JPS63244755A - Formation of conductive layer - Google Patents

Formation of conductive layer

Info

Publication number
JPS63244755A
JPS63244755A JP7779187A JP7779187A JPS63244755A JP S63244755 A JPS63244755 A JP S63244755A JP 7779187 A JP7779187 A JP 7779187A JP 7779187 A JP7779187 A JP 7779187A JP S63244755 A JPS63244755 A JP S63244755A
Authority
JP
Japan
Prior art keywords
wiring
substrate
conductive wiring
layer
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7779187A
Other languages
Japanese (ja)
Inventor
Ryoichi Mukai
良一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7779187A priority Critical patent/JPS63244755A/en
Publication of JPS63244755A publication Critical patent/JPS63244755A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form the sectional form of a conductive wiring in a sector form after being recrystallized without causing a 'phenomenon of being repulsed' and to make it possible to make an insulating film deposit uniformly and reliably by a method wherein an energy line is irradiated to fuse the wiring and at the same time as this, the base layer of the wiring is heated. CONSTITUTION:A laser beam (energy line) 11 is irradiated on a sample 7 through a mirror 12 and a window 13 of a chamber 4. The heating time of a substrate 8 and an insulating film 17 is a comparatively long time. Therefore, inert gas of nitrogen (or hellium, argon and so on), for example, is introduced in the chamber 4 or the interior of the chamber is evacuated in a vacuum state for preventing a conductive wiring layer 9 of an Al pattern from being oxidized by this heating. Here, the wiring 9 of the sample 7 is fused by irradiating the laser beam 11, while at the same time as this, the substrate 8 of the sample 7 and the whole insulating film 17 are heated at the maximum temperature of 300 deg.C, for example, by a heater 6. By heating the substrate 8 and the film 17, the temperature difference between the substrate 8 and the film 17 is reduced at the time the wiring layer 9 is in a fused state.

Description

【発明の詳細な説明】 〔概要〕 本発明は半導体装置における導電層の形成り法において
、 バターニングしたアルミニウム又はその合金等の導電性
配線をエネルギ線照射によって一時的に溶融して再結晶
化した場合にその断面形状が円形となり、この表面に絶
縁膜を施す場合に上方部分に絶縁膜が確実に堆積しない
という従来の問題点を解決するため、 上記エネルギ線照射時に上記導電性配線の)地層を加熱
することにより、 再結晶化した後の断面形状を裾広がり状にし、もって絶
縁膜を確実に堆積せしめ得るようにしたものである。
[Detailed Description of the Invention] [Summary] The present invention is a method for forming a conductive layer in a semiconductor device, in which conductive wiring made of patterned aluminum or its alloy is temporarily melted and recrystallized by energy beam irradiation. In order to solve the conventional problem that the cross-sectional shape becomes circular when the conductive wiring is irradiated with the energy beam, the insulating film cannot be reliably deposited on the upper part when applying the insulating film on this surface. By heating the geological layer, the cross-sectional shape after recrystallization becomes wider, thereby making it possible to reliably deposit an insulating film.

〔産業上の利用分野〕[Industrial application field]

本発明は配線として使用する目的でバターニングしたア
ルミニウム又はその合金をパルス状のエネルギ線照射に
よって一時的に溶融して再結晶化する導電層の形成方法
に関する。
The present invention relates to a method for forming a conductive layer in which patterned aluminum or its alloy is temporarily melted and recrystallized by pulsed energy beam irradiation for use as wiring.

このように導電性配線を一時的に溶融して再結晶化する
方法はピアホールの埋込みや′!!I電性配線を平坦化
する目的で従来用いられているが、再結晶化後のその断
面形状は円形となって下方部分(逆テーパ)に絶縁層が
確実に堆積しないのが現状である。このため、この上方
部分にも絶縁層を確実に堆積せしめ得る形成方法が必要
である。
Methods for temporarily melting conductive wiring and recrystallizing it in this way include burying peer holes and '! ! Although it has been conventionally used for the purpose of flattening I-conductor wiring, the current situation is that the cross-sectional shape after recrystallization becomes circular and an insulating layer cannot be deposited reliably on the lower part (reverse taper). Therefore, there is a need for a formation method that can reliably deposit an insulating layer also in this upper portion.

