JPS63241124A - Method for controlling temperature of circulating gas for sintering - Google Patents

Method for controlling temperature of circulating gas for sintering

Info

Publication number
JPS63241124A
JPS63241124A JP7556687A JP7556687A JPS63241124A JP S63241124 A JPS63241124 A JP S63241124A JP 7556687 A JP7556687 A JP 7556687A JP 7556687 A JP7556687 A JP 7556687A JP S63241124 A JPS63241124 A JP S63241124A
Authority
JP
Japan
Prior art keywords
circulating gas
pressure
temperature
gas
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7556687A
Other languages
Japanese (ja)
Inventor
Yoshiki Nakahara
中原 芳樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7556687A priority Critical patent/JPS63241124A/en
Publication of JPS63241124A publication Critical patent/JPS63241124A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve productivity of a sintering machine of an exhaust gas circulation system without degrading cold strength, by controlling a temp.of circulating gas by adjustment of steam pressure in an evaporation part of a waste heat boiler through which an exhaust gas is passed. CONSTITUTION:The exhaust gas is sucked from the sintering machine and after the gas is passed through the waste heat boiler 11, the gas is returned to the sintering machine. The temp. (t) of the circulating gas is measured by a thermometer 30 and a deviation DELTAt between the temp. (t) and optimum temp. t0 is calculated. The stored data on the relation between the temp. of the circulating gas and the steam pressure and the deviation DELTAt are compared and the steam pressure P0 necessary for decreasing the deviation DELTAt to 0 is computed. On the other hand, feed water B is preheated and is sent through a boiler drum 25a to an evaporator 11b. The steam pressure (p) in the drum 25a is measured by a pressure gage 35 and the deviation DELTAp from the pressure p0 is computed. The opening degree of a pressure control valve 34 is so controlled as to decrease the deviation to 0. The temp. of the circulating gas is thereby controlled according to the meltability of sintered ore.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、排ガス循環方式の焼結機において、焼結鉱石
の溶解性に合わせて循環ガス温度を変化させることによ
り、焼結鉱の生産性向上を図る循環ガス温度制御方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention improves the production of sintered ore by changing the circulating gas temperature in accordance with the solubility of the sintered ore in an exhaust gas circulation type sintering machine. The present invention relates to a circulating gas temperature control method for improving performance.

〔従来の技術〕[Conventional technology]

近年、製鉄所の焼結工場においては省エネルギ一対策と
して焼結機に排熱ボイラーを設置し、焼結層より吸引し
た排ガスをこのボイラーを通過させた後、再度焼結層に
還流させて排熱回収量を増加させる排ガスi環方式を採
用する例が多い。
In recent years, as an energy-saving measure, waste heat boilers have been installed in sintering plants at steel mills, and exhaust gases drawn from the sintered layer are passed through this boiler and then returned to the sintered layer. In many cases, an exhaust gas i-ring system is adopted, which increases the amount of exhaust heat recovered.

従来の排ガス循環方式を第1図により説明すると、焼結
原料はホッパー1.2からシュートを介してパレット4
上に装入され、点火炉5で点火された後、パレット4を
進む間に焼結される。焼成された焼結鉱は冷却機8のク
ーラー16を通過する間に冷却される。
To explain the conventional exhaust gas circulation system using Fig. 1, the sintering raw material is transferred from the hopper 1.2 to the pallet 4 via the chute.
After being charged to the top and ignited in the ignition furnace 5, it is sintered while passing through the pallet 4. The fired sintered ore is cooled while passing through the cooler 16 of the cooler 8.

排熱回収は焼結機7.冷却Wa8の双方において行われ
る。
Sintering machine is used for exhaust heat recovery7. The cooling process is performed on both sides of the cooling Wa8.

