JPS63243817A - Silicon microsensor - Google Patents

Silicon microsensor

Info

Publication number
JPS63243817A
JPS63243817A JP62079243A JP7924387A JPS63243817A JP S63243817 A JPS63243817 A JP S63243817A JP 62079243 A JP62079243 A JP 62079243A JP 7924387 A JP7924387 A JP 7924387A JP S63243817 A JPS63243817 A JP S63243817A
Authority
JP
Japan
Prior art keywords
film
boron
layer
silicon
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62079243A
Other languages
Japanese (ja)
Other versions
JPH0650255B2 (en
Inventor
Hisatoshi Furubayashi
古林 久敏
Masaya Hijikigawa
正也 枅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62079243A priority Critical patent/JPH0650255B2/en
Publication of JPS63243817A publication Critical patent/JPS63243817A/en
Publication of JPH0650255B2 publication Critical patent/JPH0650255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sensor having high mechanical and thermal strength and high reliability by using two layers; a high-concn. boron-doped layer and insulating film layer, thereby forming a base having the shape of a bridge, etc. on the surface of a silicon wafer. CONSTITUTION:The surface of the n-type silicon wafer 3 is thermally oxidized and a thermally oxidized film 4 is patterned A by photoetching. Boron is diffused into the wafer through the film 4 as a mask to form B the boron-doped layer 5. The film 4 as the mask is removed C by a hydrofluoric acid buffer soln. and thereafter, the wafer is immersed in an EPW etching soln. and is etched D until the bridge is formed by the layer 5. Furthermore, an oxide film 6 which is sufficiently thinner than the layer 5 is formed E by thermal oxidation. A thin film 7 as a sensor material and an electrode 8 are finally formed to the resulted bridge part, by which the sensor is completed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はシリコンの異方性エツチングを利用したシリコ
ンマイクロセンサに関し、特に支持体部の材料および構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a silicon microsensor using anisotropic etching of silicon, and particularly to the material and structure of the support portion.

〈発明の背景〉 赤外線センサ、フローセンサ、ガスセンサなど熱収支を
利用するセンサでは、発熱部や検出部を微小化・薄膜化
することによって高感度化、高速応答化、低消費電力化
が可能となる。また、圧力センサ、振動センサ、加速度
センサなど可動部を有するセンサでは、可動部とその支
持部を薄膜化することによって、高感度化、微小化が図
られる。
<Background of the Invention> In sensors that utilize heat balance, such as infrared sensors, flow sensors, and gas sensors, it is possible to achieve higher sensitivity, faster response, and lower power consumption by miniaturizing and thinning the heat generating part and detection part. Become. Further, in sensors having a movable part such as a pressure sensor, a vibration sensor, and an acceleration sensor, high sensitivity and miniaturization can be achieved by making the movable part and its supporting part thin.

以上のように、センサ部を非常に薄い支持体で形成する
ことによってセンサの高感度化、低消費電力化、センサ
チッグの微小化、さらには各種センナの複合化、集積化
も可能になる。このような理由から、シリコン基板のご
く表面層の酸化膜や、高濃度ポロンドーグ層を残し、下
層のシリコンをエツチングで除去して、支持体及びセン
サ部を形成するいわゆるシリコンマイクロセンナの開発
が盛んでるる。その支持体の形状は、ブリッジ、カンチ
レバー、ダイアフラムなど様々でるる。支持体の概略図
を第1図囚(B)(Qに示す。つぎに上述の薄い支持体
を形成する方法について説明する。
As described above, by forming the sensor portion with a very thin support, it becomes possible to increase the sensitivity of the sensor, reduce power consumption, miniaturize the sensor chip, and furthermore, combine and integrate various sensors. For this reason, so-called silicon microsensors are being actively developed in which the underlying silicon layer is removed by etching, leaving the very surface oxide film or high-concentration Porondog layer on the silicon substrate to form the support and sensor section. Out. The shape of the support body varies, such as a bridge, a cantilever, and a diaphragm. A schematic diagram of the support is shown in Figure 1 (B) (Q). Next, a method for forming the above-mentioned thin support will be described.