〔従来の技術〕[Conventional technology]

従来、第4図(4)に示す基板1上のアルミニウムパタ
ーン2をパルス状のエネルギ線照射によって一時的に溶
融して再結晶化し、第4図(B)に示すアルミニウムパ
ターン2′を得る。再結晶化したアルミニウムパターン
2′の断面形状はいわゆる「弾かれ現象」により、第4
図(B)に示すように円形となる。この「弾かれ現象」
はアルミニウムパターン2が溶融状態にある時、その上
地層である基板1との間に温度差がある(基板1の温度
が溶融状態にあるアルミニウムパターン2に対して極め
て低温)ために生じる。
Conventionally, an aluminum pattern 2 on a substrate 1 shown in FIG. 4(4) is temporarily melted and recrystallized by pulsed energy beam irradiation to obtain an aluminum pattern 2' shown in FIG. 4(B). The cross-sectional shape of the recrystallized aluminum pattern 2' is due to the so-called "repulsion phenomenon".
It becomes circular as shown in Figure (B). This “repelling phenomenon”
This occurs because when the aluminum pattern 2 is in a molten state, there is a temperature difference between it and the substrate 1 which is the upper layer (the temperature of the substrate 1 is extremely low compared to the aluminum pattern 2 in a molten state).

この場合、従来、エネルギ線照射時、基板1は室温にし
てあり、エネルギ線照射によってアルミニウムパターン
2は溶融するまで加熱されるが、基板1は殆ど加熱され
ない状態にあった。
In this case, conventionally, the substrate 1 was kept at room temperature during the energy beam irradiation, and although the aluminum pattern 2 was heated until it melted by the energy beam irradiation, the substrate 1 was hardly heated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の方法は、アルミニウムパターン2を溶融して再結
晶化するとその断面形状は円形となり、このため、この
表面に絶縁膜を施す場合、基板1との間の下方部分(逆
テーバ)3に絶縁膜が堆積しないことになり、いわゆる
髭を生じ、高品質のものを得られない問題点があった。
In the conventional method, when the aluminum pattern 2 is melted and recrystallized, its cross-sectional shape becomes circular. Therefore, when applying an insulating film to this surface, an insulating layer is formed on the lower part (inverted tapered) 3 between the aluminum pattern 2 and the substrate 1. There was a problem that the film was not deposited, so-called whiskers were produced, and high quality products could not be obtained.

(問題点を解決するための手段) 第1図は本発明方法の原即図を示す。同図中、9は配線
として使用する目的でバターニングされた例えばアルミ
ニウム又はその合金等の導電性配線、20は下地層、1
1はエキシマレーザ光等のエネルギ線である。
(Means for solving the problem) FIG. 1 shows an original diagram of the method of the present invention. In the figure, 9 is a conductive wiring made of aluminum or its alloy, etc., which is patterned for the purpose of wiring, 20 is a base layer, and 1
1 is an energy line such as excimer laser light.

本発明方法は、バターニングされた導電性配線9をエネ
ルギ線11照射にて一時的に溶融後、再結晶化する導電
層の形成方法において、エネルギ線11照射時、導電性
配線9の下地層20を加熱する。
The method of the present invention is a method for forming a conductive layer in which a patterned conductive wiring 9 is temporarily melted by irradiation with an energy beam 11 and then recrystallized. Heat 20.

