height obtained by the pile height storage device and a pile height obtained by the command receiving device are compared. 1. A hoisting shaft positioning device for a crane, comprising a command selection device for selecting a larger value, and positioning at the time of lowering is performed using the value obtained by the command selection device as a command value. 2. A crane installed in a yard for storing plate-shaped transported objects stacked in multiple stages, including a position-corresponding stack height storage device that stores the stack height corresponding to the position of the stacked transported objects. A command receiving device that receives data from the yard management calculation system compares the pile height obtained by the pile height storage device with the pile height obtained by the command receiving device and selects the larger value. and a suspended load detection device that detects the suspended load of the transported object, and when the suspended load detection device is not operating, the output of the command selection device is set as a command value, and the suspended load detection device detects the suspended load of the transported object. A hoisting shaft positioning device for a crane, characterized in that when a load detection device is operating, positioning at the time of lowering is performed based on a value obtained by adding the thickness of the transported object to the command value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18801581A JPS5889584A (en) | 1981-11-24 | 1981-11-24 | Device for positioning winding shaft of crane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18801581A JPS5889584A (en) | 1981-11-24 | 1981-11-24 | Device for positioning winding shaft of crane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5889584A JPS5889584A (en) | 1983-05-27 |
JPS6143279B2 true JPS6143279B2 (en) | 1986-09-26 |
Family
ID=16216161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18801581A Granted JPS5889584A (en) | 1981-11-24 | 1981-11-24 | Device for positioning winding shaft of crane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5889584A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62167190A (en) * | 1986-01-17 | 1987-07-23 | 松下電器産業株式会社 | Part sucker |
JPH02123097A (en) * | 1988-11-01 | 1990-05-10 | Daito Seiki Kk | Handling device for shape steel and the like |
JPH0313403A (en) * | 1989-06-12 | 1991-01-22 | Ishikawajima Harima Heavy Ind Co Ltd | Control of reception and withdrawal in container storage facility |
JPH06206690A (en) * | 1993-09-01 | 1994-07-26 | Nippon Steel Corp | Crane driving control device |
KR100920585B1 (en) * | 2003-03-28 | 2009-10-08 | 주식회사 포스코 | Automatic control apparatus of crane for adjusting zero point of height |
JP5065724B2 (en) * | 2007-03-23 | 2012-11-07 | 株式会社キトー | Operation control device for electric hoist |
JP7067535B2 (en) * | 2019-07-25 | 2022-05-16 | Jfeスチール株式会社 | Steel piece transfer device and steel piece transfer method |
JP7405651B2 (en) * | 2020-03-06 | 2023-12-26 | 株式会社日立産機システム | Method for controlling the landing of a suspended load in an electric hoist |
-
1981
- 1981-11-24 JP JP18801581A patent/JPS5889584A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5889584A (en) | 1983-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2646363B1 (en) | Method for positioning load and fetching positioned load or stacking loads with crane | |
CN111377356B (en) | Semi-automatic loading and unloading bridge with path planning algorithm and control method | |
EP0846648A1 (en) | Lowering collison avoidance device of crane | |
CN201347326Y (en) | Automatic confirmation system for containers moved by crane in container yard | |
JPS6143279B2 (en) | ||
US3662860A (en) | Elevator vertical shift and lateral dolly control system | |
JP2973701B2 (en) | Operation control device of container crane | |
JPS627118B2 (en) | ||
JPS6054233B2 (en) | Long object handling equipment | |
CN215242029U (en) | Multi-slide-rail type ceramic tile ferrying device and automatic ceramic tile production line thereof | |
JP2513696B2 (en) | Control method for overhead traveling crane | |
JPS5849478B2 (en) | Bucket crane automatic operation control method | |
JPS6025341B2 (en) | Automatic warehouse for coils | |
JPS63247297A (en) | Method of controlling overhead travelling crane | |
JPS6131035B2 (en) | ||
JPS62121193A (en) | Method of automatically operating crane | |
CN108217461B (en) | Intelligent crane based on infrared ranging | |
JPH0335816A (en) | Controller of overhead crane for transporting coil steel | |
JPS5922883A (en) | Compensator for positional displacement of hung load | |
JPS6246895A (en) | Automation system of scrap carrying crane | |
JPS62157188A (en) | Container crane | |
JPS58207288A (en) | Method of controlling winding operation of crane | |
JPS591674B2 (en) | Automatic crane control method and automatic crane device | |
JPS5882987A (en) | Device for automatically storing and delivering coil | |
JPH11263581A (en) | Coil unloading method from ship and device thereof |