焼結機7における排熱回収は、ウィンドボックス9より
排出される排ガスをプレダスタ−10、排熱ボイラー1
1を介して焼結機7のフード3内に還流させることによ
り行われる。排鉱部12付近の排ガスは350℃程度で
排熱ボイラー11で排熱回収された後でも150〜20
0℃の温度を有している。この排ガスをブロワ−203
により再度焼結機7に還流させる排ガス循環方式は、排
熱ボイラー11での発生蒸気頃を増加させ、排熱回収量
の増加を図る他に、ブロワ−41にて圧送され煙突15
から排出される排ガス量を減少させ、公害防止設備(電
気集塵機13.脱硫、脱硝設備14)の規模縮小等を図
ることができる。
For exhaust heat recovery in the sintering machine 7, the exhaust gas discharged from the wind box 9 is transferred to the pre-duster 10 and the exhaust heat boiler 1.
1 into the hood 3 of the sintering machine 7. The exhaust gas near the ore discharge section 12 is around 350℃, and even after exhaust heat is recovered by the exhaust heat boiler 11, the temperature is 150~20℃.
It has a temperature of 0°C. This exhaust gas is transferred to the blower 203.
In addition to increasing the amount of steam generated in the exhaust heat boiler 11 and increasing the amount of exhaust heat recovered, the exhaust gas circulation system returns the exhaust gas to the sintering machine 7 again.
It is possible to reduce the amount of exhaust gas emitted from the engine and reduce the scale of pollution prevention equipment (electrostatic precipitator 13, desulfurization and denitrification equipment 14).

一方、冷却機8における排熱回収は、次のようにして行
われる。
On the other hand, exhaust heat recovery in the cooler 8 is performed as follows.

焼結機7で焼成された焼結鉱はクーラー16で冷却され
るが、クーラー人口17での焼結鉱温度は500℃程度
あるため、クーラ−16前半部での排ガス温度は400
℃程度となる。この排ガスをフード18よりプレダスタ
−19,エコノマイザ−24,プロワ−20bを経てウ
ィンドボックス21に還流させる。
The sintered ore fired in the sintering machine 7 is cooled in the cooler 16, but since the sintered ore temperature in the cooler population 17 is about 500°C, the exhaust gas temperature in the first half of the cooler 16 is 400°C.
It will be about ℃. This exhaust gas is recirculated from the hood 18 to the wind box 21 via the pre-duster 19, economizer 24, and blower 20b.

また、クーラ−16後半部での排ガス温度は150℃程
度であるので、その排ガスを使って給水予熱器22でボ
イラ用給水を予熱する。給水予熱器22で予熱さ糺た給
水はAより出てB、 B’に分かれて入る。
Further, since the exhaust gas temperature in the latter half of the cooler 16 is about 150°C, the exhaust gas is used to preheat the boiler feed water in the feed water preheater 22. The feed water preheated by the feed water preheater 22 comes out from A and enters B and B' separately.

Bより入った給水はポンプ29aにより脱気器23aを
経て排熱ボイラー11のエコノマイザ−11aに入り、
ここで焼結機循環ガスにより予熱されて液体のままボイ
ラードラム25aに入る。
The feed water entering from B enters the economizer 11a of the waste heat boiler 11 via the deaerator 23a by the pump 29a.
Here, it is preheated by the sintering machine circulating gas and enters the boiler drum 25a as a liquid.

ドラム25aに入った給水はポンプ29bによりボイラ
ー11の蒸発器11bに送られ、焼結機循環ガスにより
再加熱された後、ドラム25aに戻り、蒸気化されて需
要先26へ送られる。
The feed water that has entered the drum 25a is sent to the evaporator 11b of the boiler 11 by the pump 29b, and after being reheated by the sintering machine circulating gas, it returns to the drum 25a, where it is vaporized and sent to the consumer 26.

B′より入った給水は脱気器23bに入り、更に冷却機
循環ガスによって加熱されるエコノマイザ−24とボイ
ラードラム25bとの間をポンプ29c、29dにより
循環し、蒸気化されて需要先26へ送られる。
The feed water entering from B' enters the deaerator 23b, and is further circulated by pumps 29c and 29d between the economizer 24, which is heated by the cooler circulating gas, and the boiler drum 25b, where it is vaporized and sent to the consumer 26. Sent.