〔作用〕[Effect]

エネルギ線11を照射することによりIP電性配B9を
溶融し、これと同時に1電性配線9の下地1! (20
)を加熱する。下地1m20の加熱により、導電性配線
9が溶融状態にある時に下地層との間の温度差が少なく
なり、「弾かれ現象」を生じることはなく、再結晶化後
、l?It性配線の断面形状は裾広がり状になる。
By irradiating the energy beam 11, the IP conductive wiring B9 is melted, and at the same time, the base 1 of the conductive wiring 9 is melted! (20
). By heating 1 m20 of the base layer, when the conductive wiring 9 is in a molten state, the temperature difference between it and the base layer is reduced, and the "repelling phenomenon" does not occur, and after recrystallization, the l? The cross-sectional shape of the It-based wiring has a widening shape.

〔実施例〕〔Example〕

第2図は本発明方法の第1実施例を説明するための図を
示す。第2図(4)中、4はチャンバで、この中のX−
Yステージ5上にヒータ6、その更に上にサンプル7が
載置されている。サンプル7は第2図(B)に示す如く
、シリコン基板8上に酸化シリコン(S!02)等の絶
縁膜17(厚さ5000A ) 、その上に配線として
使用する目的でバターニングされたアルミニウムパター
ン又はその合金である導電性配線9(例えば、厚さ1μ
−9幅1μs)が設けられている。
FIG. 2 shows a diagram for explaining a first embodiment of the method of the present invention. In Fig. 2 (4), 4 is a chamber, and X-
A heater 6 is placed on the Y stage 5, and a sample 7 is placed further above it. Sample 7, as shown in FIG. 2(B), has an insulating film 17 (thickness 5000A) made of silicon oxide (S!02) etc. on a silicon substrate 8, and a patterned aluminum film on it for the purpose of wiring. Conductive wiring 9 that is a pattern or its alloy (for example, 1μ thick)
-9 width 1 μs).

サンプル7の裏面にヒータ6を配置し、導電性配[19
溶融時にヒータ6でサンプル7の基板8及び絶縁g!1
7を加熱する点が本実施例の要部である。
Heater 6 was placed on the back side of sample 7, and conductive wiring [19
During melting, the substrate 8 and insulation g of the sample 7 are heated by the heater 6! 1
7 is the main part of this embodiment.

第2図(4)中、10は例えばパワー1J/ciのエキ
シマレーザ光(フッ化アルゴン(Ar F))等のレー
ザ光源で、レーザ光(エネルギ線)11゜ミラー12.
チャンバ4の窓13を介してサンプル7に照射する。基
板8及び絶縁1117の加熱は比較的長時間であり、こ
れによってアルミニウムパターンの導電性配線m9が酸
化されるのを防止するため、チャンバ4内には例えば窒
素(或いはヘリウム、アルゴン等)の不活性ガスが導入
されているか、又は、真空にされている。
In FIG. 2 (4), 10 is a laser light source such as an excimer laser beam (argon fluoride (Ar F)) with a power of 1 J/ci, and a laser beam (energy line) 11.degree. mirror 12.
The sample 7 is irradiated through the window 13 of the chamber 4 . The substrate 8 and the insulation 1117 are heated for a relatively long time, and in order to prevent the conductive wiring m9 of the aluminum pattern from being oxidized, the chamber 4 is filled with nitrogen (or helium, argon, etc.). An active gas is introduced or a vacuum is applied.

ここで、レーザ光11を照射することによりサンプル7
の導電性配線9を溶融し、一方、これと同時に、ヒータ
6によりサンプル7の基板8及び絶縁膜17全体を例え
ば最大で300℃に加熱する。
Here, by irradiating the laser beam 11, the sample 7 is
At the same time, the entire substrate 8 and insulating film 17 of the sample 7 are heated to, for example, a maximum of 300° C. by the heater 6.

基板8及び絶縁膜17の加熱により、導電性配線9が溶
融状態にある時に基板8及び絶縁膜17との間の温度差
が少なくなり、前述の「弾かれ現象」を生じることはな
く、再結晶化後、第2図(C)に示すように導電性配線
9′の断面形状は裾広がり状になる。
By heating the substrate 8 and the insulating film 17, the temperature difference between the substrate 8 and the insulating film 17 is reduced when the conductive wiring 9 is in a molten state, so that the above-mentioned "repelling phenomenon" does not occur, and it is possible to reuse it. After crystallization, the cross-sectional shape of the conductive wiring 9' becomes wide as shown in FIG. 2(C).

