JPS6220260B2 - - Google Patents

Info

Publication number
JPS6220260B2
JPS6220260B2 JP55101120A JP10112080A JPS6220260B2 JP S6220260 B2 JPS6220260 B2 JP S6220260B2 JP 55101120 A JP55101120 A JP 55101120A JP 10112080 A JP10112080 A JP 10112080A JP S6220260 B2 JPS6220260 B2 JP S6220260B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
jet
cooling rate
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55101120A
Other languages
Japanese (ja)
Other versions
JPS5726128A (en
Inventor
Mineo Murata
Kenji Sugyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10112080A priority Critical patent/JPS5726128A/en
Publication of JPS5726128A publication Critical patent/JPS5726128A/en
Publication of JPS6220260B2 publication Critical patent/JPS6220260B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は連続焼鈍ラインにおける鋼帯の冷却
速度及び冷却終点温度の制御方法に関するもので
ある。 鋼帯の連続焼鈍ラインにおいて高温に加熱、均
熱された鋼帯を所望の冷却条件で任意の温度に冷
却する装置として不活性ガスをジエツト噴射する
ジエツトクーラーが知られている。 従来鋼帯の出側温度を目標温度に制御する方式
としてはジエツトクーラーの台数コントロール又
はジエツトクーラー吹出しボツクスのノズルより
の噴射速度の制御即ちブロワーモーターの回転数
を制御する風量コントロールのいずれかによつて
いた。 連続焼鈍炉の炉部における通板材料の板厚と材
料の通板速度は一般に第1図の関係にある。第1
図の領域Aは設備上の最大速度で抑えられており
領域Bにおける通板速度vは材料板厚hに反比例
する関係にある。 しかるに冷却速度R(℃/s)=T1―T2/t=
ΔT/t(T1:入側板温、T2:出側板温、t:
入側板温計と出側板温計との間の鋼帯の通過時
間)の関係があるが一方冷却帯の全長Lは設備上
一定であり、かつ第1図に示すように板厚hによ
り炉部速度vを変更して操業する必要があるため
板厚によつて鋼帯の通過時間tが変化し、t=
L/vの関係が理解される。 そこで冷却すべき板温度差ΔTはT1,T2が目
標温度として与えられるから一定である。ここに
いうT1,T2の目標温度は得ようとする鋼帯の材
質によつて異なる。以上の点から板厚hと冷却速
度Rとの関係は第2図に示すようになる。 即ち領域Bにおいては板厚が薄い程冷却速度R
は大きくなり、板厚が厚い程小さくなることが解
る。 ところで従来法による温度制御方式では目標温
度T2と冷却速度Rをコントロールすると第3図
に示すような問題が発生し、結局両者を同時にコ
ントロールすることは不可能であつた。 即ちジエツトクーラーの噴射速度VJを大きく
すると冷却能は大となり出側温度はT3になつて
過冷却となる。(第3図a)、逆に板厚h0の冷速
R0を板厚h1の冷速R1にしようとすると、ジエツ
トクーラーの噴射速度vJを小さくするとよい
が、冷却能は小さくなり目標温度T3は所期の温
度に不足する。(第3図b)又板厚h0の冷速をR0
→R1に変更する方法では通板速度v0をv1まで低下
させると第3図cに示す結果となり、ジエツトク
ーラーの冷却能力を減少させれば(吹き出し速度
又は台数を減少させる。)目標温度T2と冷速R1
得られるが、生産性の低下が問題となる。 この発明は上述の問題を解決せんとするもので
あつて、通板せんとする鋼帯の材質によつて予め
冷却速度と冷却終点温度とを決定し、該冷却速度
と冷却終点温度にもとづいてジエツトクーラーの
台数と噴射速度を設定することが、不活性ガスに
よるジエツトクーラーによる鋼帯の冷却に極めて
有効なことを認識して完成されたものであり、こ
のことは次の説明によつて理解されるであろう。 第4図にこの発明の基本的考え方を示してい
る。1は従来の制御方法を示す。2及び3がこの
発明の制御方法である。 この発明は2及び3の如く冷却することによつ
て同一材質に対しては板厚に関りなく冷速を一定
にするものであり、冷却長さ(ジエツトクーラー
によつて冷却される帯域長さ)L2,L3はそれぞ
れ鋼帯の通板速度に比例したジエツトクーラーの
台数に対応している。 即ち通板速度vに比例してジエツトクーラーの
台数を設定しているため冷速は一義的に決定さ
れ、冷却帯出側での板温が目標温度になるように
するにはジエツトクーラーの噴射速度を設定及び
修正制御すればよい。図中aはジエツトクーラー
長さ、bは自然冷却長を示している。 しかして上述の第3図において第3図aの場合
は目標温度がT3に過冷却されてしまうのを、ジ
エツトクーラーの台数を減ずることによつて冷却
能は一定に保持して目標温度に制御しうるもので
あり、第3図bの場合はジエツトクーラーの台数
を増加せしめることによつて解決する。 従つてこの発明の基本は鋼帯の通板速度が速い
場合はジエツトクーラーの噴射速度を低下させ、
かつ同時にジエツトクーラーの台数は多くせんと
するものであり、通板速度が遅い場合は噴射速度
をアツプして台数を減らすことにより目標板温度
と冷却速度とを同時にコントロールしようとする
ものである。 噴射速度のコントロールは一例としてブロワー
モーターの回転数を制御するが、これに限定され
ない。 次にこの発明の実施例を説明する。 第5図はこの発明の全体説明図であり、第6図
は要部の詳細図である。 図において鋼帯1はハースロール4を介して冷
却炉7に導入され、ハースロール6を介して次工
程に移送される。冷却炉7は入側に板温計2を設
けて実際の入側板温を、又出側に板温計3を設け
て実際の出側板温を検知する。 冷却炉7はジエツトクーラー群5を内蔵し、ジ
エツトクーラーは冷却された不活性ガスを噴射す
る吹き出しボツクス15にブロワー13を併設
し、ブロワー13は回転数可変型モーター14を
有し、かつダクト12、熱交換器11、ガス吸い
込み口10が設けられている。又吹き出しボツク
ス15の全域には鋼帯1に面してノズル16が刻
設されている。 一般に短時間連続焼鈍による良加工性冷延鋼板
の製造においては鋼板の結晶粒径の適正化と固溶
cの低減が図られ、このためのヒートサイクルが
厳密に管理されなければならない。 この発明においては上述の目的を達成するため
通板すべき鋼帯の材質から予め冷却速度と目標と
する冷却終点温度が決定される。そして通板速度
とジエツトクーラー台数とに比例関係を与えて、
冷却速度制御としてブロワー吹き出し量(風量)
制御を同時に併用するものである。 測温計3による実際の出側板温T2′と目標出側
板温T2との温度差ΔT′が演算されるとジエツト
クーラー5の噴射速度(風量)が修正制御され
る。 板厚の薄い鋼帯を冷却する定常操業から板厚が
厚い鋼帯の冷却に変えるときは、ジエツトクーラ
ーの台数を減じてガス吹き出し量を増量すること
によつて、冷却速度は一定に維持しうることとな
る。 かくて所望の冷却速度が常に維持され、任意の
目標温度が管理可能である。 次に板厚1.0mmの普通鋼成分をもつ薄板を冷却
速度35℃/sに制御した例を表1に従来法と比較
する。
This invention relates to a method for controlling the cooling rate and cooling end point temperature of a steel strip in a continuous annealing line. A jet cooler that jets inert gas is known as a device for cooling a steel strip that has been heated and soaked to a high temperature in a continuous steel strip annealing line to an arbitrary temperature under desired cooling conditions. Conventionally, methods for controlling the outlet temperature of the steel strip to the target temperature include either controlling the number of jet coolers or controlling the jet speed from the nozzle of the jet cooler blow-off box, that is, controlling the air volume by controlling the rotation speed of the blower motor. I was sitting there. The thickness of the material to be threaded in the furnace section of a continuous annealing furnace and the threading speed of the material generally have the relationship shown in FIG. 1st
Region A in the figure is suppressed at the maximum speed on the equipment, and the sheet passing speed v in region B is inversely proportional to the material sheet thickness h. However, the cooling rate R (℃/s) = T 1 - T 2 /t =
ΔT/t (T 1 : Inlet side plate temperature, T 2 : Outlet side plate temperature, t:
On the other hand, the total length L of the cooling zone is constant due to the equipment, and as shown in Fig. Since it is necessary to operate by changing the partial speed v, the passing time t of the steel strip changes depending on the plate thickness, and t=
The L/v relationship is understood. Therefore, the plate temperature difference ΔT to be cooled is constant because T 1 and T 2 are given as target temperatures. The target temperatures T 1 and T 2 mentioned here differ depending on the material of the steel strip to be obtained. From the above points, the relationship between the plate thickness h and the cooling rate R is as shown in FIG. That is, in region B, the thinner the plate thickness, the lower the cooling rate R.
It can be seen that the value becomes larger, and the thicker the plate, the smaller it becomes. However, in the conventional temperature control system, when controlling the target temperature T2 and the cooling rate R, a problem as shown in FIG. 3 occurs, and in the end, it is impossible to control both at the same time. That is, when the injection velocity V J of the jet cooler is increased, the cooling capacity increases and the outlet temperature reaches T 3 , resulting in supercooling. (Fig. 3a), conversely, the cooling speed of plate thickness h 0
If R 0 is to be set to the cooling rate R 1 with the plate thickness h 1 , it is better to reduce the injection speed v J of the jet cooler, but the cooling capacity will become smaller and the target temperature T 3 will fall short of the desired temperature. (Fig. 3b) Also, the cooling rate of plate thickness h 0 is R 0
→ In the method of changing to R 1 , if the threading speed v 0 is reduced to v 1 , the result shown in Figure 3c will be obtained, and if the cooling capacity of the jet cooler is reduced (the blowing speed or number of jet coolers is reduced). Although the target temperature T 2 and cooling rate R 1 can be obtained, a decrease in productivity becomes a problem. This invention aims to solve the above-mentioned problem, and the cooling rate and the cooling end point temperature are determined in advance according to the material of the steel strip to be threaded, and the cooling rate and the cooling end point temperature are determined in advance based on the cooling rate and the cooling end point temperature. It was developed based on the recognition that setting the number of jet coolers and the jetting speed is extremely effective in cooling the steel strip using inert gas jet coolers, and this is explained as follows. It will be understood. FIG. 4 shows the basic idea of this invention. 1 shows a conventional control method. 2 and 3 are the control methods of this invention. This invention makes the cooling rate constant regardless of the plate thickness for the same material by cooling as shown in 2 and 3, and the cooling length (the zone cooled by the jet cooler) Lengths) L 2 and L 3 correspond to the number of jet coolers that are proportional to the steel strip threading speed. In other words, since the number of jet coolers is set in proportion to the strip passing speed v, the cooling speed is uniquely determined, and in order to make the strip temperature at the outlet side of the cooling zone reach the target temperature, the number of jet coolers is The injection speed may be set and corrected. In the figure, a indicates the jet cooler length, and b indicates the natural cooling length. However, in the case of Figure 3a in Figure 3 above, the target temperature is supercooled to T 3 , but by reducing the number of jet coolers, the cooling capacity can be kept constant and the target temperature can be reduced. The case shown in FIG. 3b can be solved by increasing the number of jet coolers. Therefore, the basic idea of this invention is to reduce the injection speed of the jet cooler when the steel strip threading speed is high;
At the same time, it is intended to increase the number of jet coolers, and when the sheet passing speed is slow, the target sheet temperature and cooling rate are simultaneously controlled by increasing the jetting speed and reducing the number of jet coolers. . Control of the injection speed includes, for example, controlling the rotation speed of a blower motor, but is not limited thereto. Next, embodiments of the invention will be described. FIG. 5 is an overall explanatory diagram of the present invention, and FIG. 6 is a detailed diagram of the main part. In the figure, a steel strip 1 is introduced into a cooling furnace 7 via hearth rolls 4 and transferred to the next process via hearth rolls 6. The cooling furnace 7 is provided with a plate thermometer 2 on the inlet side to detect the actual inlet plate temperature, and a plate thermometer 3 on the outlet side to detect the actual outlet plate temperature. The cooling furnace 7 has a built-in jet cooler group 5, and the jet cooler has a blower 13 attached to a blow box 15 that injects cooled inert gas, and the blower 13 has a variable rotation speed motor 14, and A duct 12, a heat exchanger 11, and a gas inlet 10 are provided. Further, a nozzle 16 is carved in the entire area of the blowout box 15 facing the steel strip 1. Generally, in the production of cold-rolled steel sheets with good workability by short-term continuous annealing, the grain size of the steel sheet is optimized and solid solution C is reduced, and the heat cycle for this purpose must be strictly controlled. In this invention, in order to achieve the above-mentioned object, the cooling rate and the target cooling end point temperature are determined in advance from the material of the steel strip to be threaded. Then, by giving a proportional relationship to the threading speed and the number of jet coolers,
Blower air volume (air volume) as cooling speed control
Control is used at the same time. When the temperature difference ΔT' between the actual outlet plate temperature T 2 ' measured by the thermometer 3 and the target outlet plate temperature T 2 is calculated, the injection speed (air volume) of the jet cooler 5 is corrected and controlled. When changing from regular operation for cooling thin steel strips to cooling thicker steel strips, the cooling rate can be maintained constant by reducing the number of jet coolers and increasing the amount of gas blown out. It is possible. Thus, the desired cooling rate is always maintained and any target temperature can be managed. Next, Table 1 shows an example in which a thin plate with a thickness of 1.0 mm and made of ordinary steel was controlled at a cooling rate of 35°C/s, compared with the conventional method.