また、徘鉱部フード27内の排ガスは150℃程度であ
るために、焼結機出口フード28内に戻される。
Further, since the exhaust gas in the wandering part hood 27 is about 150° C., it is returned to the sintering machine outlet hood 28.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、このような排ガス循環方式の焼結機において
は、前述したように、150〜200℃の循環ガスが焼
結機7に還流される。このような比較的高温の循環ガス
を焼結[?に還流させると、温度の高い分だけ実際の同
一容積に対するガスの熱容量が増大し、その結果、焼成
時に熱が焼結層内に蓄積され、焼結層が溶解を始める1
100℃以上の焼結層の溶解領域が増大することになる
By the way, in such an exhaust gas circulation type sintering machine, the circulating gas at 150 to 200° C. is returned to the sintering machine 7, as described above. Sintering of such relatively high temperature circulating gas [? When refluxed, the heat capacity of the gas for the same actual volume increases by the higher temperature, and as a result, heat is accumulated in the sintered layer during firing, and the sintered layer begins to melt.
The melting area of the sintered layer at 100° C. or higher will increase.

第2図は循環ガス温度(1)を変化させたときの生産性
の変化(%)を示し、第3図は循環ガス温度が冷間強度
(S1%)に及ぼす影響を鉱石溶融率(%)をパラメー
ターとして示し、第4図は鉱石溶融率(%ンと冷間強度
(51%)との関係を示したものである。調査に使用し
た焼結原料の配合条件を第1表に示す、これらの調査結
果によれば、従来の排ガス循環方式には次の如き問題の
あることが明らかとなる。
Figure 2 shows the change in productivity (%) when circulating gas temperature (1) is changed, and Figure 3 shows the effect of circulating gas temperature on cold strength (S1%) and ore melting rate (%). ) is shown as a parameter, and Figure 4 shows the relationship between ore melting rate (%) and cold strength (51%). Table 1 shows the blending conditions of the sintering raw materials used in the investigation. According to these investigation results, it is clear that the conventional exhaust gas circulation system has the following problems.

第   1   表 ■ 循環排ガス温度が150〜200℃となると、焼成
時の通気性が悪化し、生産性が低下する(第2図)。
Table 1 ■ When the temperature of the circulating exhaust gas is 150 to 200°C, the air permeability during firing deteriorates and productivity decreases (Figure 2).

■ 循環ガス温度150〜200℃の領域では1100
℃以上の溶融領域が増大し、鉱石の溶融率(%)が増大
することから、冷間強度(S1%)は上昇する(第3図
)。しかしながら、鉱石の溶融量は鉱石の種類により異
なり、溶は易い鉱石の使用時には過溶融となって焼けむ
らを生じ、u4歩留りが低下する。
■ 1100 in the range of circulating gas temperature 150 to 200℃
The cold strength (S1%) increases because the melting area above ℃ increases and the melting rate (%) of the ore increases (Figure 3). However, the amount of melted ore differs depending on the type of ore, and when using ore that melts easily, it becomes overmelted, causing uneven burning and lowering the u4 yield.

■ 冷間強度が高くなると、鉱石の溶融性が増大する(
第4図)。
■ As the cold strength increases, the meltability of the ore increases (
Figure 4).

すなわち、循環ガス温度が上昇すると冷間強度が上昇し
、高炉操業用として使用するのに望ましい焼結鉱が得ら
れるが、その反面、過溶融による生産性低下を生じるの
である。
That is, as the circulating gas temperature increases, the cold strength increases and sintered ore desirable for use in blast furnace operation is obtained, but on the other hand, productivity decreases due to overmelting.

本発明は、斯かる問題を解決して、冷間強度に支障を与
えることなく生産性の向上を図ることを目的とする。
The present invention aims to solve this problem and improve productivity without impairing cold strength.

〔問題点を解決するための手段〕 本発明は、焼結機7より排ガスを吸引し排熱ボイラー1
1を通過させた後、前記焼結機7に還流させる排ガス循
環系統において、前記排熱ボイラー11の蒸発部におけ
る蒸気圧力を調節することにより、焼結JR7に還流す
る循環ガスの温度を焼結鉱石の溶解性に応じて制御する
焼結循環ガス温度制御方法を要旨とする。
[Means for solving the problem] The present invention sucks exhaust gas from the sintering machine 7 and connects it to the exhaust heat boiler 1.
In the exhaust gas circulation system, the temperature of the circulating gas flowing back to the sintering machine 7 is adjusted by adjusting the steam pressure in the evaporation section of the exhaust heat boiler 11. The gist of this paper is a sintering circulating gas temperature control method that is controlled according to the solubility of ore.