このように導電性配線9′の断面形状を裾広がり状にし
得るので、この表面に絶縁膜を施す場合、第4図(B)
に示す従来例のような下方部分3がないので絶縁膜が堆
積しない部分はなく、一様に確実に絶縁膜を堆積せしめ
得る。
In this way, the cross-sectional shape of the conductive wiring 9' can be made into a widening shape, so when an insulating film is applied to this surface, as shown in FIG. 4(B).
Since there is no lower part 3 as in the conventional example shown in FIG. 1, there is no part where the insulating film is not deposited, and the insulating film can be deposited uniformly and reliably.

第3図は本発明方法の第2実施例を説明するための図を
示し、同図中、第2図と同一構成部分には同一番号を付
してその説明を省略する。第3図(4)中、14はサン
プルで、X−Yステージ5の上に直接載置されている。
FIG. 3 shows a diagram for explaining a second embodiment of the method of the present invention. In the figure, the same components as those in FIG. 2 are given the same numbers and their explanations will be omitted. In FIG. 3(4), 14 is a sample, which is placed directly on the XY stage 5.

サンプル14は第3図(B)に示す如く、シリコン基板
8上に酸化シリコン(SfOz)等の絶縁膜(厚さ40
00人)15、その上に窒化シリコン(Si3N4)等
のレーザ光吸収層(エネルギ線吸収層)(厚さ1000
人)16が設けられている。レーザ光吸収層16は、フ
ッ化アルゴン(Ar F)のエキシマレーザ(波長19
3ns+ )に対して高い吸収係数を示し、絶縁!i1
5はレーザ光11を殆ど吸収しないものを用いる。絶縁
膜15及びレーザ光吸収F116にて層間絶縁膜が形成
されている。レーザ光吸収層16上に配線として使用す
る目的でバターニングされたアルミニウムパターン又は
その合金である導電性配線9が設けられている。
As shown in FIG. 3(B), the sample 14 has an insulating film (thickness: 40 mm) made of silicon oxide (SfOz) on a silicon substrate 8.
00 people) 15, on which a laser light absorption layer (energy beam absorption layer) such as silicon nitride (Si3N4) (thickness 1000
16 persons) are provided. The laser light absorption layer 16 is made of argon fluoride (ArF) excimer laser (wavelength 19
It shows a high absorption coefficient for 3ns+) and is insulating! i1
5 uses a material that hardly absorbs the laser beam 11. An interlayer insulating film is formed by the insulating film 15 and the laser light absorbing film F116. A conductive wiring 9 made of a patterned aluminum pattern or an alloy thereof is provided on the laser light absorption layer 16 for the purpose of being used as a wiring.

導電性配線9の下地としてレーザ光吸収層16を配置し
、レーザ光11で導電性配線9溶融時にレーザ光11を
レーザ光吸収l!J16に吸収させてこれを加熱する点
が本実施例の要部である。
A laser light absorption layer 16 is arranged as a base of the conductive wiring 9, and when the conductive wiring 9 is melted by the laser beam 11, the laser light 11 is absorbed by the laser beam 1! The main part of this embodiment is to absorb it into J16 and heat it.

なお、レーザ光11による加熱時間は比較的短時間であ
り、このために導電性配[19は酸化する虞れがないた
め、チャンバ4内は上記第1実施例のような不活性ガス
や真空でなくてよい。
Note that the heating time by the laser beam 11 is relatively short, and therefore there is no risk of oxidation of the conductive wiring [19], so the interior of the chamber 4 is not exposed to inert gas or vacuum as in the first embodiment. It doesn't have to be.