シリコン単結晶をEPW液(エチレンジアミン・ピロカ
テコール・水の混合液)NaOH,KOH’lどのアル
カリ液でエツチングすると、結晶軸によってエツチング
速度が大きく異なる結晶軸異方性がある。すなわち<1
11>方向のエツチング速度が、他の<100>や(+
10>等の方向に比べて極端に遅い。この性質のために
、例えば(+00)ウェハーに、SiO2をマスクとし
てエツチングで穴を開けると、ウェノ・−面と54.7
°の角度をなす4つの(II+)面で囲まれた逆ピラミ
ッド形の穴が開く。また(+10)ウェノ・−の場合に
は、ウェハー面と垂直な穴が開く。(+00)ウエノ・
−を用いて、熱酸化膜全形成したのち、パターン化して
マスクとし、シリコンのエツチング全行なった例が第1
図である。この際に支持体として残るのは、熱酸化膜の
みである。熱酸化膜の代わりに、CVD (Chemi
catVapour Deposition )法等で
形成した5i02膜や、Si3N4膜を用いた例もある
When a silicon single crystal is etched with an alkaline solution such as EPW solution (ethylenediamine/pyrocatechol/water mixture) NaOH or KOH'l, there is crystal axis anisotropy in which the etching rate varies greatly depending on the crystal axis. i.e. <1
11> direction is different from other <100> and (+
It is extremely slow compared to directions such as 10>. Because of this property, for example, if a hole is etched in a (+00) wafer using SiO2 as a mask, the wafer - side and 54.7
An inverted pyramid-shaped hole surrounded by four (II+) planes forming an angle of .degree. is opened. In the case of (+10) wafer -, a hole is formed perpendicular to the wafer surface. (+00) Ueno・
The first example is that after forming the entire thermal oxide film using -, patterning it and using it as a mask, etching the silicon
It is a diagram. At this time, only the thermal oxide film remains as a support. Instead of thermal oxide film, CVD (Chemistry)
There are also examples using a 5i02 film formed by a cat vapor deposition method or the like, or a Si3N4 film.

その他の薄い支持体を形成する方法として、シリコンエ
ツチングの際の不純物濃度依存性を利用する方法がある
。前述のエツチング液では、ボロンを高濃度に拡散した
シリコン層は、エツチング速度が遅くなり、エツチング
停止層として働く。
Another method for forming a thin support is to utilize the impurity concentration dependence during silicon etching. In the above etching solution, the silicon layer in which boron is diffused at a high concentration slows down the etching rate and acts as an etching stop layer.

従って、シリコンウェハーの片面にボロンを高濃度に拡
散した層全形成し、裏面よp 5i02 Si3N4な
どをマスクとしてエツチングすると、第1図(C)のダ
イアフラムが形成される。ブリッジ、カンチレバー等も
同様にして形成することができる。ただし、この際支持
体として残るのは、高濃度ボロンドープ層である。
Therefore, by forming an entire layer in which boron is diffused at a high concentration on one side of a silicon wafer and etching it from the back side using p 5i02 Si3N4 as a mask, the diaphragm shown in FIG. 1(C) is formed. Bridges, cantilevers, etc. can also be formed in the same manner. However, what remains as the support at this time is the highly concentrated boron-doped layer.

〈発明が解決しようとする問題点〉 酸化膜を用いて、薄い支持体を形成した場合、膜厚が1
ミクロン以下のように薄くなると、支持体の湾曲が起こ
ったり、機械的強度が弱くなる。
<Problems to be solved by the invention> When a thin support is formed using an oxide film, the film thickness is 1
When the thickness becomes smaller than microns, the support may become curved or its mechanical strength becomes weak.

逆に厚くなると、シリコンと酸化膜との熱膨張率の差に
よって歪が加わり、支持体にヒビ割れや、破損が起こる
。また厚い熱酸化膜は作製に時間を要し、生産性が悪′
<、得られる膜厚はせいぜい2〜3ミクロン以下である
On the other hand, if it becomes thicker, the difference in thermal expansion coefficients between the silicon and oxide films will cause strain, causing cracks and damage to the support. In addition, thick thermal oxide films require time to fabricate, resulting in poor productivity.
<The film thickness obtained is at most 2 to 3 microns or less.