すなわち、焼結機7に還流される循環ガスの温度には、
前述したように、150〜200℃程度の範囲で巾があ
る。これは、排熱ボイラー11で発生させる蒸気の圧力
の違いによって循環ガス温度が変化するためである。た
とえば発注蒸気が8気圧の低圧蒸気の場合は、排熱ボイ
ラー11i11過後の循環ガス温度は150℃程度であ
るのに対し、発生蒸気が27気圧の中圧蒸気の場合は、
排熱ボイラー1liI!過後のv11環ガス温度は20
0℃程度となる。
That is, the temperature of the circulating gas returned to the sintering machine 7 is as follows:
As mentioned above, the temperature ranges from about 150 to 200°C. This is because the temperature of the circulating gas changes depending on the pressure of the steam generated by the waste heat boiler 11. For example, if the ordered steam is low pressure steam of 8 atm, the temperature of the circulating gas after passing through the exhaust heat boiler 11i11 is about 150°C, whereas if the generated steam is medium pressure steam of 27 atm,
Exhaust heat boiler 1liI! The v11 ring gas temperature after
The temperature will be around 0℃.

本発明は、焼結機7に還流される循環ガスの温度が、上
記の如く、排熱ボイラー11の蒸気圧力によって変化す
る点に着目し、排熱ボイラー11の蒸気圧力を焼結鉱石
の溶融性に合せて積極的に調節することにより、焼結機
7への還流ガス温度を制御し、前記目的を達成するもの
である。
The present invention focuses on the point that the temperature of the circulating gas returned to the sintering machine 7 changes depending on the steam pressure of the exhaust heat boiler 11 as described above, and the steam pressure of the exhaust heat boiler 11 is adjusted to melt the sintered ore. By actively adjusting the temperature of the reflux gas to the sintering machine 7, the temperature of the reflux gas to the sintering machine 7 can be controlled to achieve the above objective.

〔作  用〕[For production]

排熱ボイラー11の蒸発部において蒸気圧力を調節する
ことにより、飽和蒸気温度が変化し、焼結機7へ還流す
る循環ガスの温度が広範囲に調節され得る。
By adjusting the steam pressure in the evaporator section of the waste heat boiler 11, the saturated steam temperature changes and the temperature of the circulating gas flowing back to the sintering machine 7 can be adjusted over a wide range.

第5図は、排熱ボイラー11の蒸発部であるボイラード
ラム25aにおけるドラム圧力を25kg/ajgから
8 kg / cligへ変更したときの、循環ガス温
度変化を示したものである。
FIG. 5 shows the change in circulating gas temperature when the drum pressure in the boiler drum 25a, which is the evaporation section of the waste heat boiler 11, is changed from 25 kg/ajg to 8 kg/clig.

ドラム圧力が27 kg/aJ gのときは、実線に示
されるように、約400℃で排熱ボイラー11に入った
循環ガスが、ボイラーへの給水と熱交換し約200℃で
排熱ボイラー11を出る。ボイラーへの給水はva環ガ
スによる加熱により約200℃の蒸気となる。これに対
し、ドラム圧力が8kg/c+Jgのときは、破線で示
されるように、約400℃の循環ガスは、排熱ボイラー
11を通過する間に150℃まで温度低下し、焼結機7
へ還流させる循環ガスの温度を50℃低下させることが
できる。
When the drum pressure is 27 kg/aJ g, as shown by the solid line, the circulating gas that entered the waste heat boiler 11 at about 400°C exchanges heat with the water supplied to the boiler and returns to the waste heat boiler 11 at about 200°C. exit. The water supplied to the boiler is heated by VA ring gas and becomes steam at approximately 200°C. On the other hand, when the drum pressure is 8 kg/c+Jg, as shown by the broken line, the circulating gas at about 400°C decreases in temperature to 150°C while passing through the waste heat boiler 11, and the temperature of the circulating gas decreases to 150°C while passing through the waste heat boiler 11.
The temperature of the circulating gas refluxed to can be reduced by 50°C.

そして、この蒸気圧力変化とWi環ガス温度変化との関
係を用い、循環ガス温度を焼結鉱石の溶解性に合せて調
節することにより、冷間強度に問題を生しることなく、
鉱石の過溶融が防止され、生産性の向上を図ることが可
能になる。
Then, by using the relationship between the steam pressure change and the Wi ring gas temperature change to adjust the circulating gas temperature to match the solubility of the sintered ore, the cold strength can be improved without causing any problems.
Over-melting of the ore is prevented, making it possible to improve productivity.

例えば、第3図において冷間強度を管理値である87%
以上に保つためには、鉱石溶融率89%のときは循環ガ
ス温度125℃、88%のときは150℃、87%のと
きは175℃を確保すればよい、つまり、鉱石溶融率が
高く溶けやすい鉱石配合時には、冷間強度管理値内で極
力、循環ガス温度を下げることにより、冷間強度に支障
を来すことなく過溶融の防止を図ることができるのであ
る。
For example, in Figure 3, the cold strength is 87%, which is the control value.
In order to maintain the circulating gas temperature at 125°C when the ore melting rate is 89%, 150°C when the ore melting rate is 88%, and 175°C when the ore melting rate is 87%, this means that the ore melting rate is high. When blending ores that are easy to use, overmelting can be prevented without affecting cold strength by lowering the circulating gas temperature as much as possible within the cold strength control value.

本発明は、上記のように、蒸気圧力の調節により、焼結
Ja7に還流する循環ガスの温度を鉱石の溶解性に合せ
て逐一制御することにより、鉱石に過溶融を生じさせず
に生産性を高め、かつ実用上十分な冷間強度を維持し得
るものである。
As described above, the present invention improves productivity without causing overmelting of the ore by controlling the temperature of the circulating gas flowing back into the sintering Ja7 according to the solubility of the ore by adjusting the steam pressure. and can maintain a practically sufficient cold strength.

〔実施例〕〔Example〕

以下、本発明の具体的実施手順を第6図(イ)(ロ)に
例示される蒸気圧力調節システムより説明する。
Hereinafter, a concrete implementation procedure of the present invention will be explained using the steam pressure regulating system illustrated in FIGS. 6(a) and 6(b).

第6図(イ)の例によると、焼結II?からの循環ガス
がプレダスタ−10を経て排熱ボイラーllに入り、ボ
イラー11内のエコノマイザ−113および蒸発器11
bを通過した後、ブロワ−20aを経て焼結機7へ還流
する。
According to the example in FIG. 6(a), sintering II? The circulating gas passes through the pre-duster 10 and enters the waste heat boiler 11, and then enters the economizer 113 in the boiler 11 and the evaporator 11.
After passing through b, it is refluxed to the sintering machine 7 via the blower 20a.

ブロワ−20aの出側においては、焼結機7へ還流する
循環ガスの温度tが温度計30にて測定され、温度設定
器31からの信号とともに第1の比較演算器32に入力
される。
On the outlet side of the blower 20a, the temperature t of the circulating gas flowing back to the sintering machine 7 is measured by a thermometer 30, and is input to the first comparator 32 together with the signal from the temperature setting device 31.

温度設定器31は焼結鉱石に最適な還流ガス温度t0す
なわち冷間強度管理値を下回らない範囲内で最も低い還
流ガス温度(第3図)を第1の比較演算器32に入力す
る。第1の比較演算器32は温度計30が出力する測定
温度tと、温度設定器31が出力する最適温度t、との
偏差Δtを計算し、圧力設定器33に出力する。
The temperature setting device 31 inputs the optimum reflux gas temperature t0 for the sintered ore, that is, the lowest reflux gas temperature (FIG. 3) within a range that does not fall below the cold strength control value, to the first comparison calculator 32. The first comparator 32 calculates the deviation Δt between the measured temperature t output by the thermometer 30 and the optimum temperature t output by the temperature setting device 31 and outputs it to the pressure setting device 33 .

圧力設定器33は循環ガス温度と蒸気圧力との関係(第
5図)を予め記憶していて、第1の演算器33から入力
する温度偏差Δtと記憶データとを比較し、温度偏差Δ
tをOならしめるに必要な蒸気圧力p0を演算する。
The pressure setting device 33 stores in advance the relationship between the circulating gas temperature and the steam pressure (FIG. 5), and compares the temperature deviation Δt inputted from the first calculator 33 with the stored data to determine the temperature deviation Δ.
The steam pressure p0 required to make t equal to O is calculated.

一方、Bより入った給水は、脱気器23aを経てポンプ
29aによりエコノマイザ−118に入り、ここで循環
ガスによる予熱を受けてボイラードラム25aに入る。
On the other hand, the feed water entering from B passes through the deaerator 23a and enters the economizer 118 by the pump 29a, where it is preheated by circulating gas and enters the boiler drum 25a.

ボイラードラム25aに入った給水は、ポンプ29bに
より蒸発器11bに送られ、ここで循環ガスによる加熱
を受けた後、ドラム25aに戻り、蒸気となって圧力調
節弁34を経て需要先26へ送られる。
The feed water that has entered the boiler drum 25a is sent to the evaporator 11b by the pump 29b, where it is heated by circulating gas, returns to the drum 25a, becomes steam, and is sent to the customer 26 via the pressure control valve 34. It will be done.

ボイラードラム25aにおいては、その蒸気圧力pが圧
力計35により測定され、第2の比較演算器36に入力
される。第2の比較演算器36は圧力計35から入力す
る蒸気圧力pと、圧力設定器33から入力する蒸気圧力
p0とを比較し、その偏差Δpを演算して、弁制御器3
7に出力する。
In the boiler drum 25a, the steam pressure p is measured by a pressure gauge 35 and inputted to a second comparator 36. The second comparator 36 compares the steam pressure p input from the pressure gauge 35 and the steam pressure p0 input from the pressure setting device 33, calculates the deviation Δp,
Output to 7.

弁制御器37はこの偏差Δpがが0になるよう圧力調節
弁34を開度制御する。
The valve controller 37 controls the opening of the pressure regulating valve 34 so that this deviation Δp becomes zero.

かくして、焼結器7に還流される循環ガスの温度が前記
最適温度t0に一致する。
Thus, the temperature of the circulating gas returned to the sinterer 7 matches the optimum temperature t0.

このとき、エコノマイザ−113において蒸発が生じる
のを防ぎ、蒸発器11bにおいて適正な蒸発を行わしめ
るように、給水予熱器22(第1図)に適正な伝熱面積
を与えることは言うまでもない。
At this time, it goes without saying that an appropriate heat transfer area should be given to the feed water preheater 22 (FIG. 1) to prevent evaporation in the economizer 113 and to ensure proper evaporation in the evaporator 11b.

なお、第6図(イ)に示されたシステムにおいては、排
熱回収によって得られた蒸気が圧力調節弁34により減
圧されて需要先26へそのまま送られる。
In the system shown in FIG. 6(a), the steam obtained by exhaust heat recovery is reduced in pressure by the pressure regulating valve 34 and sent as is to the consumer 26.

この場合は、圧力調節弁34による減圧損失が大となり
、エネルギー回収率の点で不利を生じる。
In this case, the pressure reduction loss caused by the pressure regulating valve 34 becomes large, resulting in a disadvantage in terms of energy recovery rate.

そこで、第6図(ロ)の例に示すように、圧力調節弁3
4に対して並列に圧力調整弁38、背圧タービン39お
よび発電機40を設け、圧力調整弁34による減圧エネ
ルギーを動力・電気エネルギーとして回収し、エネルギ
ー回収率を高めることもできる。減圧エネルギーを回収
すること以外は、第6図ビ)の例と同一であるので、同
一部分に同一番号を符して詳しい説明は省略する。
Therefore, as shown in the example of FIG. 6(b), the pressure regulating valve 3
It is also possible to provide a pressure regulating valve 38, a back pressure turbine 39, and a generator 40 in parallel to the pressure regulating valve 34, and recover the pressure reduction energy by the pressure regulating valve 34 as motive power/electrical energy, thereby increasing the energy recovery rate. Since this example is the same as the example shown in FIG. 6(b) except that the decompression energy is recovered, the same parts are given the same numbers and detailed explanations will be omitted.

また、蒸気としての需要が少ない場合は、復水式タービ
ンによりエネルギー回収を兼ねて蒸気圧力を調節するこ
とも可能である。
Furthermore, when the demand for steam is low, it is also possible to use a condensing turbine to recover energy and adjust the steam pressure.

第2表は、第6図(イ)の蒸気圧力調節システムにおい
て、ドラム圧力を27 kg/cal gから8kg/
ajgへ変更したときの、操業データの比較を示したも
のである。
Table 2 shows how the drum pressure can be adjusted from 27 kg/cal g to 8 kg/cal g in the steam pressure adjustment system shown in Figure 6 (a).
This shows a comparison of operational data when changing to ajg.

同表から明らかなように、循環ガス15000Nrd/
分の操業においてドラム圧力を27ksr/cdgから
8kg/aJgへ低下させることにより、循環ガス温度
は200℃から150℃に低下し、これによって生産量
が9600トン7日から10200トン/日へ増加し、
電力原単位は26.0 k w h/トンから25.0
 k w h / トンへ向上し、過溶融も一切生じな
かった。また発生蒸気量は47トン/時から58トン/
時へ増加し、品質についても焼結鉱の冷間強度(31%
)が88.0%から87゜5%に低下したが、管理値(
31≧87%)内で何ら問題にならなかった。
As is clear from the table, circulating gas 15000Nrd/
By reducing the drum pressure from 27ksr/cdg to 8kg/aJg in a minute operation, the circulating gas temperature decreased from 200°C to 150°C, which increased the production from 9600t7d to 10200td/day. ,
Electric power consumption ranges from 26.0 kw h/ton to 25.0
kw h/ton, and no overmelting occurred at all. In addition, the amount of steam generated is 47 tons/hour to 58 tons/hour.
The cold strength of sintered ore (31%
) decreased from 88.0% to 87.5%, but the control value (
31≧87%), there was no problem.

第  2  表 〔発明の効果〕 本発明によると循環ガス温度の調整により、焼結原料鉱
石の銘柄、排熱回収設備の運転状況等に即応した操業条
件を得ることができ、焼結鉱の冷間強度を保持した上で
生産性を充分に高め、焼結鉱の品質保持と生産性向上に
対する効果は甚だ大きいものである。
Table 2 [Effects of the Invention] According to the present invention, by adjusting the circulating gas temperature, it is possible to obtain operating conditions that correspond to the brand of the sintering raw material ore, the operating status of the exhaust heat recovery equipment, etc., and the cooling of the sintered ore is improved. This method has a significant effect on maintaining the quality of sintered ore and improving productivity by sufficiently increasing productivity while maintaining mechanical strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は焼結機の排ガス循環系統を示す系統図、第2図
は循環ガス温度と生産性変化との関係を示す線図、第3
図は循環ガス温度と冷間強度との関係を示す線図、第4
図は鉱石溶融率と冷間強度との関係を示す線図、第5図
は蒸気圧力と循環ガス温度との関係を示す線図、第6図
(イ)(ロ)は本発明の実施に適した蒸気圧力調節シス
テムを例示する系統図である。 図中、7:焼結機、8:冷却機、ll:排熱ボイラー、
25ニボイラードラム、30:温度計、34:圧力調節
弁、35:圧力計。 循環かス温度(℃) 第2図 狐る溶融率(%) 第4図 循環がス温度(°C) 第 3 図 第5図
Figure 1 is a system diagram showing the exhaust gas circulation system of the sintering machine, Figure 2 is a diagram showing the relationship between circulating gas temperature and productivity change, and Figure 3 is a diagram showing the relationship between circulating gas temperature and productivity change.
The figure is a diagram showing the relationship between circulating gas temperature and cold strength.
The figure is a diagram showing the relationship between ore melting rate and cold strength, Figure 5 is a diagram showing the relationship between steam pressure and circulating gas temperature, and Figures 6 (a) and (b) are diagrams showing the relationship between ore melting rate and cold strength. 1 is a system diagram illustrating a suitable steam pressure regulation system; FIG. In the figure, 7: sintering machine, 8: cooling machine, ll: exhaust heat boiler,
25 boiler drum, 30: thermometer, 34: pressure control valve, 35: pressure gauge. Circulating gas temperature (°C) Figure 2 Melting rate (%) Figure 4 Circulating gas temperature (°C) Figure 3 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)焼結機(7)より排ガスを吸引し排熱ボイラー(
11)を通過させた後、前記焼結機(7)に還流させる
排ガス循環系統において、前記排熱ボイラー(11)の
蒸発部における蒸気圧力を調節することにより、焼結機
(7)に還流する循環ガスの温度を焼結鉱石の溶解性に
応じて制御することを特徴とする焼結循環ガス温度制御
方法。
(1) The exhaust gas is sucked from the sintering machine (7) and the exhaust heat boiler (
11), the exhaust gas is returned to the sintering machine (7) by adjusting the steam pressure in the evaporation section of the waste heat boiler (11). A sintering circulating gas temperature control method characterized by controlling the temperature of the circulating gas according to the solubility of sintered ore.
JP7556687A 1987-03-27 1987-03-27 Method for controlling temperature of circulating gas for sintering Pending JPS63241124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7556687A JPS63241124A (en) 1987-03-27 1987-03-27 Method for controlling temperature of circulating gas for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7556687A JPS63241124A (en) 1987-03-27 1987-03-27 Method for controlling temperature of circulating gas for sintering