ここで、レーザ光11を照射することによりサンプル1
4のS電性配線9を溶融する。この場合、レーザ光11
はレーザ光吸収層16にも照射され、これにより、レー
ザ光吸収層16はレーザ光11を吸収し、加熱される。
Here, by irradiating the laser beam 11, the sample 1 is
The S conductive wiring 9 of No. 4 is melted. In this case, the laser beam 11
is also applied to the laser light absorption layer 16, whereby the laser light absorption layer 16 absorbs the laser light 11 and is heated.

レーザ光吸収層16の加熱により、前記第1実施例と同
様に、導電性配線9が溶融状態にある時にそのF地層と
の間の温度差が少なくなり、前述の「弾かれ現象、1を
生じることはなく、再結晶化後、第3図(C)に示すよ
うに導電性配線9′の断面形状は裾広がり状になり、一
様に確実に絶縁膜を堆積せしめ得る。
By heating the laser light absorption layer 16, the temperature difference between the conductive wiring 9 and the F layer when it is in a molten state is reduced, as in the first embodiment, and the above-mentioned "repulsion phenomenon", 1. This does not occur, and after recrystallization, the cross-sectional shape of the conductive wiring 9' becomes wide as shown in FIG. 3(C), and the insulating film can be deposited uniformly and reliably.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、導電性配線が溶融状態にある時に下地
層との間の温度差が少なくなり、「弾かれ現象」を生じ
ることはなく、再結晶化後、導電性配線の断面形状は裾
広がり状になり、これにより、表面に絶縁膜を施す場合
、従来例のような下方部分(逆テーパ)がないので一様
に確実に絶縁膜を堆積せしめ得、高品質の半導体装置を
得ることができる。
According to the present invention, when the conductive wiring is in a molten state, the temperature difference between the conductive wiring and the underlying layer is reduced, and the "repelling phenomenon" does not occur, and the cross-sectional shape of the conductive wiring after recrystallization is As a result, when an insulating film is applied to the surface, the insulating film can be deposited uniformly and reliably because there is no lower part (reverse taper) as in the conventional example, and a high quality semiconductor device can be obtained. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の原理図、 第2図及び第3図は夫々本発明方法の第1及び第2実施
例を説明する図、 第4図は「譬かれ現象」を説明する図である。 図において、 4はチャンバ、 5はX−Yステージ、 6はヒータ、 7.14はサンプル、 8は基板、 9.9′は導電性配線、 10はレーザ光源、 11はレーザ光(エネルギ線)、 15.17は絶縁膜、 16はレーザ光吸収層(エネルギ線吸収層)ある。
Figure 1 is a diagram showing the principle of the method of the present invention, Figures 2 and 3 are diagrams explaining the first and second embodiments of the method of the present invention, respectively, and Figure 4 is a diagram explaining the "false phenomenon". be. In the figure, 4 is a chamber, 5 is an X-Y stage, 6 is a heater, 7.14 is a sample, 8 is a substrate, 9.9' is a conductive wiring, 10 is a laser light source, 11 is a laser beam (energy line) , 15 and 17 are insulating films, and 16 is a laser light absorption layer (energy ray absorption layer).

Claims (4)