一方、高濃度ボロンドープ層で薄い支持体を形成した場
合ボロンドープの深さは、約lθミクロン程度まで深く
できるので支持体を厚くでき、また、熱膨張率はシリコ
ン基板と等しいので、歪みがなく、平坦で機械的強度の
強い支持体が得られる。しかし、高濃度ボロンドープ層
の電気抵抗は低いので、この支持体上に、センサ材料を
形成しようとする際には、高濃度ボロンドープ層とセン
ナ材料の間を電気的に絶縁する必要がある。
On the other hand, when a thin support is formed with a highly concentrated boron-doped layer, the depth of boron doping can be as deep as about lθ microns, so the support can be made thicker, and the coefficient of thermal expansion is the same as that of a silicon substrate, so there is no distortion. A flat support with strong mechanical strength can be obtained. However, since the high concentration boron doped layer has a low electrical resistance, when a sensor material is to be formed on this support, it is necessary to electrically insulate the high concentration boron doped layer and the senna material.

く問題点を解決するための手段〉 上記問題点を解決するために、本発明ではシリコンウェ
ハー表面に、接合深さを深くドーピングした高濃度ボロ
ンドープ層と、さらにその表面を薄く被覆した絶縁膜層
との2層で、ブリッジ、カンチレバー、ダイヤフラム等
の形状の支持体を形成した。酸化膜等の絶縁膜の熱膨張
率は、シリコンとは異なるが、膜厚が薄いため、支持体
全体としての熱膨張率はボロンドープ層によって定まり
、従って支持体部の熱膨張率はシリコンと等しくなるの
で作製時の熱的歪みが少すく、機械的強度。
Means for Solving the Problems> In order to solve the above problems, the present invention provides a silicon wafer surface with a highly concentrated boron doped layer doped to a deep junction depth, and an insulating film layer thinly covering the surface. The two layers formed a support in the shape of a bridge, cantilever, diaphragm, etc. The coefficient of thermal expansion of insulating films such as oxide films is different from that of silicon, but since the film thickness is thin, the coefficient of thermal expansion of the support as a whole is determined by the boron-doped layer, so the coefficient of thermal expansion of the support part is equal to that of silicon. As a result, there is little thermal distortion during fabrication, and mechanical strength is high.

熱的強度が強く、シかも湾曲のない平坦な支持体(ブリ
ッジ、カンチレバー、ダイヤスラム等)が得られる。
A flat support (bridge, cantilever, diaphragm, etc.) with strong thermal strength and no bending can be obtained.

ボロンドープ層を被覆する薄い絶縁膜は、熱酸化膜に限
定されない。CVD法、スパッタリング法、その他の方
法で形成したs ioz膜でも良いし、Si3N4膜、
 Atz03膜も良好である。作製プロセスの点からは
、ボロンドーピングと同じ装置(拡散装置)を使用でき
る熱酸化膜が適するが、熱膨張率の点からは、Si3N
4膜、 AtzO3膜の方が良い。
The thin insulating film covering the boron-doped layer is not limited to a thermal oxide film. It may be a SiOZ film formed by CVD method, sputtering method, or other method, or Si3N4 film,
The Atz03 film is also good. From the viewpoint of the manufacturing process, a thermal oxide film is suitable because it can use the same equipment (diffusion equipment) as for boron doping, but from the viewpoint of thermal expansion coefficient, Si3N
4 film, AtzO3 film is better.

〈実施例1〉 第1図に本発明の1実施例であるシリコンマイクロセン
サの断面図及び平面図を、第2図に、その製作工程毎の
断面図を示す。
<Example 1> FIG. 1 shows a cross-sectional view and a plan view of a silicon microsensor that is an example of the present invention, and FIG. 2 shows cross-sectional views of each manufacturing process.