Publications (1)

Publication Number Publication Date
JPS63241124A true JPS63241124A (en) 1988-10-06

Family

ID=13579858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7556687A Pending JPS63241124A (en) 1987-03-27 1987-03-27 Method for controlling temperature of circulating gas for sintering

Country Status (1)

Country Link
JP (1) JPS63241124A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388047B1 (en) * 1999-10-29 2003-06-18 주식회사 포스코 Apparatus and method for controlling temperature in boiler
CN101832572A (en) * 2010-03-19 2010-09-15 湖南永清环保股份有限公司 Method for leading flue gas out of sintering flue gas waste heat utilization system without using induced draft fan
JP2013024522A (en) * 2011-07-25 2013-02-04 Nippon Steel & Sumitomo Metal Corp Method for control of exhaust heat recovery equipment in sintered ore cooling machine
CN106382823A (en) * 2016-08-30 2017-02-08 中信重工机械股份有限公司 Coupling energy saving device for multiple products of sintering procedure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388047B1 (en) * 1999-10-29 2003-06-18 주식회사 포스코 Apparatus and method for controlling temperature in boiler
CN101832572A (en) * 2010-03-19 2010-09-15 湖南永清环保股份有限公司 Method for leading flue gas out of sintering flue gas waste heat utilization system without using induced draft fan
JP2013024522A (en) * 2011-07-25 2013-02-04 Nippon Steel & Sumitomo Metal Corp Method for control of exhaust heat recovery equipment in sintered ore cooling machine
CN106382823A (en) * 2016-08-30 2017-02-08 中信重工机械股份有限公司 Coupling energy saving device for multiple products of sintering procedure

Similar Documents

Publication Publication Date Title
JPS63241124A (en) Method for controlling temperature of circulating gas for sintering
CN107699255A (en) Cyclone dust collectors dedusting high efficiency control method and device during a kind of dry coke quenching underload production
CN100397021C (en) Method of improving the temperature profile of a furnace
US3702242A (en) Downdraft cupola incorporating means to preheat the charge
JP7394610B2 (en) Method for preventing blow-through in smelting furnace operation
JP2002220620A (en) Method for controlling pressure of heating furnace
JPH09209032A (en) Method for controlling optimum furnace pressure in heating furnace
JPS6220260B2 (en)
CN1075438A (en) A kind of continuous-heating furnace for forging
US4114862A (en) Processes and installations for melting pig-iron in a cupola furnace
JPS63156044A (en) Method and apparatus for cooling clinker
JPH05222421A (en) Method for humidifying blasting air for blast furnace
JPH06330194A (en) Operation of sintering machine
JPS6055576B2 (en) Method for adjusting the amount of fuel supplied to the shaft section in flash-smelting furnace operation
CN116536506A (en) Furnace pressure control method of atmosphere annealing furnace
JPS6358093A (en) Method of controlling temperature of sintering circulating gas
JPS6338609B2 (en)
JPH07242876A (en) Method for feeding high-temperature dry distillation gas in dry distillation oven
JPS61246330A (en) Method for controlling waste heat recovering device of two-pass closed system
SU1691411A1 (en) Method for controlling conditions of pellet heat treatment
JPH11279649A (en) Device and method for heating steel slab
US630682A (en) Apparatus for regulating temperature of heated air.
CN115069781A (en) Controlled rolling and controlled cooling production process of HRB400E nuclear power steel
JPH06322434A (en) Operation of heating furnace and heating furnace equipment
JP2015104724A (en) Mill outlet temperature control method, device and program of exhaust gas circulation system pulverization plant