JPH0464156B2 - - Google Patents

Info

Publication number
JPH0464156B2
JPH0464156B2 JP59132861A JP13286184A JPH0464156B2 JP H0464156 B2 JPH0464156 B2 JP H0464156B2 JP 59132861 A JP59132861 A JP 59132861A JP 13286184 A JP13286184 A JP 13286184A JP H0464156 B2 JPH0464156 B2 JP H0464156B2
Authority
JP
Japan
Prior art keywords
heat
amount
arc furnace
charge
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59132861A
Other languages
Japanese (ja)
Other versions
JPS6113592A (en
Inventor
Masahiro Koreyasu
Takuo Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP59132861A priority Critical patent/JPS6113592A/en
Publication of JPS6113592A publication Critical patent/JPS6113592A/en
Publication of JPH0464156B2 publication Critical patent/JPH0464156B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、製鋼用アーク炉において出鋼時間及
び温度を安定させ、投入電力量を常に最適にする
電力投入制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a power input control method for stabilizing the tapping time and temperature in a steelmaking arc furnace and constantly optimizing the input power amount.

[従来の技術] 製鋼用アーク炉の操業においては生産性の向
上、電気エネルギーの有効利用、熱損失の削減、
再利用のため種種の取り組みが積極的に為されて
いるが、これらを達成するためには、単にアーク
炉の操業を自動運転化するだけではなく、その付
帯設備及び条件である集塵用装置、スターラー、
スクラツプ予熱装置、ホツトチヤージ{1チヤー
ジ(アーク炉への材料装入から出鋼までをいう)
の途中で他の工程において溶解した溶銑をアーク
炉へ投入すること}と組み合わせた効率的な運用
あるいはアーク炉の前後工程を含めた生産性、品
質、エネルギーなどの最適化を図りながらアーク
炉の操業を安定させる総合的な装置及び方法が必
要である。
[Conventional technology] In the operation of arc furnaces for steelmaking, improvements in productivity, effective use of electrical energy, reduction of heat loss,
Various efforts are being made for reuse, but in order to achieve these goals, it is necessary not only to automate the operation of the arc furnace, but also to improve its ancillary equipment and the dust collection equipment that is a prerequisite. , stirrer,
Scrap preheating device, hot charge {1 charge (from charging material to arc furnace to tapping)
Injecting hot metal melted in other processes into the arc furnace during the process, or by optimizing productivity, quality, energy, etc., including the processes before and after the arc furnace. Comprehensive equipment and methods are needed to stabilize operations.

特に電気炉製鋼でも最終的に連続鋳造されるも
のが多く、連続的に鋳造するためには予定時刻に
予定温度でアーク炉より出鋼することが歩留の向
上、生産性の向上、電力原単位の低減を図るため
に重要である。
In particular, even in electric furnace steelmaking, many products are ultimately cast continuously, and in order to cast continuously, it is necessary to tap the steel from the arc furnace at a scheduled time and temperature, which improves yield, productivity, and power consumption. This is important in order to reduce the number of units.

従つて、アーク炉の出鋼時刻は連続鋳造工程の
スケジユールによつて概略的に予め決められるべ
きもので、アーク炉はこのスケジユールに合わせ
て通電を開始し、目標の出鋼時刻及び温度に溶解
させる必要がある。このことはアーク炉において
は予め通電スケジユールなるものを作りできるだ
けこのスケジユールに合つた方法で溶解を進める
必要がある。
Therefore, the tapping time of the arc furnace should be roughly determined in advance according to the schedule of the continuous casting process, and the arc furnace starts energizing according to this schedule and melts at the target tapping time and temperature. It is necessary to do so. For this reason, in an arc furnace, it is necessary to set an energization schedule in advance and proceed with melting in a manner that suits this schedule as much as possible.

[発明が解決すべき問題点] しかし、アーク炉の操業条件は多種多様で、ま
た操業形態も種種のケースに別れており、例え
ば、鋼種による材料の装入重量、スラグ重量、成
分の違い、スクラツプ予熱温度、ホツトチヤージ
予定重量の違い、又通電時間あるいは各排ガス熱
量の違いがあり、これを含めた最適な電力投入ス
ケジユールを予め算出することは人手あるいはシ
ーケンサーなどによる方法では実現困難である。
[Problems to be solved by the invention] However, the operating conditions of arc furnaces are diverse, and the operating forms are also different. There are differences in scrap preheating temperature, scheduled hot charge weight, and differences in energization time and heat amount of each exhaust gas, and it is difficult to calculate the optimal power input schedule including these in advance by hand or using a sequencer.

従来の方法では、1チヤージ当たりの必要電力
量は鋼種、ケース別の原単位テーブル(標準値を
記憶したもの)をシーケンサーなどに内蔵し装入
重量によつてその値を修正する方法をとつてい
た。
In the conventional method, the amount of electricity required per charge is determined by building a unit table (stored with standard values) for each steel type and case into a sequencer, etc., and modifying the value according to the charging weight. was.

このため、装入材料の銘柄の変更による反応熱
の変化、スクラツプ予熱温度などによる材料の含
熱量の違いなどにより上記のテーブル方式では事
前にそのテーブル別の1チヤージ当たりの最適電
力量を求めることは難しい。特にステンレス鋼で
は他の処理設備で溶製されたFe−Cr,Fe−Ni、
を溶融、高温の状態で供給されるものがあり、必
然的に所要電力量のバラツキが大きく、従つて、
出鋼時刻、及び出鋼温度に不都合なバラツキが発
生してしまう。
For this reason, due to changes in reaction heat due to changes in the brand of charging material, differences in heat content of materials due to scrap preheating temperature, etc., the above table method requires that the optimum power amount per charge be determined in advance for each table. is difficult. Especially in stainless steel, Fe-Cr, Fe-Ni, which is melted in other processing equipment,
There are some products that are supplied in a molten, high-temperature state, which inevitably results in large variations in the amount of electricity required.
Unfavorable variations occur in the tapping time and the tapping temperature.

そのため、目標出鋼時刻に遅れないように通電
量を増加し、若干早めに出鋼できるようにしてい
る。従つて、溶鋼を次の工程に進める時に溶鋼を
アーク炉内または取鍋内で待たせる必要があつ
た。このため、アーク炉内で電力投入して保温し
たり待ち時間分出鋼温度を高くしたり、あるいは
温度が下がるため次の工程で予定された成分調整
用の冷材の装入が出来ないなど、電力原単位、電
源原単位などが高くなる弊害があつた。
Therefore, the amount of electricity is increased so as not to be late for the target steel tapping time, so that steel can be tapped a little earlier. Therefore, when proceeding the molten steel to the next step, it was necessary to make the molten steel wait in an arc furnace or a ladle. For this reason, it is necessary to turn on electric power in the arc furnace to keep it warm, increase the tapping temperature for the waiting time, or to charge cold material for composition adjustment scheduled for the next process due to the temperature drop. This had the disadvantage of increasing the electricity consumption rate, power consumption consumption rate, etc.

本発明は以上のような課題を解決するためにな
されたもので、特に、製鋼用アーク炉において出
鋼時間及び温度を安定させ、投入電力量を常に最
適にするようにした製鋼用アーク炉における電力
投入制御方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and in particular, it provides an arc furnace for steel making in which the tapping time and temperature are stabilized and the amount of electric power input is always optimized. The purpose of the present invention is to provide a power-on control method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による製鋼用アーク炉における電力投入
制御方法は、スクラツプ及び合金鉄などの材料を
溶解する製鋼用アーク炉において前記材料を溶解
するに必要な通電量を、通電開始前に1チヤージ
毎に、かつ、1チヤージの各時期区分毎に、前記
製鋼用アーク炉において想定される少なくとも出
熱として溶鋼含熱量、スラグ保有熱量、排ガス熱
量、電力損失、放熱量及び還元反応熱量を、入熱
としてホツトチヤージによる熱量、電極酸化熱
量、スラグ生成熱量、装入材料の酸化熱量及びス
クラツプ予熱量をもとに行われる想定熱収支計算
により決定し、この決定された通電量から操業時
期別に通電時間を決定し、更にこの通電時間に基
づき前記製鋼用アーク炉へ通電開始させる方法で
ある。
The power input control method for a steelmaking arc furnace according to the present invention is such that in a steelmaking arc furnace that melts materials such as scrap and ferroalloy, the amount of current necessary to melt the material is controlled for each charge before the start of energization. In addition, for each period of one charge, at least the heat content of molten steel, the amount of heat retained in slag, the amount of heat of exhaust gas, the power loss, the amount of heat released, and the amount of heat of reduction reaction are calculated as heat input in the steelmaking arc furnace, and at least the heat content of molten steel, the amount of heat retained in slag, and the amount of heat of reduction reaction are calculated as heat input in the steelmaking arc furnace. It is determined by an assumed heat balance calculation based on the amount of heat generated by oxidation, electrode oxidation heat amount, slag generation heat amount, oxidation heat amount of charging material, and scrap preheating amount, and the energization time is determined for each operating period from this determined energization amount. Furthermore, the method is to start energizing the steelmaking arc furnace based on this energization time.

また、他の発明である製鋼用アーク炉における
電力投入制御方法は、スクラツプ及び合金鉄など
の材料を溶解する製鋼用アーク炉において前記材
料を溶解するに必要な通電量を、通電開始前に1
チヤージ毎に、かつ、1チヤージの各時期区分毎
に、前記製鋼用アーク炉において想定される少な
くとも出熱として溶解含熱量、スラグ保有熱量、
排ガス熱量、電力損失、放熱量及び還元反応熱量
を、入熱としてホツトチヤージによる熱量、電極
酸化熱量、スラグ生成熱量、装入材料の酸化熱量
及びスクラツプ予熱量をもとに行われる想定熱収
支計算により決定し、この決定された通電量から
操業時期別に通電時間を決定し、更にこの通電時
間に基づき前記アーク炉へ通電開始させることを
特徴とする製鋼用アーク炉における電力投入制御
方法であつて、前記1チヤージの終了時に前記製
鋼用アーク炉の実績値で当該チヤージの実績熱収
支計算を行い、測定した電力量との差を操業時期
別に移動平均して次のチヤージの設定通電量を加
減することにより出鋼温度及び出鋼時間を安定さ
せる方法である。
Another invention is a method for controlling power supply in an arc furnace for steelmaking, in which the amount of current required to melt materials such as scrap and ferroalloy is controlled to 1.
For each charge and for each period of one charge, at least the expected heat output in the steelmaking arc furnace is the heat content of melting, the amount of heat retained by the slag,
Calorific value of exhaust gas, power loss, heat dissipation, and reduction reaction heat are determined by an assumed heat balance calculation based on heat input from hot charge, electrode oxidation heat, slag formation heat, oxidation heat of charging material, and scrap preheating. A method for controlling power supply in an arc furnace for steelmaking, characterized in that the current supply time is determined for each operating period based on the determined current supply amount, and the electric power supply to the arc furnace is started based on the current supply time, the method comprising: At the end of the one charge, calculate the actual heat balance of the charge using the actual value of the steelmaking arc furnace, and adjust the set energization amount for the next charge by moving average of the difference with the measured power amount for each operating period. This is a method of stabilizing the tapping temperature and tapping time.

[実施例] 第1図において、本発明にかかる製鋼用アーク
炉における電力投入方法を実施するための設備の
一例を説明する。
[Example] Referring to FIG. 1, an example of equipment for carrying out the method of power input in a steelmaking arc furnace according to the present invention will be described.

アーク炉1、アーク炉エルボと集塵ダクトとの
間のブレークフランジ2、スクラツプ予熱装置
3、ブースターフアン4、アーク炉排ガス制御ダ
ンパー5、及び流量計Fq、が直列に順次接続さ
れて主煙道7を形成しており、かつ、ブレークフ
ランジ2とスクラツプ予熱装置3との間の主煙道
と、ブースターフアン4とアーク炉排ガス制御ダ
ンパー5との間の主煙道との間にはバイパス煙道
8が設けられている。又、電動機9は油圧クラツ
チ10を介してブースターフアン4に接続されて
いる。又、アーク炉排ガス制御ダンパー5より後
の主煙道7は、複数のアーク炉で共同して使用す
ることもある。Tb,Tsはその箇所における温度
計を示す。
An arc furnace 1, a break flange 2 between the arc furnace elbow and the dust collection duct, a scrap preheating device 3, a booster fan 4, an arc furnace exhaust gas control damper 5, and a flow meter Fq are connected in series in order to form a main flue. 7, and a bypass smoke is provided between the main flue between the break flange 2 and the scrap preheating device 3 and the main flue between the booster fan 4 and the arc furnace exhaust gas control damper 5. Road 8 is established. The electric motor 9 is also connected to the booster fan 4 via a hydraulic clutch 10. Further, the main flue 7 after the arc furnace exhaust gas control damper 5 may be used jointly by a plurality of arc furnaces. Tb and Ts indicate the thermometer at that point.

一方、アーク炉の電極11は二次導体12、二
次ターミナル13、水冷ケーブル14を通して炉
用変圧器15に接続されており、一次導体16に
遮断器17が接続されている。電極位置検出器1
8、有効電力計19、電流自乗計20は、それぞ
れ、温度計Tb,Ts及び流量計Fqと共にプロセス
コンピユータ21に接続されている。尚、22は
スクラツプ及び合金鉄などの材料の銘柄別の成分
重量を把握している制御(記憶)装置、23はホ
ツトチヤージの重量を測定できるクレーンスケー
ル、24は出鋼温度、重量を測定並びに記憶する
制御装置、25は出鋼成分を測定する分析装置で
あり、これらもプロセスコンピユータ21に接続
されている。
On the other hand, the electrode 11 of the arc furnace is connected to a furnace transformer 15 through a secondary conductor 12, a secondary terminal 13, and a water cooling cable 14, and a circuit breaker 17 is connected to the primary conductor 16. Electrode position detector 1
8. The active wattmeter 19 and the current square meter 20 are connected to the process computer 21 along with the thermometers Tb, Ts and the flowmeter Fq, respectively. In addition, 22 is a control (memory) device that knows the component weight of each brand of materials such as scrap and ferroalloy, 23 is a crane scale that can measure the weight of hot charge, and 24 is a device that measures and stores the tapping temperature and weight. 25 is an analysis device that measures the extracted steel components, and these are also connected to the process computer 21.

本発明は、つぎの2つの方法を採用するもので
ある。
The present invention employs the following two methods.

1 1チヤージ当たりの予定通電量を想定熱収支
計算により決定し、この予定通電量から通電時
間を算出し、さらにその通電時間に基づきアー
ク炉の通電開始を行う。
1. The planned amount of energization per charge is determined by estimated heat balance calculation, the energization time is calculated from this scheduled energization amount, and the energization of the arc furnace is started based on the energization time.

2 1チヤージの終了時に各箇所からの実績値で
当該チヤージの実績熱収支計算を行い、積算電
力計で測定した電力量との差を操業条件別に移
動平均して次のチヤージの設定通電量を加減算
する。
2. At the end of one charge, calculate the actual heat balance of the charge using the actual values from each location, and calculate the set energization amount for the next charge by moving average of the difference with the power amount measured by the integrated wattmeter for each operating condition. Add and subtract.

まず、上記1)の方法について説明する。 First, the method 1) above will be explained.

アーク炉の1チヤージ当たりの設定電力量は、
アーク炉から出熱するカロリーを電力量以外の入
熱で差し引いた残りのカロリーを電力換算したも
ので表すことができる。従つて、アーク炉の通電
が開始される前における1チヤージ当たりの出
熱、及び入熱を求める。
The set amount of electricity per charge of the arc furnace is
The remaining calories obtained by subtracting the heat output from the arc furnace by heat input other than electric power can be expressed in terms of electric power. Therefore, the heat output and heat input per charge before energization of the arc furnace is started is determined.

目標鋼種の溶解含熱量Q1[Kcal]は目標出鋼重
量W1[Kg]と目標出鋼温度の含熱量C1[Kcal/
Kg]より次式で表される。
The melting heat content Q 1 [Kcal] of the target steel type is the target tapping weight W 1 [Kg] and the heat content C 1 [Kcal/
Kg] is expressed by the following formula.

Q1=K1×W1×C1 ただし、K1は定数 スラグ保有熱量Q2[Kcal]は、制御(記憶)装
置22に記憶されている全装入材料重量W2[Kg]
と酸化反応してガスになる装入全カーボン量c1
び目標出鋼カーボン量c2[Kg]とスラグ含熱量C2
[Kcal/Kg]から、次式で表される。
Q 1 = K 1 × W 1 × C 1 However, K 1 is a constant slag retained heat Q 2 [Kcal] is the total weight of charged material stored in the control (storage) device 22 W 2 [Kg]
The total amount of charged carbon that reacts with oxidation to become gas c 1 , the target carbon amount of tapped steel c 2 [Kg], and the slag heat content C 2
From [Kcal/Kg], it is expressed by the following formula.

Q2=K2×{W2+k1−W1−(c1−c2)}×C2 尚、c1,c2、及びC2はコンピユーター21で算
出される。
Q 2 =K 2 ×{W 2 +k 1 −W 1 −(c 1 −c 2 )}×C 2 Note that c 1 , c 2 , and C 2 are calculated by the computer 21 .

排ガス熱量Q3は、平均排ガス流量q0と平均排
ガス温度T0と平均排ガス比熱Cq[Kcal/Kg・℃]
と平均操業時間H0より次式で表される。
The exhaust gas calorific value Q 3 is the average exhaust gas flow rate q 0 , the average exhaust gas temperature T 0 , and the average exhaust gas specific heat Cq [Kcal/Kg・℃]
and the average operating time H 0 , it is expressed by the following formula.

Q3=q0×Cq×(T0−k2)×H0×K3 電力損失Q4[kcal]は、回路抵抗R[Ω]と電
流自乗計20で測定される平均電流I[A]と平
均送電時間H1により次式で表される。
Q 3 = q 0 × Cq × (T 0 − k 2 ) × H 0 × K 3 Power loss Q 4 [kcal] is calculated by the circuit resistance R [Ω] and the average current I [A ] and the average power transmission time H 1 is expressed by the following formula.

Q4=R×I2×H1×K4 放熱量Q5は経験的に求めた通電中の単位時間
当たりの放熱量C3と止電中の単位時間当たりの
放熱量C4とそれぞれの通電時間H2及び止電時間
H3より次式で表される。
Q 4 = R × I 2 × H 1 × K 4 The amount of heat dissipation Q 5 is the amount of heat dissipation per unit time when the power is on, C 3 , the amount of heat dissipation per unit time when the power is off, C 4 , and the respective values. Power-on time H2 and power-off time
From H 3 , it is expressed by the following formula.

Q5=C3×H2+C4×H3 還元反応熱量Q6は、コンピユーター21によ
り計算された還元材料重量W3iとその還元反応熱
C5iにより次式で表される。
Q 5 = C 3 × H 2 + C 4 × H 3 reduction reaction heat quantity Q 6 is the weight of reducing material W 3 i calculated by the computer 21 and its reduction reaction heat.
C 5 i is expressed by the following formula.

Q6oi=1 k4i×W3i×C5i 尚、iはそれぞれの還元材料銘柄である。 Q 6 = oi=1 k 4 i×W 3 i×C 5 i Note that i is the brand of each reducing material.

以上の熱量Q1〜Q6が出熱であるが、一方、電
力量以外の入熱はホツトチヤージによる熱量があ
り、この熱量Q7は、クレーンスケール23によ
り測定されるホツトチヤージの重量W4と含熱量
C6により次式で表される。
The above amounts of heat Q 1 to Q 6 are heat output, but on the other hand, the heat input other than electric power is the amount of heat due to hot charge, and this amount of heat Q 7 is included in the weight W 4 of hot charge measured by the crane scale 23. amount of heat
C 6 is expressed by the following formula.

Q7=K4×W4×C6 電極酸化熱量Q8は、電極位置検出器18の信
号から算出される電極の消耗重量W5と反応熱C7
から次式により表される。
Q 7 = K 4 × W 4 × C 6 The electrode oxidation heat amount Q 8 is the consumption weight of the electrode W 5 calculated from the signal of the electrode position detector 18 and the reaction heat C 7
It is expressed by the following formula.

Q8=K5×W5×C7 スラグ生成熱量Q9はスラグ成分の重量W6iと反
応熱C8iより次式により表される。
Q 8 =K 5 ×W 5 ×C 7The amount of heat generated by slag Q 9 is expressed by the following equation from the weight of the slag component W 6 i and the heat of reaction C 8 i.

Q9oi=1 (W6i×K6i−K7i)×C8i 装入材料による酸化熱量Q10は酸化材料の重量
W7iと反応熱C9iより次式で表される。
Q 9 = oi=1 (W 6 i×K 6 i−K 7 i)×C 8 i Oxidation heat amount due to charged material Q 10 is the weight of oxidized material
It is expressed by the following formula from W 7 i and reaction heat C 9 i.

Q10oi=1 K7i×W7i×C9i スクラツプ予熱による熱量Q11は予熱する材料
重量W8と予熱温度T1と比熱C10により次式で表
される。
Q 10 = oi=1 K 7 i × W 7 i × C 9 i The amount of heat Q 11 due to scrap preheating is expressed by the following formula using the weight of the material to be preheated W 8 , the preheating temperature T 1 , and the specific heat C 10 .

Q11=K8×W8×T1×C10 尚、上記の定数k1,k2及びK1〜K8は統計的に
求めた値である。
Q 11 =K 8 ×W 8 ×T 1 ×C 10 The above constants k 1 , k 2 and K 1 to K 8 are statistically determined values.

以上の式により、1チヤージ当たりの必要な予
定電力量(通電量)KWHchは次式によつて表さ
れる。
Based on the above formula, the expected amount of electric power (current amount) KWHch required per charge is expressed by the following formula.

KWHch={6i=1 Qi−11i=7 Qi}/860+KWHm …(1) ただし、KWHmは学習演算補正電力量であ
る。
KWHch={ 6i=1 Qi− 11i=7 Qi}/860+KWHm...(1) However, KWHm is the learning calculation correction electric energy.

式(1)により求められた電力量を所定の割合で各
アーク炉操業時期別に電力量KWHchoi(iは操
業時期)を決定し、予めその操業時期別に定めて
いる電圧Vi、電流Ii、及び平均力率cosψiより各
操業時期別の通電時間を次式によつて求める。
Determine the power amount KWHchoi (i is the operation period) for each arc furnace operation period using the electric power obtained by equation (1) at a predetermined ratio, and calculate the voltage Vi, current Ii, and average determined in advance for each operation period. The energization time for each operating period is determined from the power factor cosψi using the following formula.

Hi=KWHchoi/√3×Vi×Ii×cosψi×ηi …(2) ただし、ηiは各期の投入効率である。 Hi=KWHchoi/√3×Vi×Ii×cosψi×ηi …(2) However, ηi is the input efficiency for each period.

式(2)で求められた各炉期の通電時間を合計し、
これと、経験によつて求められた標準止電時間か
ら目標出鋼完了時刻にさかのぼつてスケジユール
を作り、通電開始時刻を求め、アーク炉1の通電
を開始させる。
Add up the energization time for each furnace period determined by equation (2),
Based on this and the standard de-energization time obtained through experience, a schedule is created retroactively to the target steel tapping completion time, the energization start time is determined, and energization of the arc furnace 1 is started.

これらによつて作られる通電スケジユールが第
2図に示されている。
The energization schedule created by these is shown in FIG.

上記の方法については更に上記のごとく決定さ
れた通電量を実際に変化する操業に合わせて熱計
算し、電力投入方法の変更を下記のごとく行つて
も良い。
Regarding the above method, the power supply amount determined as above may be thermally calculated in accordance with the actual changing operation, and the power input method may be changed as described below.

従来の方法では、電力原単位として各鋼種、工
程別に設定しているが、装入材料の成分変化、ホ
ツトチヤージ予定量の変動、装入スラブ量の変
更、通電時間の違いによる排ガス量の変化など各
チヤージの予定としての電力量を細かく変化して
いる。
In the conventional method, the electricity consumption rate is set for each steel type and process, but changes in the amount of exhaust gas due to changes in the composition of charging materials, changes in the planned amount of hot charge, changes in the amount of charged slabs, and differences in energization time, etc. The amount of electricity scheduled for each charge is changed in detail.

又、スクラツプ予熱の予熱温度によつても当然
電力原単位は変わるため、これらを一律に上述の
テーブル方式で求めることは実操業に合わず、必
ず設定値に対する変更が余儀なくされる。このこ
とにより、工程の進み、遅れが発生し、熱損失の
増大と工程遅れによる連続鋳造率の低下を来た
し、生産に対して損失を与える。
Furthermore, since the electric power consumption rate naturally changes depending on the preheating temperature of the scrap preheating, it is not suitable for actual operation to uniformly obtain these values using the above-mentioned table method, and changes to the set values are inevitably required. This causes a delay in the progress of the process, an increase in heat loss, and a decrease in the continuous casting rate due to the delay in the process, causing a loss in production.

これらの原因で変化するものは前記のごとく出
来るだけ事前に計算により求め、予め設定するこ
とで操業の変化の傾向に合つた操業ができ、工程
の進み、遅れ時間が減少し、トラブルが減少する
ことになる。
As mentioned above, things that change due to these causes can be calculated in advance as much as possible, and by setting them in advance, operations can be performed that match the changing trends of the operation, progressing the process, reducing delay time, and reducing troubles. It turns out.

上記設定電力量、時刻で通電が開始され、各プ
ログラムによつて溶解が進行するが、予め電力
量、時間が設定されていても操業はホツトチヤー
ジの量の実績変動、排ガス熱量の基準値に対する
変化があり、又、操業トラブルなどにより止電時
間のずれなどにより必ずしも予定通りに操業は進
行しない。
The power supply starts at the above-mentioned power amount and time, and melting progresses according to each program, but even if the power amount and time are set in advance, the operation will continue due to actual fluctuations in the amount of hot charge and changes in exhaust gas calorific value relative to the standard value. In addition, due to operational problems and other factors, the operation does not necessarily proceed as planned due to delays in power-off times.

そこで、それらの変動に対しては最大電力を投
入できる時期にそれ以前の操業時期で増減のあつ
た熱量に対して電力量を補正する方法により、良
い結果を得ている。特に、アーク炉の熱効率を最
も阻害している排ガス量の占める割合は比較的大
きく、この変動が溶落の温度の変動に大きく影響
している。
Therefore, in response to these fluctuations, good results have been obtained by correcting the amount of electric power at the time when maximum electric power can be inputted, according to the amount of heat that has increased or decreased during the previous operating period. In particular, the amount of exhaust gas, which most inhibits the thermal efficiency of the arc furnace, accounts for a relatively large proportion, and this fluctuation has a large effect on the fluctuation of the burn-through temperature.

又、溶落後は、溶落時の温度、目標出鋼時間と
目標出鋼温度とから目標時間に溶解するための電
力量計算を行い、電圧及び電流を設定して目標温
度の溶鋼を出鋼するよう制御すれば温度及び時間
のバラツキを半減させることができる。
After burn-through, calculate the amount of electricity needed to melt the steel in the target time based on the temperature at burn-through, the target steel tapping time, and the target steel tapping temperature, and set the voltage and current to tap the molten steel at the target temperature. If controlled so as to do so, the variations in temperature and time can be halved.

更に、第2の方法について説明する。 Furthermore, the second method will be explained.

出鋼完了後、出鋼温度と出鋼重量などの操業実
績値をもとに実績熱収支計算を行つて計算上の実
績電力量を求め、これと積算電力計でカウントさ
れた電力量の差を移動平均法により次のチヤージ
の設定電力量を求める。以下にその計算式を示
す。
After tapping is completed, calculate the actual heat balance based on the operational results such as tapping temperature and tapping weight to obtain the calculated actual amount of electricity, and calculate the difference between this and the amount of electricity counted by the integrated wattmeter. Find the next charge setting power amount using the moving average method. The calculation formula is shown below.

KWH(c−r)j=KWHcj−KWHrj (ただし、j:当チヤージ) KWHmn=oj=n-m+1 KWH(c−r)j/m (ただし、i:熱収支計算項目) KWHchn+1={6i=1 Qni−11i=7 Qni}/860+
KWHmn ただし、 KWHcj:チヤージ完了後に操業実績から実績
熱収支計算で求めた計算上の実績電力量 KWHrj:積算電力計でカウントされた1チヤ
ージ当たりの消費電力量 KWHmn:KWHcとKWHrの差の移動平均値 KWHchn+1:次のチヤージ設定電力量 KWHmnの値は鋼種、コース別に用意してい
る。
KWH(c-r)j=KWHcj-KWHrj (where, j: current charge) KWHmn= oj=n-m+1 KWH(c-r)j/m (where, i: heat balance calculation item) KWHchn +1 = { 6i=1 Qni− 11i=7 Qni}/860+
KWHmn However, KWHcj: Calculated actual power consumption calculated by actual heat balance calculation from operation results after charge completion KWHrj: Power consumption per charge counted by integrating power meter KWHmn: Moving average of the difference between KWHc and KWHr Value KWHchn +1 : Next charge setting power amount KWHmn values are prepared for each steel type and course.

この結果、連続したアーク炉操業において前チ
ヤージのデータで次のチヤージの電力量を補正す
ることにより計算誤差、放熱量を平均的に取り扱
つていることにより誤差を補正でき出鋼温度及び
出鋼時刻が安定した。又、今まで目標の出鋼時刻
に余裕をもつて通電開始していたものが、材料の
装入を完了後しばらく通電を待つて設定された時
刻に通電開始することで無駄な通電時間が減少
し、原単位が下がり、温度が安定した。
As a result, in continuous arc furnace operation, calculation errors can be corrected by correcting the power consumption of the next charge using the data of the previous charge, and errors can be corrected by treating the heat release amount as an average. The time has stabilized. In addition, in the past, energization was started with some margin before the target tapping time, but by waiting for energization for a while after material charging is completed and then starting energization at the set time, wasted energization time is reduced. However, the basic unit decreased and the temperature stabilized.

[発明の効果] 以上述べたように、本発明によれば、アーク炉
の先の工程の予定スケジユール、進捗状況をもと
にアーク炉の予定通電量をアーク炉及びアーク炉
へ投入される材料などの想定熱収支計算により決
定し、かつ1チヤージ中の予定量に対する実績量
の差を随時修正し、更には該チヤージの実績量を
もとに次のチヤージの予定量を加減することによ
り出鋼温度、出鋼時間の安定化を図り、電力投入
効率の向上及び生産性の向上を図ることができ
る。
[Effects of the Invention] As described above, according to the present invention, the amount of electricity to be supplied to the arc furnace is determined based on the scheduled schedule and progress status of the previous process in the arc furnace. The estimated heat balance is determined by calculating the estimated heat balance, and the difference between the actual amount and the planned amount in one charge is corrected as needed, and furthermore, the planned amount of the next charge is adjusted based on the actual amount of the charge. By stabilizing the steel temperature and tapping time, it is possible to improve power input efficiency and productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかかる製鋼用アーク炉にお
ける電力投入制御方法を実行するための設備を示
すブロツク図、そして、第2図は、アーク炉への
通電時間と電力量との関係を示すグラフ図、であ
る。 図中、1はアーク炉、19は有効電力計、20
は電流自乗計、Ts,Tbは温度計、Fqは流量計で
ある。
FIG. 1 is a block diagram showing equipment for carrying out the power input control method in a steelmaking arc furnace according to the present invention, and FIG. 2 shows the relationship between the energization time to the arc furnace and the amount of electric power. It is a graph diagram. In the figure, 1 is an arc furnace, 19 is an active wattmeter, and 20
is a current square meter, Ts and Tb are thermometers, and Fq is a flowmeter.

Claims (1)

【特許請求の範囲】 1 スクラツプ及び合金鉄などの材料を溶解する
製鋼用アーク炉において前記材料を溶解するに必
要な通電量を、通電開始前に1チヤージ毎に、か
つ、1チヤージの各時期区分毎に、前記製鋼用ア
ーク炉において想定される少なくとも出熱として
溶鋼含熱量、スラグ保有熱量、排ガス熱量、電力
損失、放熱量及び還元反応熱量を、入熱としてホ
ツトチヤージによる熱量、電極酸化熱量、スラグ
生成熱量、装入材料の酸化熱量及びスクラツプ予
熱量をもとに行われる想定熱収支計算により決定
し、この決定された通電量から操業時期別に通電
時間を決定し、更にこの通電時間に基づき前記製
鋼用アーク炉へ通電開始させることを特徴とする
製鋼用アーク炉における電力投入制御方法。 2 スクラツプ及び合金鉄などの材料を溶解する
製鋼用アーク炉において前記材料を溶解するに必
要な通電量を、通電開始前に1チヤージ毎に、か
つ、1チヤージの各時期区分毎に、前記製鋼用ア
ーク炉において想定される少なくとも出熱として
溶鋼含熱量、スラグ保有熱量、排ガス熱量、電力
損失、放熱量及び還元反応熱量を、入熱としてホ
ツトチヤージによる熱量、電極酸化熱量、スラグ
生成熱量、装入材料の酸化熱量及びスクラツプ予
熱量をもとに行われる想定熱収支計算により決定
し、この決定された通電量から操業時期別に通電
時間を決定し、更にこの通電時間に基づき前記ア
ーク炉へ通電開始させることを特徴とする製鋼用
アーク炉における電力投入制御方法であつて、前
記1チヤージの終了時に前記製鋼用アーク炉の実
績値で当該チヤージの実績熱収支計算を行い、測
定した電力量との差を操業時期別に移動平均して
次のチヤージの設定通電量を加減することにより
出鋼温度及び出鋼時間を安定させることを特徴と
した製鋼用アーク炉における電力投入方法。
[Scope of Claims] 1. In a steelmaking arc furnace that melts materials such as scrap and ferroalloys, the amount of current necessary to melt the materials is applied for each charge before the start of current application, and at each time of each charge. For each category, at least the heat content of molten steel, slag retained heat, exhaust gas heat, power loss, heat release, and reduction reaction heat are assumed as heat output in the steelmaking arc furnace, and the heat input is heat due to hot charge, electrode oxidation heat, It is determined by an assumed heat balance calculation performed based on the amount of heat generated by slag, the amount of oxidation heat of the charged material, and the amount of scrap preheating.The energization time is determined for each operating period from this determined energization amount, and then based on this energization time. A method for controlling power input in a steelmaking arc furnace, characterized by starting electricity supply to the steelmaking arc furnace. 2. In a steelmaking arc furnace that melts materials such as scrap and ferroalloys, the amount of current required to melt the materials is determined for each charge and for each time period of one charge before the start of energization. At least the expected heat output in a commercial arc furnace is the heat content of molten steel, slag retained heat, exhaust gas heat, power loss, heat release, and reduction reaction heat, and the heat input is heat due to hot charge, electrode oxidation heat, slag formation heat, and charging. Determined by an assumed heat balance calculation based on the oxidation heat amount of the material and the amount of scrap preheating, the energization time is determined for each operating period from this determined energization amount, and the energization to the arc furnace is started based on this energization time. A power input control method in a steelmaking arc furnace, characterized in that, at the end of one charge, the actual heat balance of the charge is calculated using the actual value of the steelmaking arc furnace, and the calculated electric power is compared with the measured electric energy. A power input method for a steelmaking arc furnace characterized by stabilizing the tapping temperature and tapping time by adjusting the set energization amount for the next charge by taking a moving average of the difference for each operating period.
JP59132861A 1984-06-29 1984-06-29 Power supply controlling method in steel making arc furnace Granted JPS6113592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132861A JPS6113592A (en) 1984-06-29 1984-06-29 Power supply controlling method in steel making arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132861A JPS6113592A (en) 1984-06-29 1984-06-29 Power supply controlling method in steel making arc furnace