n型シリコンウェノ・−3表面を熱酸化し、フォトエツ
チングで熱酸化膜4をパターン化する(第2図(A))
。このパターン化した熱酸化膜4をマスクとして、ボロ
ンを拡散しボロンドープ層5を形成する(第2図(B)
)。この際ボロン濃度は、できるだけ高濃度に(l x
 l 0207cm3以上が好ましい)、また接合深さ
はかなシ深く(約5μm)する。つぎに、マスクの熱酸
化膜4を7ツ酸緩衝液で除去した後(第2図(C) )
 、沸点近くまで昇温したEPWエツチング液中に浸漬
し、ボロ/ドーグ層5によりブリッジが形成されるまで
エツチングを行なう(第2図(D))。さらに、熱酸化
によって、ボロンドープ層5の厚さに比較して十分薄い
酸化膜6(約300OA)を形成する(第2図(E))
。最後に、得られたブリッジ部にセンサ材料となる薄膜
7および電極8を形成して、第1図のセンサが完成する
。上記実施例では、支持体の形状がブリッジの例を示し
たが、カンチレバー、ダイヤフラムについても同様に作
製可能である。
The surface of the n-type silicon wafer-3 is thermally oxidized, and the thermal oxide film 4 is patterned by photoetching (Fig. 2 (A)).
. Using this patterned thermal oxide film 4 as a mask, boron is diffused to form a boron-doped layer 5 (see FIG. 2(B)).
). At this time, the boron concentration should be as high as possible (l x
(preferably 10207 cm3 or more), and the bonding depth is very deep (approximately 5 μm). Next, after removing the thermal oxide film 4 of the mask with a heptonic acid buffer (Fig. 2 (C))
The substrate is immersed in an EPW etching solution whose temperature has been raised to near its boiling point, and etching is performed until a bridge is formed by the Boro/Dawg layer 5 (FIG. 2(D)). Furthermore, by thermal oxidation, an oxide film 6 (approximately 300 OA) which is sufficiently thin compared to the thickness of the boron doped layer 5 is formed (FIG. 2(E)).
. Finally, a thin film 7 and an electrode 8, which serve as a sensor material, are formed on the obtained bridge portion, and the sensor shown in FIG. 1 is completed. In the above embodiments, the shape of the support is a bridge, but a cantilever or a diaphragm can also be produced in the same manner.

〈実施例2〉 第3図に本発明の他の実施例であるシリコンマイクロセ
ンサの断面図及び平面図を、第4図にその製作工程毎の
断面図を示す。
<Embodiment 2> FIG. 3 shows a sectional view and a plan view of a silicon microsensor according to another embodiment of the present invention, and FIG. 4 shows sectional views of each manufacturing process.

n型シリコンウェハー3を熱酸化し、フォトエツチング
で熱酸化膜4′j&:パターン化し、シリコンエツチン
グ部のみ熱酸化膜4を残す(下4図<A) )。
The n-type silicon wafer 3 is thermally oxidized and patterned into a thermal oxide film 4'j&: by photoetching, leaving the thermal oxide film 4 only in the silicon etched area (Figure 4 <A)).

このパターン化した熱酸化膜4をマスクとしてボロンを
拡散し、ボロンドープ層5を形成する。同時にボロンド
ープ層5の表面に熱酸化膜6を薄く形成する(第4図(
B) )。ボロンドープ層5は数1層mm−1Op、熱
酸化膜6は+000−5000A程度が好ましい。つぎ
にマスクの酸化膜4のみを、フォトエツチングで除去し
た後(第4図(C) ) 、沸点近くまで昇温したEP
Wエツチング液中に浸漬し、シリコンのエツチングを行
なう。ボロンドープ層5と酸化膜はエツチングされない
ので、これら2層からなるダイヤフラムが形成される(
第4図(D))。最後に得られたダイヤスラム部に、セ
ンサ材料となる薄膜7および電極8を形成して、第3図
のセンサが完成する。
Using this patterned thermal oxide film 4 as a mask, boron is diffused to form a boron-doped layer 5. At the same time, a thin thermal oxide film 6 is formed on the surface of the boron-doped layer 5 (see Fig. 4).
B) ). It is preferable that the boron doped layer 5 has a thickness of several mm<-1 > and the thermal oxide film 6 has a thickness of about +000-5000A. Next, after removing only the oxide film 4 of the mask by photoetching (Fig. 4(C)), the EP was heated to near its boiling point.
Immerse in W etching solution to perform silicon etching. Since the boron doped layer 5 and the oxide film are not etched, a diaphragm consisting of these two layers is formed (
Figure 4(D)). Finally, a thin film 7 and an electrode 8, which serve as a sensor material, are formed on the obtained diaphragm portion, and the sensor shown in FIG. 3 is completed.