【表】 このときの機械的性質は次の表2の通りであつ
た。
[Table] The mechanical properties at this time were as shown in Table 2 below.

【表】 した。
即ち本発明法によるものは従来法に比し良加工
性を示した。
【expressed.
That is, the method of the present invention showed better workability than the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は板厚による通板速度図、第2図は板厚
による冷却速度図、第3図は冷却時間とΔTとの
関係図、第4図は冷却長さと板温度との関係図、
第5図は本発明法の説明図、第6図は本発明法の
要部説明図である。 1……鋼帯、2,3……板温計、5……ジエツ
トクーラー群、13……ブロワー。
Figure 1 is a diagram of the threading speed according to plate thickness, Figure 2 is a diagram of cooling rate according to plate thickness, Figure 3 is a diagram of the relationship between cooling time and ΔT, Figure 4 is a diagram of the relationship between cooling length and plate temperature,
FIG. 5 is an explanatory diagram of the method of the present invention, and FIG. 6 is an explanatory diagram of the main part of the method of the present invention. 1... Steel strip, 2, 3... Plate thermometer, 5... Jet cooler group, 13... Blower.

Claims (1)

【特許請求の範囲】[Claims] 1 加熱、均熱後の高温鋼帯に不活性ガスをジエ
ツト噴射して冷却する連続焼鈍ラインにおいて、
通板すべき鋼帯の材質より予め冷却速度と冷却終
点温度を決定し、該冷却速度と冷却終点温度にも
とづいてジエツトクーラーの台数と噴射速度を設
定し、冷却中における冷却帯出側の鋼帯温度と目
標温度との温度差に応じて前記ジエツトクーラー
の噴射速度を修正制御することを特徴とする鋼帯
の冷却速度及び冷却終点温度を制御する方法。
1. In a continuous annealing line that jets inert gas to cool the high-temperature steel strip after heating and soaking,
The cooling rate and cooling end point temperature are determined in advance based on the material of the steel strip to be threaded, and the number of jet coolers and injection speed are set based on the cooling rate and cooling end point temperature. A method for controlling the cooling rate and cooling end point temperature of a steel strip, characterized in that the injection speed of the jet cooler is modified and controlled according to the temperature difference between the strip temperature and a target temperature.
JP10112080A 1980-07-25 1980-07-25 Method for controlling cooling rate and cooling end point temperature of steel strip Granted JPS5726128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10112080A JPS5726128A (en) 1980-07-25 1980-07-25 Method for controlling cooling rate and cooling end point temperature of steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10112080A JPS5726128A (en) 1980-07-25 1980-07-25 Method for controlling cooling rate and cooling end point temperature of steel strip

Publications (2)

Publication Number Publication Date
JPS5726128A JPS5726128A (en) 1982-02-12
JPS6220260B2 true JPS6220260B2 (en) 1987-05-06

Family

ID=14292211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10112080A Granted JPS5726128A (en) 1980-07-25 1980-07-25 Method for controlling cooling rate and cooling end point temperature of steel strip

Country Status (1)

Country Link
JP (1) JPS5726128A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125331A (en) * 1983-12-08 1985-07-04 Nippon Steel Corp Cooling method of steel strip in continuous annealing
JPS59229422A (en) * 1983-06-11 1984-12-22 Nippon Steel Corp Cooling method of steel strip in continuous annealing
US4697584A (en) * 1984-10-12 1987-10-06 Darrel W. Haynes Device and method for plugging an intramedullary bone canal
US4686973A (en) * 1984-10-12 1987-08-18 Dow Corning Corporation Method of making an intramedullary bone plug and bone plug made thereby
JPH03188226A (en) * 1989-12-15 1991-08-16 Nippon Steel Corp Rapid cooling chamber for continuous annealing device
US20050107802A1 (en) 2003-11-19 2005-05-19 Vanasse Thomas M. Canal sizer and associated method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665935A (en) * 1979-10-30 1981-06-04 Kawasaki Steel Corp Controlling method for cooling sheet temperature in rapid cooling zone of continuous annealing furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665935A (en) * 1979-10-30 1981-06-04 Kawasaki Steel Corp Controlling method for cooling sheet temperature in rapid cooling zone of continuous annealing furnace

Also Published As

Publication number Publication date
JPS5726128A (en) 1982-02-12

Similar Documents

Publication Publication Date Title
KR910001355B1 (en) Method and apparatus for heating a strip of metallic material in a continous
US5137586A (en) Method for continuous annealing of metal strips
CN105621871A (en) Glass toughening system and preparation method of toughened glass
JPS6220260B2 (en)
US4725321A (en) Method for cooling a steel strip in a continuous annealing furnace
US4724014A (en) Method for cooling a steel strip in a continuous annealing furnace
JPH02179825A (en) Controller for cooling hot-rolled steel sheet
JPH02274823A (en) Equipment and method for continuously annealing metal sheet
CN202595217U (en) Band steel cooling system
JPS6045252B2 (en) Direct heat treatment control method for hot rolled wire rod
JPH052728B2 (en)
JPH06212281A (en) Cooling method of metal strip of continuous annealing furnace
JPS6248732B2 (en)
JPS5944367B2 (en) Water quenching continuous annealing method
JP2575873B2 (en) Continuous annealing equipment for thin steel sheets
JPS6345454B2 (en)
JPS63207461A (en) Apparatus for controlling temperature of cast slab
JPS6317896B2 (en)
US1610567A (en) Annealing of sheet steel
JPS60145327A (en) Method and installation for continuous annealing of cold rolled steel sheet
JPH046224A (en) Method for controlling temperature of continuous annealing furnace
JPS59136427A (en) Method for cooling thin steel plate by rolling
JPH10300301A (en) Method for controlling and cooling steel material
JPH0450371B2 (en)
JPH02153023A (en) Roll cooling method for steel strip