【特許請求の範囲】[Claims] (1)パターニングされた導電性配線(9)をエネルギ
線(11)照射にて一時的に溶融後、再結晶化する導電
層の形成方法において、 上記エネルギ線(11)照射時、上記導電性配線(9)
の下地層(20)を加熱することを特徴とする導電層の
形成方法。
(1) In a method for forming a conductive layer in which a patterned conductive wiring (9) is temporarily melted by irradiation with an energy beam (11) and then recrystallized, when the conductive wiring (9) is irradiated with an energy beam (11), Wiring (9)
A method for forming a conductive layer, the method comprising heating a base layer (20).
(2)該下地層(20)は該導電性配線(9)の下方に
設けられた基板(8)であり、該基板(8)をヒータ(
6)で加熱することを特徴とする特許請求の範囲第1項
記載の導電層の形成方法。
(2) The base layer (20) is a substrate (8) provided below the conductive wiring (9), and the substrate (8) is connected to a heater (
6) The method for forming a conductive layer according to claim 1, wherein the conductive layer is heated in step 6).
(3)該下地層(20)は、該導電性配線(9)と基板
(8)との間にあり、該導電性配線(9)の下に直接設
けられた該エネルギ線(11)に対して強い吸収を示す
エネルギ線吸収層(16)であり、該エネルギ線吸収層
(16)に該エネルギ線(11)を吸収せしめてこれを
加熱することを特徴とする特許請求の範囲第1項記載の
導電層の形成方法。
(3) The base layer (20) is located between the conductive wiring (9) and the substrate (8), and is connected to the energy line (11) provided directly under the conductive wiring (9). Claim 1, characterized in that the energy ray absorbing layer (16) exhibits strong absorption against the energy rays, and the energy ray absorbing layer (16) absorbs the energy rays (11) to heat the energy rays (11). A method for forming a conductive layer as described in .
(4)該ヒータ(6)で加熱を行なう場合、半導体装置
を不活性ガス中、又は真空中に置くことを特徴とする特
許請求の範囲第2項記載の導電層の形成方法。
(4) The method for forming a conductive layer according to claim 2, wherein the semiconductor device is placed in an inert gas or a vacuum when heating with the heater (6).
JP7779187A 1987-03-31 1987-03-31 Formation of conductive layer Pending JPS63244755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7779187A JPS63244755A (en) 1987-03-31 1987-03-31 Formation of conductive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7779187A JPS63244755A (en) 1987-03-31 1987-03-31 Formation of conductive layer

Publications (1)

Publication Number Publication Date
JPS63244755A true JPS63244755A (en) 1988-10-12

Family

ID=13643808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7779187A Pending JPS63244755A (en) 1987-03-31 1987-03-31 Formation of conductive layer

Country Status (1)

Country Link
JP (1) JPS63244755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479331A (en) * 1990-07-23 1992-03-12 Matsushita Electron Corp Method of forming electrodes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566434A (en) * 1979-06-28 1981-01-23 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor device
JPS5797647A (en) * 1980-12-10 1982-06-17 Toshiba Corp Forming of electrode wiring in semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566434A (en) * 1979-06-28 1981-01-23 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor device
JPS5797647A (en) * 1980-12-10 1982-06-17 Toshiba Corp Forming of electrode wiring in semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479331A (en) * 1990-07-23 1992-03-12 Matsushita Electron Corp Method of forming electrodes

Similar Documents

Publication Publication Date Title
US4674176A (en) Planarization of metal films for multilevel interconnects by pulsed laser heating
US4681795A (en) Planarization of metal films for multilevel interconnects
US4543133A (en) Process for producing single crystalline semiconductor island on insulator
JPH02323A (en) Treatment for levelling non-heat-resistant metal with laser in manufacture of integrated circuit
US4359486A (en) Method of producing alloyed metal contact layers on crystal-orientated semiconductor surfaces by energy pulse irradiation
US4659422A (en) Process for producing monocrystalline layer on insulator
JPS6412088B2 (en)
JPH05507390A (en) Method for thinning etching of substrates
US4814578A (en) Planarization of metal films for multilevel interconnects
US4549064A (en) Laser treatment of silicon nitride
JPH06291034A (en) Heat treatment of thin film
JPS639371B2 (en)
JPS63244755A (en) Formation of conductive layer
JPS6331108A (en) Manufacture of soi (silicon on insulator) element
JPS61260621A (en) Retreatment for amorphous silicon film or polycrystalline silicon film
JPH027415A (en) Formation of soi thin film
JPS5892213A (en) Manufacture of semiconductor single crystalline film
JPS5833822A (en) Preparation of semiconductor substrate
JPS61226916A (en) Inversion of polycrystal semiconductor material to monocrystal semiconductor material
JP3104080B2 (en) Semiconductor substrate processing method
JPS6159820A (en) Manufacture of semiconductor device
JPS5919311A (en) Manufacture of semiconductor device
JPH0355975B2 (en)
JPS5837918A (en) Manufacture of semiconductor device
JPH038101B2 (en)