〈発明の効果〉 本発明の支持体上にセンサ材料を形成することにより、
機械的強度、熱的強度が強く、信頼性の高いシリコンマ
イクロセンサが得られる。
<Effects of the Invention> By forming the sensor material on the support of the present invention,
A silicon microsensor with high mechanical strength, high thermal strength, and high reliability can be obtained.

そして、このシリコンマイクロセンサは、赤外線センサ
、フローセンサ、ガスセンサ等の熱収支を利用するセン
サに応用でき、高感度化、低消費電力化に役立つ。また
、圧カセンサ、振動センサ。
This silicon microsensor can be applied to sensors that utilize heat balance, such as infrared sensors, flow sensors, and gas sensors, and is useful for increasing sensitivity and reducing power consumption. Also, pressure sensors and vibration sensors.

加速度センサ等可動部を有するセンナへの応用も可能で
ある。さらに、センサの微小化、複合化。
Application to sensors having movable parts such as acceleration sensors is also possible. Furthermore, sensors are becoming smaller and more complex.

集積化にも寄与する。It also contributes to integration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示すシリコンマイクロセン
サの断面図及び平面図でるる。 第2図は第1図に示すシリコンマイクロセンサの製造工
程図である。 第3図は本発明の他の実施例を示すシリコンマイクロセ
ンサの断面図及び平面図である。 第4図は第3図に示すシリコンマイクロセンサの製造工
程図である。 第5図は従来のシリコンマイクロセンサの支持体形状を
示す講成図である。 3・・・シリコン基板、4・・・熱酸化膜、5・・・ボ
ロンドープ層、6・・・熱酸化膜、7・・・セン丈膜、
8・・・電極。 代理人 弁理士 杉 山 毅 至(他1名)第2図 第40
FIG. 1 shows a sectional view and a plan view of a silicon microsensor showing one embodiment of the present invention. FIG. 2 is a manufacturing process diagram of the silicon microsensor shown in FIG. 1. FIG. 3 is a sectional view and a plan view of a silicon microsensor showing another embodiment of the present invention. FIG. 4 is a manufacturing process diagram of the silicon microsensor shown in FIG. 3. FIG. 5 is a schematic diagram showing the shape of a support of a conventional silicon microsensor. 3... Silicon substrate, 4... Thermal oxide film, 5... Boron-doped layer, 6... Thermal oxide film, 7... Thick film,
8...electrode. Agent: Patent attorney Takeshi Sugiyama (and 1 other person) Figure 2, Figure 40

Claims (1)

【特許請求の範囲】 1、高濃度ボロンドープ層及び該層の少なくとも片面に
付着した薄い絶縁膜層とから成る薄層を支持体とし、該
支持体の前記絶縁膜上にセンサ膜を設けたことを特徴と
するシリコンマイクロセンサ。 2、薄い絶縁膜層の膜厚が、高濃度ボロンドープ層の厚
みよりも小さい特許請求の範囲第1項記載のシリコンマ
イクロセンサ。 3、薄い絶縁膜層が、SiO_2、Si_3N_4、A
l_2O_3の少なくとも1種類から成る特許請求の範
囲第1項又は第2項記載のシリコンマイクロセンサ。
[Claims] 1. A thin layer consisting of a highly concentrated boron-doped layer and a thin insulating film layer attached to at least one side of the layer is used as a support, and a sensor film is provided on the insulating film of the support. A silicon microsensor featuring: 2. The silicon microsensor according to claim 1, wherein the thickness of the thin insulating film layer is smaller than the thickness of the heavily boron-doped layer. 3. The thin insulating film layer is SiO_2, Si_3N_4, A
The silicon microsensor according to claim 1 or 2, comprising at least one type of l_2O_3.
JP62079243A 1987-03-31 1987-03-31 Method for manufacturing silicon microsensor Expired - Fee Related JPH0650255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62079243A JPH0650255B2 (en) 1987-03-31 1987-03-31 Method for manufacturing silicon microsensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62079243A JPH0650255B2 (en) 1987-03-31 1987-03-31 Method for manufacturing silicon microsensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7229049A Division JP2617287B2 (en) 1995-09-06 1995-09-06 Silicon micro sensor