Publications (2)

Publication Number Publication Date
JPS6113592A JPS6113592A (en) 1986-01-21
JPH0464156B2 true JPH0464156B2 (en) 1992-10-14

Family

ID=15091247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132861A Granted JPS6113592A (en) 1984-06-29 1984-06-29 Power supply controlling method in steel making arc furnace

Country Status (1)

Country Link
JP (1) JPS6113592A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5535775B2 (en) * 2010-06-04 2014-07-02 新日鉄住金エンジニアリング株式会社 Power input control method for arc furnace for steel making
DE102018216539A1 (en) 2018-09-27 2020-04-02 Sms Group Gmbh Method for operating an electric arc furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513305A (en) * 1974-06-28 1976-01-12 Tokyo Shibaura Electric Co Denkirono demandoseigyohoshiki
JPS55131135A (en) * 1979-03-31 1980-10-11 Sumitomo Metal Ind Ltd Operating method of soaking pit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513305A (en) * 1974-06-28 1976-01-12 Tokyo Shibaura Electric Co Denkirono demandoseigyohoshiki
JPS55131135A (en) * 1979-03-31 1980-10-11 Sumitomo Metal Ind Ltd Operating method of soaking pit

Also Published As

Publication number Publication date
JPS6113592A (en) 1986-01-21

Similar Documents

Publication Publication Date Title
CN107043842B (en) A kind of LF refining furnace Optimum Economic ingredient and intelligent control model
CN104762488B (en) A kind of method of direct vanadium alloying in esr process
Pfeifer et al. Thermodynamic analysis of EAF electrical energy demand
JP5535775B2 (en) Power input control method for arc furnace for steel making
JPH0464156B2 (en)
US4689800A (en) Method of melting raw material with an electric arc furnace
CN103045798A (en) Real-time temperature prediction method of refined-smelting ladle furnace refining process
CN101833288B (en) Material melting model-based power supply control method for arc furnace
CN101006752A (en) Method and device for operating an electric-arc furnace
JP3529160B2 (en) Control method of electric melting furnace
Ho et al. Energy audit of a steel mill
JPH055121A (en) Method for controlling steel tapping temperature
JP2004035986A (en) Converter operation guidance model
CN110205419A (en) A kind of calculation method and system of blast furnace addition scrap smelting save the cost
GB2507116A (en) Soft sensor for online estimation of the steel bath temperature in an electric arc furnace (EAF)
CN109609724B (en) Adding system and method for alloy-containing cold steel
JPH02110287A (en) Smelting device
JPH01225743A (en) Manufacture of low-carbon ferrochrome
JPS6055576B2 (en) Method for adjusting the amount of fuel supplied to the shaft section in flash-smelting furnace operation
Zhang et al. Modelling and Simulation of the Scrap Melting in the Consteel EAF
Zettl et al. Models for EAF energy efficiency
SU753793A1 (en) Thermal conditions control system of glass-smelting furnace
CN116574865A (en) LF refining process control method and system
SU1154332A1 (en) Method of blast furnace smelting
US6004369A (en) Steel production method