JPS6055576B2 - Method for adjusting the amount of fuel supplied to the shaft section in flash-smelting furnace operation - Google Patents

Method for adjusting the amount of fuel supplied to the shaft section in flash-smelting furnace operation

Info

Publication number
JPS6055576B2
JPS6055576B2 JP2098682A JP2098682A JPS6055576B2 JP S6055576 B2 JPS6055576 B2 JP S6055576B2 JP 2098682 A JP2098682 A JP 2098682A JP 2098682 A JP2098682 A JP 2098682A JP S6055576 B2 JPS6055576 B2 JP S6055576B2
Authority
JP
Japan
Prior art keywords
temperature
amount
pulverized coal
heavy oil
kcal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2098682A
Other languages
Japanese (ja)
Other versions
JPS58141348A (en
Inventor
智之 稲見
貞二 青野
隆義 木村
健一 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2098682A priority Critical patent/JPS6055576B2/en
Publication of JPS58141348A publication Critical patent/JPS58141348A/en
Publication of JPS6055576B2 publication Critical patent/JPS6055576B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 この発明は自溶炉の操業における燃料として重油及び微
粉炭の両者をシャフト部に供給する場合の供給燃料の調
節法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for adjusting the supplied fuel when both heavy oil and pulverized coal are supplied to the shaft portion as fuel in the operation of a flash furnace.

自溶炉の操業には鉱石、銅滓、煙灰、溶剤など原料の組
成を分析して求め、これら原料を使用して生産する鈑の
目標Cu含有%を定め、この値から破のS%、Fe%、
またこれと同時に生成する銀のCu%を推定する。
For the operation of a flash furnace, the composition of raw materials such as ore, copper slag, smoke ash, and solvent is analyzed and determined, and the target Cu content% of the plate produced using these raw materials is determined. From this value, the S% of the fracture, Fe%,
At the same time, the Cu% of silver produced is estimated.

また媛の珪酸量に対するFe量の比(Fe/SiO2)
を設定し、物量平衡計算から鍍量、媛量、溶剤量を計算
する。また鍍及び媛の生成に必要なFeやSなどの反応
に要する酸素量を算出する。一方反応温度や破と媛の分
離、これらの炉からの取り出し等から操業上最も望まし
いと考えられる目標鈑温度を設定する。シャフト部での
反応終了位置における温度(シャフトガス温度)は自溶
炉では一般に目標鈑温度より140±10〜2CfC高
いと想定される。このシャフトガス温度を維持するのに
必要な補助燃料のシャフト部への供給量を、原料の反応
熱、重油燃焼熱、送風空気その他の顕熱、シャフト部放
熱量等の熱収支を計算して求める。この補助燃料の燃焼
に必要な空気量を酸素効率を考慮して算出し、これに原
料の反応に必要な空気量を加えてシャフト部へ送風する
理論空気量を算出する。そしてこの計算値を基準として
シャフト部への供給燃料量及び空気量を制御する。従つ
て原料装入量の変更、調合銘柄の変更、調合比率の変更
、産出鈑の目標Cu%、産出媛の目標Fe/SlO2、
目標破温度等の変更、即ち計算基礎の変更があつた場合
には、これに対応して送風空気量も変わり、また供給燃
料量も変わる。
Also, the ratio of the amount of Fe to the amount of silicic acid in Hime (Fe/SiO2)
Set the amount, and calculate the amount of coating, amount of molten material, and amount of solvent from the mass balance calculation. In addition, the amount of oxygen required for the reaction of Fe, S, etc. necessary for the production of Kaji and Hime is calculated. On the other hand, the target plate temperature that is considered to be the most desirable for operation is set based on the reaction temperature, separation of cracks and cracks, removal of these from the furnace, etc. The temperature (shaft gas temperature) at the reaction end position in the shaft portion is generally assumed to be 140±10 to 2 CfC higher than the target plate temperature in a flash furnace. The amount of auxiliary fuel required to be supplied to the shaft to maintain this shaft gas temperature is determined by calculating the heat balance of raw material reaction heat, heavy oil combustion heat, blown air and other sensible heat, and the amount of heat dissipated from the shaft. demand. The amount of air required for combustion of this auxiliary fuel is calculated taking oxygen efficiency into consideration, and the amount of air required for the reaction of the raw materials is added to this to calculate the theoretical amount of air to be blown to the shaft section. Based on this calculated value, the amount of fuel and air supplied to the shaft portion is controlled. Therefore, changes in raw material charging amount, blending brand, blending ratio, target Cu% of production plate, target Fe/SlO2 of production plate,
When there is a change in the target breaking temperature, that is, a change in the calculation basis, the amount of air to be blown changes and the amount of fuel to be supplied changes accordingly.

また産出する鈑の温度は転炉の要求に応じて炉から抜取
つた時に浸漬型熱電温度計等を用いて測定することがで
きるが、この産出鈑の温度は転炉の操業に影響を及ぼす
ことが大であり、この産出鈑の温度の変動を極力小さく
することを目的として出願人は特願昭49−17548
号の自溶炉の操業におけるシャフト部供給燃料量の調節
法を出願した。しかしながら前記の供給燃料量の調節法
は燃料として重油のみを使用したものてある。
In addition, the temperature of the produced plate can be measured using an immersion thermocouple or the like when it is removed from the furnace according to the requirements of the converter, but the temperature of the produced plate may affect the operation of the converter. In order to minimize the temperature fluctuation of the production plate, the applicant filed a patent application No. 49-17548.
No. 2, filed an application for a method for adjusting the amount of fuel supplied to the shaft in the operation of a flash-smelting furnace. However, the method for adjusting the amount of fuel supplied uses only heavy oil as the fuel.

近時重油・価格高騰のため、より安価な代替燃料として
微粉炭の使用が検討され、自溶炉シャフト頂部に設けら
れた精鉱、重油、熱風を供給する精鉱バーナーの途中か
ら微粉炭を供給するようにすると微粉炭の供給量の変更
が速やかにシャフト部の熱平衡に・影響を及ぼすが、重
油及び微粉炭の両者の供給量を自由に調節することは容
易には実施できないものであつた。本発明は自溶炉の操
業において重油のみをシャフト部に供給する供給燃料量
の調節法を改善したノものであつて、シャフト部に燃料
として重油及び微粉炭を供給する場合に、産出破温度の
変動を極力小さくすることのできるシャフト部への供給
燃料量の調節法を提供することを目的とするものてある
Due to the recent rise in the price of heavy oil, the use of pulverized coal as a cheaper alternative fuel has been considered, and pulverized coal is extracted from the middle of the concentrate burner installed at the top of the flash furnace shaft, which supplies concentrate, heavy oil, and hot air. If the amount of pulverized coal is supplied, changes in the amount of pulverized coal supplied will immediately affect the thermal balance of the shaft portion, but it is not easy to freely adjust the amount of both heavy oil and pulverized coal supplied. Ta. The present invention improves the method of adjusting the amount of fuel supplied to the shaft section in which only heavy oil is supplied in the operation of a flash furnace. It is an object of the present invention to provide a method for adjusting the amount of fuel supplied to a shaft portion, which can minimize fluctuations in the amount of fuel supplied to the shaft portion.

今、燃料として重油と微粉炭の両者を使用する場合に重
油使用量(K9lH)と微粉炭使用量(K9lH)の比
率を1:Pとすると、装入物の組成、産出鈑の目標Cu
%、目標破温度等の要因からシャフト部の熱バランスを
計算して以下の(1)〜(4)式に従つて両燃料の必要
量が求められる。
Now, when using both heavy oil and pulverized coal as fuel, if the ratio of the amount of heavy oil used (K9lH) to the amount used of pulverized coal (K9lH) is 1:P, the composition of the charge, the target Cu of the produced plate
%, the target breaking temperature, and other factors to calculate the heat balance of the shaft portion, and calculate the required amounts of both fuels according to the following equations (1) to (4).

但し、 八;重油の必要量(K9lH) 八;微粉炭の必要量(K9lH) に全燃料の燃焼による排ガスの顕熱以外のシャフト部必
要熱量(KcallH)Q1;全燃料の燃焼熱及び燃料
燃焼用空気の顕熱以外のシャフト部入熱量(KcalI
H)Qel;重油有効発熱量(Kcallkg)Qe2
;微粉炭有効発熱量(KcaIlk9)P;重油量を1
としたときの微粉炭使用比率(重量比)q1;重油発熱
量(Kcallk9) Q2;微粉炭発熱量(Kcallk9) a1;重油の燃焼に要する理論空気量(NdIkg)A
2;微粉炭の燃焼に要する理論空気量(Nd′K9)q
&;燃料燃焼用空気の顕熱(KcallNイ)g1;目
標とするシャフト部ガス温度(Tg)における重油燃焼
による排ガス顕熱(Kcallkg)&;目標とするシ
ャフト部ガス温度(Tg)における微粉炭燃焼による排
ガス顕熱(Kcallk9)(1)式はシャフト部で必
要とする熱量のうち、鉱石中のFeやSなどの配化熱や
、この酸化に必要な空気の顕熱等で不足する熱量を燃料
の燃焼熱によつて補なう数値を計算するものであるが、
燃料の燃焼のためには空気を必要とするために燃焼排ガ
スが発生し、この排ガスが高温度でシャフト部から出て
いくので燃料の全発熱量の一部はシャフト部で不足する
熱量を補なうことに寄与しないためにこのように定めら
れたものである。
However, 8: Required amount of heavy oil (K9lH) 8: Required amount of pulverized coal (K9lH) Required heat amount of the shaft part other than sensible heat of exhaust gas due to combustion of all fuel (KcallH) Q1: Combustion heat of all fuel and fuel combustion Shaft heat input other than sensible heat of air (KcalI
H) Qel; Heavy oil effective calorific value (Kcallkg) Qe2
; Pulverized coal effective calorific value (KcaIlk9) P; heavy oil amount 1
Pulverized coal usage ratio (weight ratio) q1; Heavy oil calorific value (Kcallk9) Q2; Pulverized coal calorific value (Kcallk9) a1; Theoretical air amount required for combustion of heavy oil (NdIkg) A
2; Theoretical air amount required for combustion of pulverized coal (Nd'K9)q
&; Sensible heat of air for fuel combustion (KcallNi) g1; Sensible heat of exhaust gas due to heavy oil combustion at target shaft gas temperature (Tg) (Kcall kg) &; Pulverized coal at target shaft gas temperature (Tg) Sensible heat of exhaust gas due to combustion (Kcallk9) Equation (1) is the amount of heat required in the shaft that is insufficient due to the heat of arrangement of Fe and S in the ore, the sensible heat of the air necessary for this oxidation, etc. It calculates a value that compensates for by the combustion heat of the fuel,
Since air is required for combustion of fuel, combustion exhaust gas is generated, and as this exhaust gas exits from the shaft at a high temperature, part of the total calorific value of the fuel is used to compensate for the lack of heat in the shaft. This was established in order not to contribute to the situation.

通常は、上記(1)、(2)式により求められた重油及
び微粉炭量を基準として操業し、原料装入量、調合、産
出鈑の目標Cu%等が変更したときは、その都度熱バラ
ンスを計算して重油及び微粉炭量を変更する。
Normally, operations are carried out based on the amount of heavy oil and pulverized coal determined by equations (1) and (2) above, and when the raw material charging amount, blending, target Cu% of produced plate, etc. change, heat Calculate the balance and change the amount of heavy oil and pulverized coal.

次いで産出した鍍の温度を測定して、その目標温度との
差が設定許容値X℃以下のときには温度差のみに比例さ
せて重油及び微粉炭量を増減させて供給燃料量を定める
Next, the temperature of the produced kettle is measured, and when the difference from the target temperature is less than a set allowable value X°C, the amount of fuel to be supplied is determined by increasing or decreasing the amounts of heavy oil and pulverized coal in proportion to only the temperature difference.

また産出した鈑の温度と、その目標温度との差が設定許
容値X℃以上あるときには単純に温度差に比例させて燃
料量を調節させるのみでなく、理L論上のシャフト部ガ
ス温度に修正を加えてシャフト部の熱バランスを補正し
て必要燃料量を求め、これに温度差に比例させた修正量
を加減することにより供給燃料量を定める。
In addition, when the difference between the temperature of the plate produced and the target temperature is more than the set allowable value The required amount of fuel is determined by correcting the heat balance of the shaft portion, and the amount of fuel to be supplied is determined by adding or subtracting a correction amount proportional to the temperature difference.

一般に物質の温度を変える場合には、加熱したり冷却し
たりしても物質のもつ熱容量によつて昇降温に時間を必
要とし、単位時間当りの加熱、冷却熱量の大きい程、温
度を変化せしめるに要する時間は短かくなる。
Generally, when changing the temperature of a substance, even if it is heated or cooled, it takes time to raise and lower the temperature depending on the heat capacity of the substance, and the larger the amount of heating or cooling heat per unit time, the more the temperature will change. The time required will be shorter.

産出破の温度を修正するために、燃料を加減してもその
効果が現われるまでにある程度の時間を必要とする。そ
して産出鈑の温度が目標値から設定許容値以上に外れた
場合に、単にその温度差に比例して燃料を増減しても、
燃料を増減したことによる効果は産出破の温度に必す比
例して現われるとは限らすまた効果が現われるまでに要
する時間も不明である。そこで段階的に燃料を加減する
部分(シャフト部ガス温度の修正による燃料の修正量)
と、産出鍍の温度と目標値との差に比例させて燃料を加
減する部分の両者を用いて供給燃料量を修正するように
したものである。シャフト部ガス温度の修正は、産出破
の温度をなるべく早く目標値に近づけるためのものであ
る。
Even if the amount of fuel is increased or decreased in order to modify the temperature of the production breakthrough, it will take some time for the effect to appear. If the temperature of the production plate deviates from the target value by more than the set allowable value, even if the fuel is simply increased or decreased in proportion to the temperature difference,
The effect of increasing or decreasing fuel does not necessarily appear in proportion to the temperature of the production breakout, and it is also unclear how long it takes for the effect to appear. Therefore, the part where the fuel is adjusted in stages (the amount of fuel modified by modifying the shaft gas temperature)
The amount of fuel to be supplied is corrected using both of the following: and a portion that adjusts the amount of fuel in proportion to the difference between the temperature of the production tank and the target value. The purpose of modifying the shaft gas temperature is to bring the temperature of the production fracture closer to the target value as quickly as possible.

すなわち、産出鈑温度と目標鈑温度との差が予め設定し
た許容値x℃以下のときは以下の(5)〜(9)式に従
つて重油及ひ微粉炭の供給量を修正する。
That is, when the difference between the produced plate temperature and the target plate temperature is less than or equal to a preset allowable value x° C., the feed amounts of heavy oil and pulverized coal are corrected according to the following equations (5) to (9).

〜 修正微粉炭供給量(K9′H)C1重油の産出鈑温
度差比例修正量(KglH)C2微粉炭の産出鈑温度差
比例修正量(K9lH)E1産出鈑の測定温度(℃)E
2産出鍍の目標温度(℃) Kt8.温度差1℃当りの微粉炭の使用比率により変化
する重油修正量(K9lH)K1;重油の破温度差1℃
当りの予め設定した修正量(K9lH)K2;微粉炭の
鈑温度差1℃当りの予め設定した修正量(K9lH)更
に産出鈑の温度と、その目標温度との差が設定許容値X
℃以上ある場合には次式に従つてシャフトガス温度を修
正する。
~ Corrected pulverized coal supply amount (K9'H) C1 Proportional correction amount for production plate temperature difference of heavy oil (KglH) C2 Proportional correction amount for production plate temperature difference of pulverized coal (K9lH) E1 Measured temperature of production plate (℃) E
Target temperature for 2nd production (℃) Kt8. Heavy oil correction amount (K9lH) that changes depending on the ratio of pulverized coal used per 1°C temperature difference K1; Difference in breaking temperature of heavy oil 1°C
Preset correction amount per 1 degree Celsius difference in pulverized coal plate temperature (K9lH) K2; Preset correction amount per 1°C difference in plate temperature of pulverized coal (K9lH) Furthermore, the difference between the produced plate temperature and its target temperature is the set allowable value
If the temperature is above ℃, correct the shaft gas temperature according to the following formula.

但し、 Tg:修正後のシャフトガス温度(℃) T,″;修正前のシャフトガス温度(℃)ΔT,;産出
破温度と目標破温度の差が予め設定した許容値X℃以上
ある場合のシャフトガス修正温度であつて、予め定めた
温度Y℃。
However, Tg: Shaft gas temperature after correction (℃) T,'': Shaft gas temperature before correction (℃) ΔT,; When the difference between production failure temperature and target failure temperature is more than the preset tolerance value X℃ The shaft gas correction temperature is a predetermined temperature Y°C.

産出破温度が目標破温度より高い場合は負の値とし、産
出鈑温度が目標破温度より低い場合は正の値とする。0
0式に従つてシャフトガス温度Tgを修正し、このT,
に従つて(3)、(4)式及び(1)、(2)式を再計
算して修正した司及びB2を求め、この八、B2、及び
(7)、(8)式により求めたC1、C2を(5)、(
6)式に代人して修正重油供給量及び修正微粉炭供給量
を求める。
When the production plate temperature is higher than the target breakdown temperature, it is a negative value, and when the production plate temperature is lower than the target breakdown temperature, it is a positive value. 0
Correct the shaft gas temperature Tg according to formula 0, and calculate this T,
Accordingly, we recalculated equations (3) and (4) and equations (1) and (2) to find the corrected Tsukasa and B2, and calculated them using these eight, B2, and equations (7) and (8). C1, C2 as (5), (
6) Calculate the corrected heavy oil supply amount and corrected pulverized coal supply amount using the formula.

シャフト部の予定の冶金反応完結直後の部分における理
論上のガス温度は目標とする鈑温度より140±10〜
20℃高いと想定されるため、産出鈑の温度を修正する
ために、この温度を予め定めた温度Y℃上下して修正し
た前回のガス温度を、修正1回毎にY℃上下して修正シ
ャフト部ガス温度とし、これを基準としてシャフト部の
熱バランスを再計算して重油及び微粉炭量を増減せしめ
ることにしたものである。
The theoretical gas temperature in the shaft immediately after the completion of the metallurgical reaction is 140±10~140±10% higher than the target plate temperature.
Since it is assumed that it is 20℃ higher, in order to correct the temperature of the production plate, the previous gas temperature was revised by increasing or decreasing this temperature by a predetermined temperature of Y℃. The shaft gas temperature is used as a reference, and the heat balance of the shaft is recalculated to increase or decrease the amounts of heavy oil and pulverized coal.

このY℃は炉の大きさ、産出鍍温度測定頻度、内部に溜
る鈑、媛の平均保有量等と、産出鈑温度差比例修正燃料
量K1、K2との均合いをとつて定める。
This Y° C. is determined by balancing the size of the furnace, the frequency of measuring the temperature of the produced plate, the average amount of plate accumulated inside the furnace, and the quantity of fuel K1 and K2 corrected in proportion to the temperature difference of the produced plate.

以下に述べる実施例ではK1=1.25kgIH.K2
=2.0k91H,.Y=4℃とし、また産出鈑の測定
温度と目標鍍温度との差の設定許容値xは±5℃とした
In the example described below, K1=1.25kgIH. K2
=2.0k91H,. Y=4°C, and the set tolerance x for the difference between the measured temperature of the produced plate and the target plate temperature was ±5°C.

この設定許容値は転炉への供給温度や、破と銀との分離
性などを考慮して定めたものである。以上は燃料供給量
の修正を重油と微粉炭の両者に対して行ない両燃料の使
用量の比率を常時1:Pに定めて行なつたものである。
次に燃料として重油または微粉炭の供給量の一方を固定
して他の一方のみの供給量を増減する場合について述べ
る。
This set allowable value is determined by taking into account the temperature of supply to the converter, the separability of silver from silver, and other factors. In the above, the fuel supply amount was corrected for both heavy oil and pulverized coal, and the ratio of the amounts used of both fuels was always set at 1:P.
Next, a case will be described in which one of the fuel oil and pulverized coal supplies is fixed and the supply amount of only the other one is increased or decreased.

これらの場合も前述の方法に若干修正を加えることによ
り実施ができる。先づ重油量を一定とする場合は、一定
とする重油供給量をL″(K9lH)とすると以下の(
′2′)、(3)、(4)、(6″)、(8″)、及び
[相]式に従つて微粉炭の必要量及び修正微粉炭量が求
められる。但し、 L″:ー定とした重油供給量(K9lH)M;微粉炭の
必要量(K9lH) 〜″;修正微粉炭供給量(K9lH) C2″;微粉炭の産出破温度差比例修正量(K9lH)
その他の但し書きは前記と同様。
These cases can also be implemented by making slight modifications to the above-described method. First, when the amount of heavy oil is constant, if the constant amount of heavy oil supplied is L'' (K9lH), the following (
'2'), (3), (4), (6''), (8''), and the required amount of pulverized coal and the corrected amount of pulverized coal are determined according to the [phase] formula. However, L″: Fixed heavy oil supply amount (K9lH) M: Necessary amount of pulverized coal (K9lH) ~″: Corrected pulverized coal supply amount (K9lH) C2″: Proportional correction amount of pulverized coal production breakdown temperature difference ( K9lH)
Other proviso is the same as above.

(2″)式はシャフト部で不足する熱量のうち、・一定
量供給される重油による有効発熱量を差引いた残りを微
粉炭の有効発熱量で補なうために必要とする微粉炭量M
を求めたもので、産出破の測定温度と目標温度との差に
よる修正はその差が設定許容値X℃以下の場合は(6″
)、(8″)式により温・度差のみに比例させて微粉炭
供給量を増減し、またその差が設定許容値X℃以上の場
合には(代)式に従つてシャフト部ガス温度Tgを修正
し、このTgに従つて(3)、(4)式及び(2′)式
を再計算して修正した微粉炭量Mを求め、更に(8″)
式により求め)た温度差比例修正量を用いて修正微粉炭
供給量を求める。
Equation (2'') is the amount of pulverized coal M required to compensate for the insufficient amount of heat in the shaft part by the effective amount of heat from pulverized coal after subtracting the effective amount of heat from the heavy oil supplied in a certain amount.
The correction due to the difference between the measured temperature and the target temperature for production failure is calculated as follows: If the difference is less than the set allowable value
), (8″) to increase or decrease the pulverized coal supply amount in proportion to only the temperature/degree difference, and if the difference is greater than the set allowable value Correct Tg, recalculate equations (3), (4), and (2') according to this Tg to find the corrected pulverized coal amount M, and then calculate (8'')
Calculate the corrected pulverized coal supply amount using the temperature difference proportional correction amount obtained using the formula.

次に微粉炭量を一定とする場合は、一定とする微粉炭供
給量をM″(K9lH)とすると以下の(1″)、(3
)、(4)、(5″)、(7″)及び[相]式に従つて
重油重油の燃焼に要する理論空気量a1=11.0Nイ
Ik9微粉炭の燃焼に要する理論空気量!=7.0Nイ
1k9燃料燃焼用空気の顕熱q&=140Kca11N
イ理論上のシャフト部ガス温度(Tg)における重油燃
焼による排ガス顕熱g1=5800Kca1Ik9理論
上のシャフト部ガス温度(Tg)における微粉炭燃焼に
よる排ガス顕熱&=3500Kca11k9装入物量、
組成、目標i&Cu品位等から計算した9、Q1は上記
の値を用いて(3)、(4)式より (1)式より (2)式より すなわち重油量1115.5k91H、微粉炭量557
.8k91Hで操業していた。
Next, when the amount of pulverized coal is constant, if the constant pulverized coal supply amount is M'' (K9lH), the following (1''), (3
), (4), (5″), (7″) and [phase] According to the equation, the theoretical air amount required for the combustion of heavy oil heavy oil a1 = 11.0N Ik9 The theoretical air amount required for the combustion of pulverized coal! =7.0N i1k9 Sensible heat of air for fuel combustion q&=140Kca11N
B Sensible heat of exhaust gas due to heavy oil combustion at the theoretical shaft gas temperature (Tg) g1 = 5800 Kca1 Ik9 Sensible heat of exhaust gas due to pulverized coal combustion at the theoretical shaft gas temperature (Tg) &=3500 Kca11 k9 Charge amount,
9, Q1 calculated from the composition, target i & Cu grade, etc. using the above values, from equations (3) and (4), from equation (1), from equation (2), i.e. heavy oil amount 1115.5k91H, pulverized coal amount 557
.. It was operating at 8k91H.

産出鍍の測定温度E1=1214℃であつたとき、この
温度は設定許容値±5℃以内なので、(7)〜(9)式
を用いて産出彼温度差比例修正量を求める。
When the measured temperature E1 of the production head is 1214°C, this temperature is within the set tolerance value ±5°C, so equations (7) to (9) are used to calculate the proportional correction amount of the production head temperature difference.

(9)式より(7)、(8)式より 1′3 υ●υ′JV●U−ー1◆J(5)、(
6)式よりと修正した。
From equations (9) and (7), from equations (8) 1′3 υ●υ′JV●U−−1◆J(5), (
6) Revised from Eq.

実施例2 実施例1て燃料を修正してから7時間後に、産出鍍の測
定温度が1203Cであつたとき、この温度は目標温度
よりも低く、且つ設定許容値±5℃以上なので先づ0a
式によりシャフトガス温度を修正する。
Example 2 Seven hours after the fuel was corrected in Example 1, the measured temperature of the production tank was 1203C. Since this temperature was lower than the target temperature and more than the set allowable value ±5°C, the temperature was changed to 0a first.
Correct the shaft gas temperature by the formula.

五暮−JlVUυ● τ−1uu&tνこのシ
ャフトガス温度を用いて(1)〜(4)式により熱バラ
ンスを修正してシャフト部へ供給する必要重油量、微粉
炭量を求める。
Gogure-JlVUυ● τ-1uu&tνUsing this shaft gas temperature, the heat balance is corrected by equations (1) to (4) to determine the necessary amount of heavy oil and pulverized coal to be supplied to the shaft portion.

次に(7)、(8)式より産出破温度差比例修正燃料量
を求める。
Next, the production failure temperature difference proportional correction fuel amount is determined from equations (7) and (8).

(5)、(6)式より修正燃料量を求めて燃料供給量を
変更する。
The corrected fuel amount is obtained from equations (5) and (6) and the fuel supply amount is changed.

実施例3 実施例1の条件中重油に対する微粉炭の使用比率P=4
.0に変更した。
Example 3 Use ratio of pulverized coal to heavy oil under the conditions of Example 1 P = 4
.. Changed to 0.

このときの重油量、微粉炭量は(1)、(2)式より産
出破の温度を測定したらE1=1206℃であつたとき
、この温度は設定許容値内なので(7)〜(9)式を用
いて産出破温度差比例修正量を求める。
The amount of heavy oil and pulverized coal at this time is E1 = 1206℃ when the temperature of production failure is measured from equations (1) and (2). Since this temperature is within the set allowable value, (7) to (9) Calculate the production breakdown temperature difference proportional correction amount using the formula.

(9)式より(5)、(6)式よりと修正した。Formulas (5) and (6) were modified from formula (9).

実施例4 実施例1の条件中重油の供給量を400k91Hに固定
し、微粉炭のみで燃料供給量を調節する場合で、産出坂
温度が1213′Cの場合(2′)式から AVVVVV番−Vl 温度差は許容値以内なので(6″)、(8″)式から
^1 ^^八 ′噛^噛^ 噛Rh噛八) 一戸^
実施例5実施例4で微粉炭量を修正してから7時間後に
破温度1207Cが測定されたとき、温度差は許容値を
超えるので側式によりシャフトガス温度を修正する。
Example 4 Under the conditions of Example 1, when the fuel oil supply amount is fixed at 400k91H and the fuel supply amount is adjusted only with pulverized coal, and the production slope temperature is 1213'C, from equation (2'), AVVVVV number - Since the Vl temperature difference is within the allowable value, from equations (6″) and (8″),
^1 ^^八 ^^^^^^^^^) One household^
Example 5 When a breakdown temperature of 1207 C was measured 7 hours after the amount of pulverized coal was corrected in Example 4, the temperature difference exceeded the allowable value, so the shaft gas temperature was corrected using a side equation.

このシャフトガス温度を用いて(7)、(3)、(4)
式により熱バランスを修正してシャフト部へ供給する必
要微粉炭量を求める。
Using this shaft gas temperature, (7), (3), (4)
Calculate the required amount of pulverized coal to be supplied to the shaft by correcting the heat balance using the formula.

1U馨4J●ν (6″)、(8″)式より 息t −1V−υ●リWXV4V五ν〜へ〃v愚1q
1に修正した。
1U Kaoru 4J●ν (6″), (8″) From formula breath t −1V−υ●riWXV4V5ν~to〃vugu1q
Corrected to 1.

実施例6 実施例1の条件中微粉炭の供給量を1500k91H月
こ固定し、重油のみで燃料供給量を調節する場合で、産
出破温度が1206℃の場合、 (1″)式から に修正した。
Example 6 Under the conditions of Example 1, when the supply amount of pulverized coal is fixed at 1500k91H per month and the fuel supply amount is adjusted only with heavy oil, and the production failure temperature is 1206°C, modify from formula (1'') did.

実施例7 実施例1の条件中微粉炭の供給量を1500kg1Hに
固定し、重油のみで燃料供給量を調節することて操業し
、それまでのシャフトガス温度を1358℃として重油
を供給していた。
Example 7 Under the conditions of Example 1, the supply amount of pulverized coal was fixed at 1500 kg 1H, and the operation was carried out by adjusting the fuel supply amount only with heavy oil, and until then the shaft gas temperature was 1358 ° C. and heavy oil was being supplied. .

その後鍍温度を測定5したところ1220℃であつた。
温度差は許容値を超えるので[株]式によりシャフトガ
ス温度を修正し、そのシャフトガス温度を用いて(1″
)、(3)、(4)式により熱バランスを修正してシャ
フト部へ供給する必要重油量を求める。に修正した。
Thereafter, the mound temperature was measured and found to be 1220°C.
Since the temperature difference exceeds the allowable value, the shaft gas temperature is corrected using the [stock] formula, and using that shaft gas temperature, (1"
), (3), and (4) to correct the heat balance and determine the required amount of heavy oil to be supplied to the shaft. Revised.

本発明は以上のようにシャフト部に供給する燃料として
重油及び微粉炭の両者を用い、両燃料の比率を一定に保
持しながら産出破の温度の変動を極力少なくするように
供給量を調節することも、また一方の燃料供給量は一定
にしておいて他の燃料の供給量を調節することも出来る
ので安価な微粉炭の使用が効率的にできる。
As described above, the present invention uses both heavy oil and pulverized coal as fuel to be supplied to the shaft part, and adjusts the supply amount so as to keep the ratio of both fuels constant while minimizing fluctuations in the temperature of the production breakout. Furthermore, since the supply amount of one fuel can be kept constant while the supply amount of the other fuel can be adjusted, inexpensive pulverized coal can be used efficiently.

Claims (1)

【特許請求の範囲】 1 燃料として重油及び微粉炭を、重油対微粉炭の供給
重量比を1:Pとしてシャフト部に供給する自溶炉の操
業中、産出した■の温度を測定し、産出■の目標温度と
の差が設定許容値X℃以下の場合には下記(5)〜(9
)式の計算に従い、また前記温度差が設定許容値X℃以
上の場合は下記(10)式により目標とするシャフトガ
ス温度を修正し、この値によつて下記(1)〜(9)式
の計算に従つて供給重油量及び微粉炭量を変更して産出
■温度を調節することを特徴とする自溶炉の操業におけ
るシャフト部供給燃料量の調節法。 B_1=(Q_0−Q_1)/{(Q_e_1+Q_e
_2)×P}(1)B_2=B_1×P(2)Q_e_
1=q_1+a_1×q_a−g_1(3)Q_e_2
=q_2+a_2×q_a−g_2(4)A_1=B_
1−C_1(5)A_2=B_2−C_2(6) C_1=K(E_1−E_2)(7) C_2=C_1×P(8) K=K_1K_2/(K_1×P+_K_2)(9)T
_g=T_g′+ΔT_g(10)但し B_1;シャフト部ガス温度を目標温度に保つための重
油の必要量(kg/H)B_2;シヤフト部ガス温度を
目標温度に保つための微粉炭の必要量(kg/H)Q_
0;全燃料の燃焼による排ガスの顕熱以外のシャフト部
必要熱量(Kcal/H)Q_1;全燃料の燃焼熱及び
燃料燃焼用空気の顕熱以外のシャフト部入熱量(Kca
l/H)Q_e_1;重油有効発熱量(Kcal/kg
)Q_e_2;微粉炭有効発熱量(Kcal/kg)P
;重油量を1としたときの微粉炭使用比率(重量比)q
_1;重油発熱量(Kcal/kg) q_2;微粉炭発熱量(Kcal/kg)a_1;重油
の燃焼に要する理論空気量(Nm^3/kg)a_2;
微粉炭の燃焼に要する理論空気量(Nm^3/kg)q
_a;燃料燃焼用空気の顕熱(Kcal/Nm^3)g
_1;目標とするシャフト部ガス温度(T_g)におけ
る重油燃焼による排ガス顕熱(Kcal/kg)g_2
;目標とするシャフト部ガス温度(T_g)における微
粉炭燃焼による排ガス顕熱(Kcal/kg)A_1;
修正重油供給量(kg/H)A_2;修正微粉炭供給量
(kg/H) C_1;重油の産出■温度差比例修正量(kg/H)C
_2;微粉炭の産出■温度差比例修正量(kg/H)E
_1;産出■の測定温度(℃)E_2;産出■の目標温
度(℃) K;■温度1℃当りの微粉炭の使用比率により変化する
重油修正量(kg/H)K_1;重油の■温度差1℃当
りの予め設定した修正量(kg/H)K_2;微粉炭の
■温度差1℃当りの予め設定した修正量(kg/H)T
_g;修正後のシャフトガス温度(℃)T_g′;修正
前のシャフトガス温度(℃)ΔT_g;産出■温度と目
標■温度の差が予め設定した許容値X℃以上ある場合の
シャフトガス修正温度であつて、予め定めた温度Y℃。 産出■温度が目標■温度より高い場合は負の値とし、産
出■温度が目標■温度より低い場合は正の値とする。2
燃料として重油及び微粉炭を、重油供給量を一定とし
てシャフト部に供給する自溶炉の操業中、産出した■の
温度を測定し、産出■の目標温度との差が設定許容値X
℃以下の場合には下記(6′)、(8′)式の計算に従
い、また前記温度差が設定許容値X℃以上の場合は下記
(10)式により目標とするシャフトガス温度を修正し
、この値によつて下記(2′)、(3)、(4)、(6
′)、(8′)式の計算に従つて供給微粉炭量を変更し
て産出■温度を調節することを特徴とする自溶炉の操業
におけるシャフト部供給燃料量の調節法。 M={(Q_0−Q_1−Q_e_1)×L′}/Q_
e_2(2′)Q_e_1=q_1+a_1×q_a−
g_1(3)Q_e_2=q_2+a_2×q_a−g
_2(4)A_2′=M−C_2′(6′)C_2′=
K_2(E_1−E_2)(8′)T_g=T_g′+
ΔT_g(10)但し M;シャフト部ガス温度を目標温度に保つための微粉炭
の必要量(kg/H)L′;一定とした重油供給量(k
g/H)A_2′;修正微粉炭供給量(kg/H)C_
2′;微粉炭の産出■温度差比例修正量(kg/H)Q
_0;全燃料の燃焼による排ガスの顕熱以外のシヤフト
部必要熱量(Kcal/H)Q_1;全燃料の燃焼熱及
び燃料燃焼用空気の顕熱以外のシャフト部入熱量(Kc
al/H)Q_e_1;重油有効発熱量(Kcal/k
g)Q_e_2;微粉炭有効発熱量(Kcal/kg)
q_1;重油発熱量(Kcal/kg)q_2;微粉炭
発熱量(Kcal/kg)a_1;重油の燃焼に要する
理論空気量(Nm^3/kg)a_2;微粉炭の燃焼に
要する理論空気量(Nm^3/kg)q_a;燃料燃焼
用空気の顕熱(Kcal/Nm^3)g_1;目標とす
るシャフト部ガス温度(T_g)における重油燃焼よる
排ガス顕熱(Kcal/kg)g_2;目標とするシャ
フト部ガス温度(T_g)における微粉炭燃焼による排
ガス顕熱(Kcal/kg)E_1;産出■の測定温度
(℃)E_2;産出■の目標温度(℃) K_2;微粉炭の■温度差1℃当りの予め設定した修正
量(kg/H)T_g;修正後のシャフトガス温度(℃
)T_g′;修正前のシャフトガス温度(℃)ΔT_g
;産出■温度と目標■温度との差が予め設定した許容値
X℃以上ある場合のシャフトガス修正温度であつて、予
め定めた温度Y℃。 産出■温度が目標■温度より高い場合は負の値とし、産
出■温度が目標■温度より低い場合は正の値とする。3
燃料として重油及び微粉炭を、微粉炭供給量を一定と
してシャフト部に供給する自溶炉の操業中、産出した■
の温度を測定し、産出■の目標温度との差が設定許容値
X℃以下の場合には下記(5′)、(7′)式の計算に
従い、また前記温度差が設定許容値X℃以上の場合は下
記(10)式により目標とするシャフトガス温度を修正
し、この値によつて下記(1′)、(3)、(4)、(
5′)、(7′)式の計算に従つて供給重油量を変更し
て産出■温度を調節することを特徴とする自溶炉の操業
におけるシャフト部供給燃料量の調節法。 L={(Q_0−Q_1−Q_e_2)×M′}/Q_
e_1(1′)Q_e_1=q_1+a_1×q_a−
g_1(3)Q_e_2q_2+a_2×q_a−g_
2(4)A_1′=L−C_1′(5′)C_1′=K
_1(E_1−E_2)(7′)T_g=T_g′+Δ
T_g(10)但し L;シャフト部ガス温度を目標温度に保つための重油の
必要量(kg/H)M′;一定とした微粉炭供給量(k
g/H)A_1′;修正重油供給量(kg/H)C_1
′;重油の産出■温度差比例修正量(kg/H)Q_0
;全燃料の燃焼による排ガスの顕熱以外のシャフト部必
要熱量(Kcal/H)Q_1;全燃料の燃焼熱及び燃
料燃焼用空気の顕熱以外のシャフト部入熱量(Kcal
/H)Q_e_1;重油有効発熱量(Kcal/kg)
Q_e_2;微粉炭有効発熱量(Kcal/kg)q_
1;重油発熱量(Kcal/kg)q_2;微粉炭発熱
量(Kcal/kg)a_1;重油の燃焼に要する理論
空気量(Nm^3/kg)a_2;微粉炭の燃焼に要す
る理論空気量(Nm^3/kg)q_a;燃料燃焼用空
気の顕熱(Kcal/Nm^3)g_1;目標とするシ
ャフト部ガス温度(T_g)における重油燃焼による排
ガス顕熱(Kcal/kg)g_2;目標とするシャフ
ト部ガス温度(T_g)における微粉炭燃焼による排ガ
ス顕熱(Kcal/kg)E_1;産出■の測定温度(
℃)E_2;産出■の目標温度(℃) K_1;重油の■温度差1℃当りの予め設定した修正量
(kg/H)T_g;修正後のシャフトガス温度(℃)
T_g′;修正前のシャフトガス温度(℃)ΔT_g;
産出■温度と目標■温度の差が予め設定した許容値X℃
以上ある場合のシャフトガス修正温度であつて、予め定
めた温度Y℃。 産出■温度が目標■温度より高い場合は負の値とし、産
出■温度が目標■温度より低い場合は正の値とする。
[Claims] 1. During the operation of a flash-smelting furnace in which heavy oil and pulverized coal are supplied to the shaft portion at a feed weight ratio of heavy oil to pulverized coal of 1:P, the temperature of ① produced is measured, and the temperature of If the difference from the target temperature in ■ is less than the set allowable value
), and if the temperature difference is above the set allowable value X℃, correct the target shaft gas temperature using the following equation (10), and use this value to calculate the following equations (1) to (9). A method for adjusting the amount of fuel supplied to the shaft part in the operation of a flash furnace, characterized by adjusting the output temperature by changing the amount of heavy oil and pulverized coal supplied according to calculations. B_1=(Q_0-Q_1)/{(Q_e_1+Q_e
_2)×P}(1)B_2=B_1×P(2)Q_e_
1=q_1+a_1×q_a-g_1(3)Q_e_2
=q_2+a_2×q_a-g_2(4)A_1=B_
1-C_1(5) A_2=B_2-C_2(6) C_1=K(E_1-E_2)(7) C_2=C_1×P(8) K=K_1K_2/(K_1×P+_K_2)(9)T
_g=T_g'+ΔT_g (10) However, B_1: Required amount of heavy oil to maintain the shaft gas temperature at the target temperature (kg/H) B_2; Required amount of pulverized coal to maintain the shaft gas temperature at the target temperature ( kg/H)Q_
0; Required heat amount of the shaft part other than sensible heat of exhaust gas due to combustion of all fuel (Kcal/H) Q_1; Shaft part heat input amount other than combustion heat of all fuel and sensible heat of fuel combustion air (Kca
l/H) Q_e_1; Heavy oil effective calorific value (Kcal/kg
) Q_e_2; Pulverized coal effective calorific value (Kcal/kg) P
; Pulverized coal usage ratio (weight ratio) when the amount of heavy oil is 1
_1; Heavy oil calorific value (Kcal/kg) q_2; Pulverized coal calorific value (Kcal/kg) a_1; Theoretical air amount required for combustion of heavy oil (Nm^3/kg) a_2;
Theoretical amount of air required for combustion of pulverized coal (Nm^3/kg)q
_a; Sensible heat of air for fuel combustion (Kcal/Nm^3) g
_1; Sensible heat of exhaust gas (Kcal/kg) g_2 due to heavy oil combustion at target shaft gas temperature (T_g)
Sensible heat of exhaust gas (Kcal/kg) A_1 due to pulverized coal combustion at target shaft gas temperature (T_g);
Corrected heavy oil supply amount (kg/H) A_2; Corrected pulverized coal supply amount (kg/H) C_1; Production of heavy oil ■ Temperature difference proportional correction amount (kg/H) C
_2; Production of pulverized coal ■ Temperature difference proportional correction amount (kg/H) E
_1; Measured temperature of production ■ (℃) E_2; Target temperature of production ■ (℃) K; ■ Corrected amount of heavy oil (kg/H) that changes depending on the usage ratio of pulverized coal per 1 degree Celsius temperature K_1; ■ Temperature of heavy oil Preset correction amount per 1℃ difference (kg/H) K_2; Preset correction amount per 1℃ temperature difference (kg/H) T of pulverized coal
_g; Shaft gas temperature after correction (℃) T_g′; Shaft gas temperature before correction (℃) ΔT_g; Production ■Temperature and target ■ Shaft gas correction temperature when the difference between temperature is more than the preset tolerance value X℃ and a predetermined temperature of Y°C. If the production temperature is higher than the target temperature, it is a negative value, and if the production temperature is lower than the target temperature, it is a positive value. 2
During the operation of a flash-smelting furnace that supplies heavy oil and pulverized coal as fuel to the shaft section with a constant supply amount of heavy oil, the temperature of the produced ■ is measured, and the difference between the target temperature of the produced ■ and the set allowable value X
If the temperature difference is below the set tolerance value X℃, correct the target shaft gas temperature using the formula (10) below. , depending on this value, the following (2'), (3), (4), (6
'), A method for adjusting the amount of fuel supplied to a shaft section in the operation of a flash-smelting furnace, characterized in that the amount of pulverized coal supplied is changed according to the calculation of formula (8') to adjust the output temperature. M={(Q_0-Q_1-Q_e_1)×L'}/Q_
e_2(2')Q_e_1=q_1+a_1×q_a-
g_1 (3) Q_e_2=q_2+a_2×q_a-g
_2(4)A_2'=MC_2'(6')C_2'=
K_2(E_1-E_2)(8')T_g=T_g'+
ΔT_g (10) where M: Required amount of pulverized coal to maintain the shaft gas temperature at the target temperature (kg/H) L': Constant heavy oil supply amount (k
g/H) A_2′; Corrected pulverized coal supply amount (kg/H) C_
2'; Production of pulverized coal ■ Temperature difference proportional correction amount (kg/H) Q
_0; Shaft part required heat amount other than sensible heat of exhaust gas due to combustion of all fuel (Kcal/H) Q_1; Shaft part heat input other than combustion heat of all fuel and sensible heat of fuel combustion air (Kc
al/H) Q_e_1; Heavy oil effective calorific value (Kcal/k
g) Q_e_2; Pulverized coal effective calorific value (Kcal/kg)
q_1; Calorific value of heavy oil (Kcal/kg) q_2; Calorific value of pulverized coal (Kcal/kg) a_1; Theoretical amount of air required for combustion of heavy oil (Nm^3/kg) a_2; Theoretical amount of air required for combustion of pulverized coal ( Nm^3/kg) q_a; Sensible heat of air for fuel combustion (Kcal/Nm^3) g_1; Sensible heat of exhaust gas due to heavy oil combustion at target shaft gas temperature (T_g) (Kcal/kg) g_2; Sensible heat of exhaust gas due to pulverized coal combustion (Kcal/kg) at shaft gas temperature (T_g) E_1; Measured temperature of production (°C) E_2; Target temperature of production (°C) K_2; ■Temperature difference of pulverized coal 1 Preset correction amount per °C (kg/H) T_g; Shaft gas temperature after correction (°C
) T_g'; Shaft gas temperature before correction (℃) ΔT_g
; Shaft gas correction temperature when the difference between the output ■ temperature and the target ■ temperature is more than a preset tolerance value X °C, which is a predetermined temperature Y °C. If the production temperature is higher than the target temperature, it is a negative value, and if the production temperature is lower than the target temperature, it is a positive value. 3
During the operation of a flash-smelting furnace that supplies heavy oil and pulverized coal as fuel to the shaft section with a constant supply of pulverized coal,
If the difference from the target temperature of production (■) is less than the set allowable value In the above case, correct the target shaft gas temperature using the following formula (10), and use this value to determine the following (1'), (3), (4), (
5') A method for adjusting the amount of fuel supplied to the shaft section in the operation of a flash-smelting furnace, characterized in that the amount of heavy oil supplied is changed in accordance with the calculation of formula (7') to adjust the output temperature. L={(Q_0-Q_1-Q_e_2)×M'}/Q_
e_1(1')Q_e_1=q_1+a_1×q_a-
g_1 (3) Q_e_2q_2+a_2×q_a-g_
2(4)A_1'=L-C_1'(5')C_1'=K
_1(E_1-E_2)(7')T_g=T_g'+Δ
T_g (10) However, L: Required amount of heavy oil to maintain the shaft gas temperature at the target temperature (kg/H) M': Constant pulverized coal supply amount (k
g/H) A_1′; Corrected heavy oil supply amount (kg/H) C_1
'; Heavy oil production ■ Temperature difference proportional correction amount (kg/H) Q_0
; Shaft part required heat amount other than sensible heat of exhaust gas due to combustion of all fuel (Kcal/H) Q_1; Shaft part heat input other than combustion heat of all fuel and sensible heat of fuel combustion air (Kcal
/H) Q_e_1; Heavy oil effective calorific value (Kcal/kg)
Q_e_2; Pulverized coal effective calorific value (Kcal/kg) q_
1; Heavy oil calorific value (Kcal/kg) q_2; Pulverized coal calorific value (Kcal/kg) a_1; Theoretical air amount required for combustion of heavy oil (Nm^3/kg) a_2; Theoretical air amount required for pulverized coal combustion ( Nm^3/kg) q_a; Sensible heat of air for fuel combustion (Kcal/Nm^3) g_1; Sensible heat of exhaust gas due to heavy oil combustion at target shaft gas temperature (T_g) (Kcal/kg) g_2; Exhaust gas sensible heat (Kcal/kg) due to pulverized coal combustion at shaft gas temperature (T_g) E_1; Measured temperature of production (■)
°C) E_2; Target temperature for output (°C) K_1; Preset correction amount per 1°C temperature difference in heavy oil (kg/H) T_g; Shaft gas temperature after correction (°C)
T_g′; Shaft gas temperature before correction (℃) ΔT_g;
Output ■ Temperature and target ■ Temperature difference is preset tolerance value X℃
Shaft gas correction temperature in case of above, which is a predetermined temperature Y°C. If the production temperature is higher than the target temperature, it is a negative value, and if the production temperature is lower than the target temperature, it is a positive value.
JP2098682A 1982-02-12 1982-02-12 Method for adjusting the amount of fuel supplied to the shaft section in flash-smelting furnace operation Expired JPS6055576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2098682A JPS6055576B2 (en) 1982-02-12 1982-02-12 Method for adjusting the amount of fuel supplied to the shaft section in flash-smelting furnace operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2098682A JPS6055576B2 (en) 1982-02-12 1982-02-12 Method for adjusting the amount of fuel supplied to the shaft section in flash-smelting furnace operation

Publications (2)

Publication Number Publication Date
JPS58141348A JPS58141348A (en) 1983-08-22
JPS6055576B2 true JPS6055576B2 (en) 1985-12-05

Family

ID=12042462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2098682A Expired JPS6055576B2 (en) 1982-02-12 1982-02-12 Method for adjusting the amount of fuel supplied to the shaft section in flash-smelting furnace operation

Country Status (1)

Country Link
JP (1) JPS6055576B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737702U (en) * 1993-12-27 1995-07-11 株式会社名和電機 caster

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196336A (en) * 1987-10-08 1989-04-14 Sumitomo Metal Mining Co Ltd Method for controlling fuel supply to shaft part in autogenous smelting furnace operation
JP2679105B2 (en) * 1988-04-27 1997-11-19 三菱マテリアル株式会社 Method of smelting metal sulfide ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737702U (en) * 1993-12-27 1995-07-11 株式会社名和電機 caster

Also Published As

Publication number Publication date
JPS58141348A (en) 1983-08-22

Similar Documents

Publication Publication Date Title
JPS6356171B2 (en)
CN106086305A (en) A kind of dry coke quenching dedusting ash makees heat preserving agent in smelting iron and steel
JPS6055576B2 (en) Method for adjusting the amount of fuel supplied to the shaft section in flash-smelting furnace operation
Reverdy et al. A historical review of aluminum reduction cell start-up and early operation
CN106834594A (en) A kind of method that sulfur bearing steel increases sulphur
CN103045798A (en) Real-time temperature prediction method of refined-smelting ladle furnace refining process
CA1056603A (en) Fuel supply control to the reaction shaft in the operation of a flash smelter
JP5181877B2 (en) Hot metal production method using vertical scrap melting furnace
CN109593936A (en) A kind of control method effectivelying prevent copper bearing steel copper brittleness
JP2014118599A (en) Method for controlling furnace heat in blast furnace
US2997288A (en) Cupola furnace installation
JPH0196336A (en) Method for controlling fuel supply to shaft part in autogenous smelting furnace operation
JPS63241124A (en) Method for controlling temperature of circulating gas for sintering
JPH0464156B2 (en)
Johansen et al. Energy control in primary aluminium casthouse furnaces
JP5721009B2 (en) Melting furnace operation method
CN118072843A (en) Method for calculating sintering optimization ingredients by using taste influence coefficients
CN108277426A (en) A kind of slim rich chromium cast iron pipe
JPS62161930A (en) Operating method for autogeneous furnace
Senapati et al. Ferro silicon operation at IMFA–a critical analysis
JPH049740B2 (en)
JPS5818401B2 (en) Continuous heating furnace control method
SU1268614A2 (en) Method of controlling heat conditions of blast furnace
JP2013256698A (en) Suspending method of blast furnace
CA1040435A (en) Method for controlling the matte composition in the operation of a flash smelting furnace