Publications (2)

Publication Number Publication Date
JPS63243817A true JPS63243817A (en) 1988-10-11
JPH0650255B2 JPH0650255B2 (en) 1994-06-29

Family

ID=13684417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62079243A Expired - Fee Related JPH0650255B2 (en) 1987-03-31 1987-03-31 Method for manufacturing silicon microsensor

Country Status (1)

Country Link
JP (1) JPH0650255B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048336A (en) * 1988-12-29 1991-09-17 Sharp Kabushiki Kaisha Moisture-sensitive device
JPH07198646A (en) * 1993-12-04 1995-08-01 Lg Electron Inc Low power-consumption-type thin film gas sensor and preparation thereof
JP2002344036A (en) * 2001-05-11 2002-11-29 Seiko Instruments Inc Manufacturing method of membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121815A (en) * 1982-01-14 1983-07-20 Murata Mfg Co Ltd Piezoelectric resonator
JPS6122899A (en) * 1984-07-12 1986-01-31 松下電器産業株式会社 Iron
JPS61191953A (en) * 1985-02-20 1986-08-26 Richo Seiki Kk Gas detector
JPS6249251A (en) * 1985-08-28 1987-03-03 Yamatake Honeywell Co Ltd Gas sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121815A (en) * 1982-01-14 1983-07-20 Murata Mfg Co Ltd Piezoelectric resonator
JPS6122899A (en) * 1984-07-12 1986-01-31 松下電器産業株式会社 Iron
JPS61191953A (en) * 1985-02-20 1986-08-26 Richo Seiki Kk Gas detector
JPS6249251A (en) * 1985-08-28 1987-03-03 Yamatake Honeywell Co Ltd Gas sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048336A (en) * 1988-12-29 1991-09-17 Sharp Kabushiki Kaisha Moisture-sensitive device
JPH07198646A (en) * 1993-12-04 1995-08-01 Lg Electron Inc Low power-consumption-type thin film gas sensor and preparation thereof
JP2002344036A (en) * 2001-05-11 2002-11-29 Seiko Instruments Inc Manufacturing method of membrane

Also Published As

Publication number Publication date
JPH0650255B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
JP3464657B2 (en) Device configured using diaphragm-based sensor
JP3489309B2 (en) Method for manufacturing semiconductor dynamic quantity sensor and anisotropic etching mask
JP3506932B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JP3399660B2 (en) Manufacturing method of surface type acceleration sensor
JPS6055655A (en) Semiconductor device having beam structure
CN111591952B (en) MEMS piezoresistive pressure sensor and preparation method thereof
KR950000319B1 (en) Semiconductor pressure sensor and manufacturing method thereof
US5310610A (en) Silicon micro sensor and manufacturing method therefor
CN112357877B (en) MEMS SOI pressure sensor and preparation method thereof
JP2617287B2 (en) Silicon micro sensor
JPS63243817A (en) Silicon microsensor
JPH0748564B2 (en) Silicon micro sensor
JP4532787B2 (en) Condenser microphone and pressure sensor
JPS6376483A (en) Manufacture of semiconductor acceleration sensor
JPH08248061A (en) Acceleration sensor and manufacture thereof
JPH07107496B2 (en) Silicon microsensor and manufacturing method thereof
JPH10239345A (en) Semiconductor sensor
JPH06221945A (en) Semiconductor pressure sensor and manufacture thereof
JPH0618345A (en) Production of pressure sensor
JP2006003102A (en) Semiconductor pressure sensor and its manufacturing method
JP2001066208A (en) Semiconductor pressure measuring device and manufacturing method thereof
JPS6267880A (en) Manufacture of semiconductor device
JPS63237482A (en) Semiconductor pressure sensor
JPH1144705A (en) Semiconductor acceleration sensor and its manufacture
JPH06163940A (en) Semiconductor pressure sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees