JP2013024522A - Method for control of exhaust heat recovery equipment in sintered ore cooling machine - Google Patents

Method for control of exhaust heat recovery equipment in sintered ore cooling machine Download PDF

Info

Publication number
JP2013024522A
JP2013024522A JP2011161979A JP2011161979A JP2013024522A JP 2013024522 A JP2013024522 A JP 2013024522A JP 2011161979 A JP2011161979 A JP 2011161979A JP 2011161979 A JP2011161979 A JP 2011161979A JP 2013024522 A JP2013024522 A JP 2013024522A
Authority
JP
Japan
Prior art keywords
water
amount
boiler
exhaust
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011161979A
Other languages
Japanese (ja)
Other versions
JP5659981B2 (en
Inventor
Toru Fuji
徹 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011161979A priority Critical patent/JP5659981B2/en
Publication of JP2013024522A publication Critical patent/JP2013024522A/en
Application granted granted Critical
Publication of JP5659981B2 publication Critical patent/JP5659981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To provide a method for control of exhaust heat recovery equipment, capable of preventing the amount of generated steam from exceeding rated volume, by controlling the amount of steam generated in a boiler installed in the exhaust heat recovery equipment without changing the cooling capacity of a sintered ore cooling machine.SOLUTION: The sintered ore cooling machine 1 includes: a cooler pan 10 which moves sintered ore supplied onto an upper surface from an ore supply part toward an ore discharge part; an air blowing duct 11 which is located below the cooler pan 10 and supplies cooling gas; and an exhaust duct 12 which is located above the cooler pan 10 and recovers exhaust gas. The method is provided for controlling the exhaust heat recovery equipment 2, which exchanges heat of exhaust gas recovered by the exhaust hood 12 with water supplied from a water supply system and supplies the heat-exchanged exhaust gas as cooling gas to an air blowing duct 11 in the sintered ore cooling machine, and in which a boiler 20 for generating steam is installed. The method is characterized by controlling the amount of generated steam to below the rated capacity of the exhaust heat recovery equipment 2 by adjusting the pressure of the steam generated by the boiler 20.

Description

本発明は、焼結鉱冷却機における排熱回収設備を制御する方法に関する。詳しくは、焼結鉱冷却機の冷却能力を変化させることなく、排熱回収設備に設置されるボイラーで発生させる蒸気の発生量を制御し、蒸気発生量が定格容量を超えるのを防止できる排熱回収設備の制御方法に関する。   The present invention relates to a method for controlling exhaust heat recovery equipment in a sinter cooler. Specifically, without changing the cooling capacity of the sinter cooler, the amount of steam generated by the boiler installed in the exhaust heat recovery facility can be controlled to prevent the steam generation from exceeding the rated capacity. The present invention relates to a method for controlling a heat recovery facility.

焼結鉱の製造に使用される焼結機からは高温の焼結ケーキが排出され、この焼結ケーキは焼結機の下流に配置されたクラッシャーにより破砕されて焼結鉱となる。このようにして得られた焼結鉱は高温であるので、焼結鉱を冷却するために焼結鉱冷却機(以下、単に「冷却機」とも記す)が用いられる。冷却機としては、上面に供給された焼結鉱を給鉱部から排鉱部に向かって移動させるクーラーパンと、クーラーパンの下方に位置して冷却ガスを供給する送風ダクトと、クーラーパンの上方に位置して排気ガスを回収する排気フードとを備えた冷却機を用いることができる。   A high-temperature sintered cake is discharged from a sintering machine used for producing the sintered ore, and this sintered cake is crushed by a crusher disposed downstream of the sintering machine to become a sintered ore. Since the sinter obtained in this way has a high temperature, a sinter cooler (hereinafter also simply referred to as “cooler”) is used to cool the sinter. As the cooler, a cooler pan that moves the sintered ore supplied to the upper surface from the supply portion to the discharge portion, a blower duct that is located below the cooler pan and supplies cooling gas, and a cooler pan A cooler provided with an exhaust hood that is located above and collects exhaust gas can be used.

このような冷却機は、一般に省エネルギー対策として排熱回収設備を備え、排熱回収設備にはボイラーが設置される。排熱回収設備のボイラーでは、冷却機からの排気ガスを水との熱交換により降温させて冷却ガスとするとともに、蒸気を発生させる。このようにボイラーで降温された冷却ガスは、再度、冷却機に還流され、また、発生した蒸気は発電タービンに送られて発電に利用される。   Such a cooler generally includes an exhaust heat recovery facility as an energy saving measure, and a boiler is installed in the exhaust heat recovery facility. In the boiler of the exhaust heat recovery facility, the temperature of exhaust gas from the cooler is lowered by heat exchange with water to form a cooling gas and steam is generated. The cooling gas lowered in temperature by the boiler is returned to the cooler again, and the generated steam is sent to the power generation turbine and used for power generation.

しかしながら、近年の鉄鋼需要に応じて焼結鉱の生産量が増大し、これに伴って冷却機の排気ガス量も増大している。このため、排熱回収設備のボイラーでは、蒸気の発生量が排熱回収設備の定格容量近傍まで増加する傾向にある。その結果、一時的に焼結鉱の生産量が増大した場合には、瞬間的に蒸気の発生量が定格容量を超過することも起こり得る。   However, the production volume of sintered ore has increased in accordance with the recent steel demand, and accordingly, the exhaust gas amount of the cooler has also increased. For this reason, in the boiler of the exhaust heat recovery facility, the amount of steam generated tends to increase to near the rated capacity of the exhaust heat recovery facility. As a result, when the production of sintered ore temporarily increases, the amount of steam generated may momentarily exceed the rated capacity.

排熱回収設備の定格容量を超えてボイラーで蒸気を発生させることは、設備故障の原因となるとともに法令によっても規制されている。一方、ボイラーでの蒸気発生量が定格容量を大幅に下回ると、発電タービンでの発電量が著しく減少することから、蒸気発生量は可能な限り定格容量に近い値にするのが望ましく、例えば定格容量に対して90%以上、すなわち、定格容量近傍とするのが望ましい。したがって、排熱回収設備では、定格容量を超える蒸気の発生を防止しながら、定格容量近傍で蒸気発生量を安定的に制御する方法が必要とされていた。   The generation of steam in the boiler exceeding the rated capacity of the exhaust heat recovery facility causes equipment failure and is also regulated by laws and regulations. On the other hand, if the amount of steam generated in the boiler is significantly lower than the rated capacity, the amount of power generated in the power generation turbine will be significantly reduced, so it is desirable that the amount of steam generated be as close to the rated capacity as possible. It is desirable that it is 90% or more with respect to the capacity, that is, near the rated capacity. Accordingly, a method for stably controlling the amount of steam generated near the rated capacity while preventing the generation of steam exceeding the rated capacity has been required in the exhaust heat recovery facility.

焼結鉱の製造において、ボイラーが設置された排熱回収設備を制御する方法に関し、例えば特許文献1および2に示されるように従来から種々の提案がなされている。特許文献1には、焼結鉱冷却機において、冷却ガスを循環させるために設置される送風機の回転数を制御する方法が開示されている。特許文献1に開示される送風機の回転数制御方法では、送風機をボイラーから送風ダクトまでの冷却ガスの経路中に配置し、この送風機の実回転数と電力コストとに基づく演算結果によって送風機を回転数制御する。このような特許文献1に記載の送風機の回転数制御方法によれば、排熱回収設備全体の回収利益を最大にした制御を行うことができるとしている。   In the production of sintered ore, various proposals have conventionally been made, for example, as shown in Patent Documents 1 and 2, regarding a method for controlling an exhaust heat recovery facility in which a boiler is installed. Patent Document 1 discloses a method of controlling the rotational speed of a blower installed for circulating a cooling gas in a sinter cooler. In the blower rotation speed control method disclosed in Patent Document 1, the blower is arranged in the path of the cooling gas from the boiler to the blower duct, and the blower is rotated according to the calculation result based on the actual rotation speed of the blower and the power cost. Control the number. According to the blower rotation speed control method described in Patent Document 1, it is possible to perform control that maximizes the recovery profit of the entire exhaust heat recovery facility.

また、特許文献2には、焼結ケーキを製造する焼結機における排熱回収設備を制御する方法が開示されている。特許文献2に開示される排熱回収設備の制御方法は、焼結機の排気ガスの排熱を蒸気として回収するボイラー、および、焼結機の排気ガスとボイラーを通過した排気ガスとを除塵する電気集塵機から構成される排熱回収設備において、電気集塵機の入口の排ガス温度が一定範囲になるようにボイラーに供給する排気ガスの量を制御する。特許文献2では、ボイラーに供給する排気ガス量の調整は、流量調整ダンパを設けることにより行う。   Patent Document 2 discloses a method for controlling exhaust heat recovery equipment in a sintering machine that manufactures a sintered cake. Patent Document 2 discloses a control method for exhaust heat recovery equipment that removes dust from exhaust gas exhausted from a sintering machine and exhaust gas that has passed through the boiler. In an exhaust heat recovery facility composed of an electrostatic precipitator, the amount of exhaust gas supplied to the boiler is controlled so that the exhaust gas temperature at the inlet of the electrostatic precipitator falls within a certain range. In Patent Document 2, the amount of exhaust gas supplied to the boiler is adjusted by providing a flow rate adjusting damper.

これにより、特許文献2に開示される排熱回収設備の制御方法は、電気集塵機の入口の排気ガス温度が一定範囲になり、電気集塵機内での発火あるいは結露が全く発生しなくなるとともに、電気集塵機の入口の排気ガス温度を管理値内に確保するのに必要な熱量以外の熱量をすべて回収できるとしている。   As a result, the exhaust heat recovery equipment control method disclosed in Patent Document 2 is such that the exhaust gas temperature at the inlet of the electrostatic precipitator falls within a certain range, and no ignition or condensation occurs in the electrostatic precipitator. It is said that it is possible to recover all the heat except for the amount of heat necessary to secure the exhaust gas temperature at the inlet of the gas within the control value.

排熱回収設備に設置されるボイラーの蒸気発生量が定格容量を超える際に、特許文献1に開示されるように冷却ガスを循環させる送風機の回転数を制御して低回転にすれば、ボイラーに供給される排気ガス量が減少することから、排気ガスを介してボイラーに投入される熱量を減少させることができる。また、特許文献2で開示されるように流量調整ダンパを操作してボイラーに供給される排気ガス量を減少させることによっても、排気ガスを介してボイラーに投入される熱量を減少させることができる。このようにボイラーに供給される排気ガス量を減少させ、排気ガスを介してボイラーに投入される熱量を減少させることにより、蒸気発生量を定格容量以下に制御することができる。   When the steam generation amount of the boiler installed in the exhaust heat recovery facility exceeds the rated capacity, as disclosed in Patent Document 1, if the rotation speed of the blower that circulates the cooling gas is controlled to be low, the boiler Since the amount of exhaust gas supplied to the boiler decreases, the amount of heat input to the boiler via the exhaust gas can be reduced. Further, as disclosed in Patent Document 2, the amount of heat input to the boiler via the exhaust gas can also be reduced by operating the flow rate adjusting damper to reduce the amount of exhaust gas supplied to the boiler. . Thus, by reducing the amount of exhaust gas supplied to the boiler and reducing the amount of heat input to the boiler via the exhaust gas, the amount of steam generated can be controlled below the rated capacity.

しかしながら、送風機の回転数を制御して低回転にしたり、流量調整ダンパを操作したりしてボイラーに供給される排気ガス量を減少させると、それに伴って冷却機の冷却ガス量も減少する。このため、冷却機の冷却能力が低下して排鉱される焼結鉱が冷却不足となるので、高温の焼結鉱が冷却機から排鉱されて後続するベルトコンベア上に搬入され、その結果、ベルトコンベアの破損等の危険性が増加する。   However, if the amount of exhaust gas supplied to the boiler is reduced by controlling the number of rotations of the blower to lower the speed or operating the flow rate adjusting damper, the amount of cooling gas in the cooler is also reduced accordingly. For this reason, since the cooling capacity of the cooler is reduced and the sintered ore discharged is insufficiently cooled, the high-temperature sintered ore is discharged from the cooler and carried onto the subsequent belt conveyor. The risk of damage to the belt conveyor increases.

高温の焼結鉱によりベルトコンベアが破損等する問題を回避するため、ベルトコンベア上の高温の焼結鉱に水を散布して強制冷却する方法が考えられる。しかし、この方法では、散水によって急冷された焼結鉱で応力集中や内部応力の増大が生じることにより、亀裂やクラックが焼結鉱に発生する。その結果、焼結鉱の強度が低下し、焼結鉱の品質低下が問題となる。   In order to avoid the problem that the belt conveyor is damaged by the high temperature sintered ore, a method of forcibly cooling by spraying water on the high temperature sintered ore on the belt conveyor is conceivable. However, in this method, cracks and cracks are generated in the sintered ore due to stress concentration and increase in internal stress in the sintered ore rapidly cooled by water spray. As a result, the strength of the sintered ore is reduced, and the deterioration of the quality of the sintered ore becomes a problem.

特開昭61−246329号公報JP-A-61-246329 特開昭64−68429号公報Japanese Patent Application Laid-Open No. 64-68429

前述の通り、焼結鉱冷却機の排熱回収設備では、定格容量を超える蒸気の発生を防止しながら、蒸気発生量を定格容量近傍に安定して制御する方法が必要とされていた。しかし、従来から開示されている排熱回収設備の制御方法のように、送風機の回転数を調整したり流量調整ダンパを操作したりすると、ボイラーの蒸気発生量を定格容量以下に制御できるが、冷却機で冷却ガス量が減少して冷却能力が低下することから、高温の焼結鉱が冷却機から排鉱されて問題が生じる。   As described above, in the waste heat recovery equipment of the sinter cooler, a method for stably controlling the amount of generated steam near the rated capacity while preventing the generation of steam exceeding the rated capacity has been required. However, like the conventionally disclosed control method of exhaust heat recovery equipment, adjusting the number of rotations of the blower or operating the flow rate adjustment damper can control the steam generation amount of the boiler below the rated capacity, Since the cooling gas amount is reduced by the cooler and the cooling capacity is lowered, a high temperature sintered ore is discharged from the cooler to cause a problem.

本発明は、このような状況に鑑みてなされたものであり、焼結鉱冷却機の冷却能力を変化させることなく、排熱回収設備に設置されるボイラーで発生する蒸気発生量を制御し、蒸気発生量が定格容量を超えるのを防止できる排熱回収設備の制御方法を提供することを目的とする。   The present invention has been made in view of such a situation, without changing the cooling capacity of the sinter cooler, to control the amount of steam generated in the boiler installed in the exhaust heat recovery equipment, An object of the present invention is to provide a method for controlling exhaust heat recovery equipment that can prevent the amount of steam generated from exceeding the rated capacity.

本発明者は、上記問題を解決するため、種々の試験を行い、鋭意検討を重ねた結果、下記(a)および(b)に示す知見を得た。
(a)焼結鉱冷却機における排熱回収設備で、冷却機への焼結鉱の給鉱量増加によりボイラーの蒸気発生量が定格容量を超える様相の場合に、ボイラーで発生させる蒸気の圧力を調整してボイラーの蒸気発生量を制御する。これにより、冷却機の冷却能力を変化させることなく、蒸気発生量を定格容量以下に制御できる。
The present inventor conducted various tests in order to solve the above problems, and as a result of intensive studies, the inventors have obtained the knowledge shown in the following (a) and (b).
(A) Steam pressure generated in the boiler when the exhaust heat recovery equipment in the sinter cooler is in an aspect where the boiler steam generation exceeds the rated capacity due to an increase in the amount of sinter supply to the cooler To control the amount of steam generated by the boiler. Thereby, the amount of steam generation can be controlled below the rated capacity without changing the cooling capacity of the cooler.

(b)ボイラーへの給水系統を、水を加熱してガスを除去する脱気器と、脱気された水を予熱する給水予熱機器と、脱気器に供給される水と脱気器から排出される水とを熱交換させる給水再冷却器とを備える給水系統とする。この給水系統の脱気器と給水予熱器との間に、給水再冷却器を経由する再冷却ラインと、脱気器から排出された水を直接給水予熱器に供給するバイパスラインとを設ける。このような給水系統を有する排熱回収設備で、冷却機への焼結鉱の給鉱量増加によりボイラーの蒸気発生量が定格容量を超える様相の場合に、バイパスラインを通過する水量を調整する。これにより、冷却機の冷却能力を変化させることなく、ボイラーの蒸気発生量を定格容量以下に制御できる。 (B) a water supply system to the boiler, from a deaerator for heating the water to remove the gas, a feed water preheating device for preheating the degassed water, and the water and deaerator supplied to the deaerator A water supply system is provided that includes a water supply recooler that exchanges heat with discharged water. Between the deaerator and the feed water preheater of this feed water system, a recooling line passing through the feed water recooler and a bypass line for directly supplying the water discharged from the deaerator to the feed water preheater are provided. In such a heat recovery system with a water supply system, the amount of water passing through the bypass line is adjusted when the amount of steam generated by the boiler exceeds the rated capacity due to an increase in the amount of sintered ore supplied to the cooler. . Thereby, the steam generation amount of the boiler can be controlled below the rated capacity without changing the cooling capacity of the cooler.

本発明は、上記の知見に基づいて完成したものであり、下記(1)および(2)の焼結鉱冷却機における排熱回収設備の制御方法を要旨としている。   The present invention has been completed on the basis of the above findings, and the gist of the control method of the exhaust heat recovery facility in the sinter cooler of the following (1) and (2).

(1)上面に供給された焼結鉱を給鉱部から排鉱部に向かって移動させるクーラーパンと、前記クーラーパンの下方に位置して冷却ガスを供給する送風ダクトと、前記クーラーパンの上方に位置して排気ガスを回収する排気フードとを備えた焼結鉱冷却機において、
前記排気フードで回収した前記排気ガスを、給水系統から供給された水と熱交換させて冷却ガスとして前記送風ダクトに供給するとともに、蒸気を発生させるボイラーが設置される排熱回収設備を制御する方法であって、
前記ボイラーで発生させる蒸気の圧力を調整して蒸気発生量を前記排熱回収設備の定格容量以下に制御することを特徴とする焼結鉱冷却機における排熱回収設備の制御方法。
(1) A cooler pan that moves the sintered ore supplied to the upper surface from the supply portion toward the discharge portion, a blower duct that is located below the cooler pan and supplies cooling gas, and the cooler pan In a sinter cooler equipped with an exhaust hood that is located above and collects exhaust gas,
The exhaust gas collected by the exhaust hood is heat-exchanged with water supplied from a water supply system and supplied to the air duct as a cooling gas, and exhaust heat recovery equipment in which a boiler for generating steam is installed is controlled. A method,
A method for controlling an exhaust heat recovery facility in a sinter cooler, wherein the pressure of steam generated by the boiler is adjusted to control a steam generation amount to be equal to or less than a rated capacity of the exhaust heat recovery facility.

(2)上面に供給された焼結鉱を給鉱部から排鉱部に向かって移動させるクーラーパンと、前記クーラーパンの下方に位置して冷却ガスを供給する送風ダクトと、前記クーラーパンの上方に位置して排気ガスを回収する排気フードとを備えた焼結鉱冷却機において、
前記排気フードで回収した前記排気ガスを、給水系統から供給された水と熱交換させて冷却ガスとして前記送風ダクトに供給するとともに、蒸気を発生させるボイラーが設置される排熱回収設備を制御する方法であって、
前記給水系統が、水を過熱してガスを除去する脱気器と、脱気された水を予熱する給水予熱機器と、前記脱気器に供給される水と前記脱気器から排出される水とを熱交換させる給水再冷却器とを備え、
前記脱気器と前記給水予熱器との間に、前記給水再冷却器を経由する再冷却ラインと、前記脱気器から排出された水を直接前記給水予熱器に供給するバイパスラインとを設け、
前記バイパスラインを通過する水量を調整することにより、前記ボイラーの蒸気発生量を前記排熱回収設備の定格容量以下に制御することを特徴とする焼結鉱冷却機における排熱回収設備の制御方法。
(2) a cooler pan that moves the sintered ore supplied to the upper surface from the supply portion toward the discharge portion, a blower duct that is located below the cooler pan and supplies cooling gas, and the cooler pan In a sinter cooler equipped with an exhaust hood that is located above and collects exhaust gas,
The exhaust gas collected by the exhaust hood is heat-exchanged with water supplied from a water supply system and supplied to the air duct as a cooling gas, and exhaust heat recovery equipment in which a boiler for generating steam is installed is controlled. A method,
The water supply system is exhausted from a deaerator that superheats water to remove gas, a water supply preheating device that preheats the degassed water, water supplied to the deaerator, and the deaerator A water recooler that exchanges heat with water,
Provided between the deaerator and the feed water preheater are a recooling line that passes through the feed water recooler and a bypass line that directly supplies water discharged from the deaerator to the feed water preheater. ,
A method for controlling exhaust heat recovery equipment in a sinter cooler, wherein the amount of steam generated by the boiler is controlled to be equal to or less than a rated capacity of the exhaust heat recovery equipment by adjusting an amount of water passing through the bypass line. .

本発明の排熱回収設備の制御方法は、ボイラーで発生させる蒸気の圧力、または、再冷却ラインとバイパスラインとを設けた給水系統においてバイパスラインを通過する水量を調整する。これにより、本発明の排熱回収設備の制御方法は、冷却機への焼結鉱の給鉱量増加等によりボイラーの蒸気発生量が定格容量を超える様相の場合であっても、冷却機の冷却能力を変化させることなく、ボイラーの蒸気発生量を定格容量以下に制御することができる。   The control method of the exhaust heat recovery facility of the present invention adjusts the pressure of steam generated by a boiler or the amount of water passing through the bypass line in a water supply system provided with a recooling line and a bypass line. As a result, the control method of the exhaust heat recovery facility of the present invention can be applied to the cooling machine even if the steam generation amount of the boiler exceeds the rated capacity due to an increase in the amount of sintered ore supplied to the cooling machine. Without changing the cooling capacity, the steam generation amount of the boiler can be controlled below the rated capacity.

本発明が対象とする焼結鉱冷却機の排熱回収設備の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the waste heat recovery equipment of the sinter cooler which this invention makes object. 実施例の通常の操業状態における熱バランスを示す図である。It is a figure which shows the heat balance in the normal operation state of an Example. 実施例の比較例1によって焼結鉱の生産量を変化させた状態における熱バランスを示す図である。It is a figure which shows the heat balance in the state which changed the production amount of the sintered ore by the comparative example 1 of the Example. 実施例の比較例2によって焼結鉱の生産量を変化させた状態における熱バランスを示す図である。It is a figure which shows the heat balance in the state which changed the production amount of the sintered ore by the comparative example 2 of the Example. 実施例の本発明例1によって焼結鉱の生産量を変化させた状態における熱バランスを示す図である。It is a figure which shows the heat balance in the state which changed the production amount of the sintered ore by this invention example 1 of the Example. 実施例の本発明例2によって焼結鉱の生産量を変化させた状態における熱バランスを示す図である。It is a figure which shows the heat balance in the state which changed the production amount of the sintered ore by this invention example 2 of the Example.

以下に、本発明の排熱回収設備の制御方法について、図面を参照しながら説明する。   Below, the control method of the waste heat recovery equipment of this invention is demonstrated, referring drawings.

図1は、本発明が対象とする焼結鉱冷却機の排熱回収設備の概要を示す模式図である。同図には、移動炉床上に形成した原料層に点火して焼結作用により焼結ケーキ6を製造する焼結機4と、焼結ケーキ6を破砕して焼結鉱7とするクラッシャー5と、高温の焼結鉱7を冷却する冷却機1と、冷却機1の高温の排気ガスから熱回収を行う排熱回収設備2と、排熱回収設備2に水を供給する給水系統3とを示す。また、同図には、矢印で示す方向に冷却ガスまたは排気ガスを供給する配管を実線の矢印で、矢印で示す方向に水を供給する配管を一点鎖線の矢印で、矢印で示す方向に蒸気を供給する配管を破線の矢印でそれぞれ示す。   FIG. 1 is a schematic diagram showing an outline of exhaust heat recovery equipment of a sinter cooler targeted by the present invention. The figure shows a sintering machine 4 that ignites a raw material layer formed on a moving hearth and produces a sintered cake 6 by a sintering action, and a crusher 5 that crushes the sintered cake 6 into a sintered ore 7. A cooler 1 that cools the high-temperature sintered ore 7, a waste heat recovery facility 2 that recovers heat from the high-temperature exhaust gas of the cooler 1, and a water supply system 3 that supplies water to the exhaust heat recovery facility 2 Indicates. Also, in the figure, the piping that supplies cooling gas or exhaust gas in the direction indicated by the arrow is indicated by a solid line arrow, the piping that supplies water in the direction indicated by the arrow is indicated by a one-dot chain line, and steam is supplied in the direction indicated by the arrow. The pipes for supplying are indicated by broken arrows.

冷却機1は、上面に供給された焼結鉱7を給鉱部1aから排鉱部1bに向かって移動させるクーラーパン10と、クーラーパン10の下方に位置して冷却ガスを供給する送風ダクト11と、クーラーパン10の上方に位置して排気ガスを回収する排気フード12とを備える。   The cooler 1 includes a cooler pan 10 that moves the sintered ore 7 supplied to the upper surface from the supply portion 1a toward the discharge portion 1b, and an air duct that is positioned below the cooler pan 10 and supplies cooling gas. 11 and an exhaust hood 12 that is located above the cooler pan 10 and collects exhaust gas.

排熱回収設備2にはボイラー20と、循環ファン25とが設置される。ボイラー20は、排気フード12で回収した高温の排気ガスを、給水系統3から供給された水と熱交換により降温させ、冷却ガスとして送風ダクト11に供給するとともに水から蒸気を発生させる。   A boiler 20 and a circulation fan 25 are installed in the exhaust heat recovery facility 2. The boiler 20 lowers the temperature of the high-temperature exhaust gas collected by the exhaust hood 12 by heat exchange with water supplied from the water supply system 3, supplies the cooling exhaust gas to the blower duct 11, and generates steam from the water.

すなわち、冷却機1には高温の焼結鉱7が給鉱され、焼結鉱7が冷却機の給鉱部1aから排鉱部1bまでクーラーパン10上を移動する間(同図のハッチングを施した矢印参照)、送風ダクト11から焼結鉱7に冷却ガス(通常は空気)が下方から上向きに吹込まれる。これにより、高温の焼結鉱7は冷却されるとともに冷却ガスは加熱される。加熱された冷却ガスは、排気フード12によって排気ガスとして回収された後、配管によってボイラー20へ供給されて排熱回収され、その後、冷却ガスとして循環ファン25により送風ダクト11に送られて循環使用される。   That is, the cooler 1 is fed with the high-temperature sintered ore 7, and while the sintered ore 7 moves on the cooler pan 10 from the feed unit 1a to the discharge unit 1b of the cooler (the hatching in the figure is performed). The cooling gas (usually air) is blown upward from below into the sintered ore 7 from the blower duct 11. Thereby, the high temperature sintered ore 7 is cooled and the cooling gas is heated. The heated cooling gas is recovered as exhaust gas by the exhaust hood 12 and then supplied to the boiler 20 through a pipe for exhaust heat recovery. Thereafter, the heated cooling gas is sent as cooling gas to the blower duct 11 by the circulation fan 25 for circulation use. Is done.

同図に示すボイラー20は蒸発器21と過熱器22とで構成され、このボイラー20には蒸気ドラム23が併設されている。給水系統3からボイラーに供給された水は、蒸気ドラム23に一旦貯留された後で蒸発器21に供給され、排気ガスとの熱交換により蒸気となる。発生した蒸気は、蒸気ドラム23に供給されて残存する水が分離され、蒸気のみが過熱器22に供給される。過熱器22に供給された蒸気は、排気ガスとの熱交換により二次過熱されて昇温し、高温の蒸気となる。このようにボイラー20で発生した蒸気は、発電タービン(図示せず)へ送られて発電に利用される。   The boiler 20 shown in the figure is composed of an evaporator 21 and a superheater 22, and the boiler 20 is provided with a steam drum 23. The water supplied to the boiler from the water supply system 3 is temporarily stored in the steam drum 23 and then supplied to the evaporator 21 and becomes steam by heat exchange with the exhaust gas. The generated steam is supplied to the steam drum 23 to separate the remaining water, and only the steam is supplied to the superheater 22. The steam supplied to the superheater 22 is secondarily superheated by heat exchange with the exhaust gas, and the temperature rises to become high-temperature steam. Thus, the steam generated in the boiler 20 is sent to a power generation turbine (not shown) and used for power generation.

同図に示す排熱回収設備2では、ボイラー20(過熱器22)の出側に圧力調整弁24が設けられ、この圧力調整弁24を操作することによりボイラー20で発生させる蒸気の圧力を調整することが可能である。   In the exhaust heat recovery facility 2 shown in the figure, a pressure regulating valve 24 is provided on the outlet side of the boiler 20 (superheater 22), and the pressure of the steam generated in the boiler 20 is adjusted by operating the pressure regulating valve 24. Is possible.

同図に示す給水系統3は、水を貯留する給水ピット30と、水を過熱してガスを除去する脱気器31と、脱気器31に供給される水と脱気器31から排出される水とを熱交換させる給水再冷却器33と、脱気された水を予熱する給水予熱器32とを備える。この給水系統3には、脱気器31と給水予熱器32との間に、給水再冷却器33を経由する再冷却ラインと、脱気器31から排出された水を、直接、給水予熱器32に供給するバイパスラインとが設けられる。   A water supply system 3 shown in the figure is discharged from a water supply pit 30 for storing water, a deaerator 31 for overheating water to remove gas, and water supplied to the deaerator 31 and the deaerator 31. A feed water recooler 33 for exchanging heat with water and a feed water preheater 32 for preheating the degassed water. In this water supply system 3, a recooling line passing through the feed water recooler 33 and water discharged from the deaerator 31 are directly connected between the deaerator 31 and the feed water preheater 32. And a bypass line for supplying to 32 is provided.

このような給水系統3では、脱気器31に、給水ピット30の水が供給されるとともに、ボイラー20で発生した蒸気の一部が蒸気ドラム23を経由して供給される。これにより、給水ピット30から供給された水は、例えば130℃程度に過熱されて水中の溶存ガスが除去される。このようにして脱気された水は、給水予熱器32に供給されて過熱された後、ボイラー20に併設された蒸気ドラム23に供給される。   In such a water supply system 3, the water in the water supply pit 30 is supplied to the deaerator 31 and a part of the steam generated in the boiler 20 is supplied via the steam drum 23. Thereby, the water supplied from the water supply pit 30 is overheated to about 130 ° C., for example, and dissolved gas in the water is removed. The water deaerated in this way is supplied to the feed water preheater 32 and heated, and then supplied to the steam drum 23 provided in the boiler 20.

この際、給水再冷却器33には、脱気器31で過熱された水が供給されるとともに、給水ピット30から常温の水が供給される。このため、給水再冷却器33では、熱交換により、脱気器31で過熱された水は降温し、例えば50℃程度にして給水予熱器32に供給されるとともに、給水ピット30からの水は昇温して脱気器31に供給される。   At this time, the water recooler 33 is supplied with water superheated by the deaerator 31, and is supplied with normal temperature water from the water supply pit 30. For this reason, in the feed water recooler 33, the water superheated in the deaerator 31 is cooled by heat exchange, and is supplied to the feed water preheater 32 at about 50 ° C., for example. The temperature is raised and supplied to the deaerator 31.

また、脱気器31と給水再冷却器33の間にはバイパスラインが設けられており、脱気された水の一部は、給水再冷却器33で再冷却されることなく、直接給水予熱器32に供給できる構造となっている。該バイパスラインには水量調整弁34が設けられ、水量調整弁34を操作することにより、バイパスラインを通過する水量を調整することができる。   Further, a bypass line is provided between the deaerator 31 and the feed water recooler 33, and a part of the degassed water is directly reheated without being recooled by the feed water recooler 33. The structure can be supplied to the container 32. The bypass line is provided with a water amount adjusting valve 34, and by operating the water amount adjusting valve 34, the amount of water passing through the bypass line can be adjusted.

同図に示す給水予熱器32には、脱気された水が再冷却ラインまたはバイパスラインを経由して供給されるとともに、冷却機1の排鉱部側に配置された排気フード12で回収された排気ガスが供給される。このように給水予熱器32に脱気された水と排気ガスの一部を供給し、熱交換により水を過熱すれば、冷却機1の排気ガスから熱量を回収しつつ水を予熱することができる。このように、排熱回収設備では、給水予熱器32を設けることにより、主としてボイラーで行われる排気ガスと水との熱交換を補助することができる。   In the feed water preheater 32 shown in the figure, degassed water is supplied via a recooling line or a bypass line, and is recovered by an exhaust hood 12 arranged on the side of the cooler 1 on which the mineral is removed. Exhaust gas is supplied. If water thus deaerated and a part of the exhaust gas are supplied to the feed water preheater 32 and the water is superheated by heat exchange, the water can be preheated while recovering heat from the exhaust gas of the cooler 1. it can. Thus, in the exhaust heat recovery facility, by providing the feed water preheater 32, heat exchange between the exhaust gas and water, which is mainly performed in the boiler, can be assisted.

同図に示す給水系統3では、給水再冷却器33を設けている。この場合、脱気された水は給水再冷却器33での熱交換によって降温した後で給水予熱器32およびボイラー20に供給される。このため、給水予熱器32およびボイラー20における熱交換対象物、すなわち、冷却機の排気ガスと、給水予熱器32およびボイラー20に供給する水との温度差が大きくなる。これにより、給水予熱器32およびボイラー20で冷却機の排気ガスから熱量を効率よく回収することができる。また、給水再冷却器で給水ピットから供給される水を昇温して脱気器に供給することにより、脱気器で130℃程度に過熱するのに必要な蒸気の使用量も削減できる。   In the water supply system 3 shown in the figure, a water supply recooler 33 is provided. In this case, the degassed water is supplied to the feed water preheater 32 and the boiler 20 after being cooled by heat exchange in the feed water recooler 33. For this reason, the temperature difference between the heat exchange object in the feed water preheater 32 and the boiler 20, that is, the exhaust gas of the cooler, and the water supplied to the feed water preheater 32 and the boiler 20 becomes large. Thereby, the heat quantity can be efficiently recovered from the exhaust gas of the cooler by the feed water preheater 32 and the boiler 20. In addition, by using the feed water recooler to raise the temperature of the water supplied from the feed pit and supplying it to the deaerator, it is possible to reduce the amount of steam used for heating to about 130 ° C. with the deaerator.

ただし、給水系統に給水再冷却器が装備されてない排熱回収設備が存在する。冷却機の排気ガスの熱量に対してボイラーで回収可能な熱量が比較的大きい、すなわち、ボイラーの熱交換部の総面積が大きいと、冷却機の排気ガスの熱量をボイラーで十分に回収できる。このようなボイラーを用いる場合は、ボイラーで水と冷却機の排気ガスとの温度差を大きくする必要がないことから、給水再冷却器は必ずしも必要ではない。給水再冷却器を装備しない場合、脱気された水は直接給水予熱器32に供給され、冷却機の排気ガスと熱交換することにより排気ガスの熱量を回収しつつ過熱された後、ボイラーの蒸気ドラムに供給される。   However, there is an exhaust heat recovery facility where the water supply system is not equipped with a water recooler. If the amount of heat that can be recovered by the boiler is relatively large relative to the amount of heat of the exhaust gas of the cooler, that is, if the total area of the heat exchange section of the boiler is large, the amount of heat of the exhaust gas of the cooler can be sufficiently recovered by the boiler. When such a boiler is used, it is not necessary to increase the temperature difference between the water and the exhaust gas of the cooler in the boiler, so the feed water recooler is not necessarily required. When the feed water recooler is not equipped, the degassed water is directly supplied to the feed water preheater 32, and after heat exchange with the exhaust gas of the cooler, the heat of the exhaust gas is recovered and heated, and then the boiler Supplied to the steam drum.

このような冷却機における排熱回収設備で、本発明の排熱回収設備の制御方法により、排熱回収設備の定格容量を超える蒸気の発生を防止しながら、定格容量近傍で蒸気発生量を安定的に制御する方法を以下に説明する。   With the exhaust heat recovery equipment in such a cooler, the steam generation rate is stabilized near the rated capacity while preventing the generation of steam exceeding the rated capacity of the exhaust heat recovery equipment by the control method of the exhaust heat recovery equipment of the present invention. The method of controlling automatically will be described below.

本発明の排熱回収設備の制御方法の一つの実施形態は、上面に供給された焼結鉱を給鉱部から排鉱部に向かって移動させるクーラーパン10と、クーラーパン10の下方に位置して冷却ガスを供給する送風ダクト11と、クーラーパン10の上方に位置して排気ガスを回収する排気フード12とを備えた焼結鉱冷却機1において、排気フード12で回収した排気ガスを、給水系統3から供給された水と熱交換させて冷却ガスとして送風ダクト11に供給するとともに、蒸気を発生させるボイラー20が設置される排熱回収設備2を制御する方法であって、ボイラー20で発生させる蒸気の圧力を調整して蒸気発生量を排熱回収設備の定格容量以下に制御することを特徴とする。この実施形態を以下では「第1の制御方法」とも呼ぶ。   One embodiment of the control method of the exhaust heat recovery facility of the present invention includes a cooler pan 10 that moves the sintered ore supplied to the upper surface from the supply section toward the exhaust section, and a position below the cooler pan 10. Then, in the sintered ore cooler 1 provided with the blower duct 11 for supplying the cooling gas and the exhaust hood 12 that is located above the cooler pan 10 and collects the exhaust gas, the exhaust gas collected by the exhaust hood 12 is In this method, heat is exchanged with water supplied from the water supply system 3 and supplied to the air duct 11 as cooling gas, and the exhaust heat recovery equipment 2 in which the boiler 20 for generating steam is installed is controlled. The amount of steam generated is controlled to be equal to or less than the rated capacity of the exhaust heat recovery facility by adjusting the pressure of the steam generated in the above. Hereinafter, this embodiment is also referred to as a “first control method”.

ボイラー20では、冷却機1からの排気ガスとの熱交換によって水の温度が上昇してその圧力によって定まる温度に到達すると、沸騰が始まり蒸気が発生する。この沸騰が始まる温度および圧力を、それぞれ飽和温度(沸点)および飽和圧力と言う。   In the boiler 20, when the temperature of water rises by heat exchange with the exhaust gas from the cooler 1 and reaches a temperature determined by the pressure, boiling starts and steam is generated. The temperature and pressure at which this boiling starts are referred to as saturation temperature (boiling point) and saturation pressure, respectively.

本発明の第1の制御方法では、ボイラー20で発生させる蒸気の圧力を調整することにより、ボイラーの飽和圧力を調整して飽和温度を変動させる。これにより、ボイラー20の蒸気発生量が増減するので、本発明の第1の制御方法により、冷却機に供給される冷却ガス量を減少させることなく、蒸気発生量を定格容量以下に制御することができる。例えば、冷却機1への焼結鉱の給鉱量やボイラー20の蒸気発生量、冷却機1の排気ガスの熱量に応じてボイラー20で発生させる蒸気の圧力を調整することにより、蒸気発生量を排熱回収設備の定格容量以下に制御することができる。   In the first control method of the present invention, the saturation pressure is varied by adjusting the saturation pressure of the boiler by adjusting the pressure of the steam generated in the boiler 20. As a result, the steam generation amount of the boiler 20 increases and decreases, and the steam generation amount is controlled below the rated capacity by the first control method of the present invention without reducing the cooling gas amount supplied to the cooler. Can do. For example, the steam generation amount is adjusted by adjusting the pressure of steam generated in the boiler 20 according to the amount of sintered ore supplied to the cooler 1, the steam generation amount of the boiler 20, and the heat amount of the exhaust gas of the cooler 1. Can be controlled below the rated capacity of the exhaust heat recovery facility.

前記図1に示す冷却機における排熱回収設備では、ボイラー20(過熱器22)の出側に設けた圧力調整弁24を操作することにより、ボイラー20で発生させる蒸気の圧力を調整できる。冷却機1への焼結鉱の給鉱量増加等により蒸気発生量が定格容量を超える様相の場合、圧力調整弁24を操作してボイラー20で発生させる蒸気の圧力を増加させる調整を行う。これにより、ボイラー20の飽和温度が上昇して蒸気を発生させるために必要な熱量が増加することから、ボイラー20の蒸気発生量を減少させることができ、冷却機に供給される冷却ガス量を減少させることなく、定格容量を超える蒸気の発生を防止できる。   In the exhaust heat recovery facility in the cooler shown in FIG. 1, the pressure of steam generated in the boiler 20 can be adjusted by operating the pressure regulating valve 24 provided on the outlet side of the boiler 20 (superheater 22). When the amount of steam generation exceeds the rated capacity due to an increase in the amount of sintered ore supplied to the cooler 1, etc., adjustment is performed to increase the pressure of the steam generated by the boiler 20 by operating the pressure adjustment valve 24. This increases the saturation temperature of the boiler 20 and increases the amount of heat necessary for generating steam, so the amount of steam generated in the boiler 20 can be reduced, and the amount of cooling gas supplied to the cooler can be reduced. The generation of steam exceeding the rated capacity can be prevented without decreasing.

一方、冷却機1への焼結鉱の給鉱量減少等によりボイラーの蒸気発生量が定格容量を大幅に下回る様相の場合、圧力調整弁24を操作してボイラー20(過熱器22)で発生させる蒸気の圧力を減少させる調整を行う。これにより、ボイラー20の飽和温度が下降して蒸気を発生させるために必要な熱量が減少することから、ボイラー20の蒸気発生量を増加させることができ、冷却機に供給される冷却ガス量を減少させることなく、定格容量近傍で蒸気発生量を制御できる。   On the other hand, when the amount of steam generated by the boiler appears to be significantly lower than the rated capacity due to a decrease in the amount of sintered ore supplied to the cooler 1, the pressure adjustment valve 24 is operated to generate the boiler 20 (superheater 22). Make adjustments to reduce the pressure of the steam. As a result, the amount of heat required to generate steam by lowering the saturation temperature of the boiler 20 decreases, so the amount of steam generated by the boiler 20 can be increased, and the amount of cooling gas supplied to the cooler can be reduced. The steam generation amount can be controlled in the vicinity of the rated capacity without being reduced.

ボイラー20(過熱器22)で発生させる蒸気の圧力は、設備仕様により定められた上限と、発生した蒸気を発電や各工場で使用することが可能な圧力の下限との範囲内で調整することが好ましい。   The pressure of the steam generated by the boiler 20 (superheater 22) should be adjusted within the range between the upper limit determined by the equipment specifications and the lower limit of the pressure at which the generated steam can be used in power generation and each factory. Is preferred.

本発明の排熱回収設備の制御方法のもう一つの実施形態は、上面に供給された焼結鉱を給鉱部から排鉱部に向かって移動させるクーラーパン10と、クーラーパンの下方に位置して冷却ガスを供給する送風ダクト11と、クーラーパン10の上方に位置して排気ガスを回収する排気フード12とを備えた焼結鉱冷却機1において、排気フード12で回収した排気ガスを、給水系統3から供給された水と熱交換させて冷却ガスとして送風ダクト11に供給するとともに、蒸気を発生させるボイラー20が設置される排熱回収設備2を制御する方法であって、給水系統3が、水を過熱してガスを除去する脱気器31と、脱気された水を予熱する給水予熱器32と、脱気器31に供給される水と脱気器31から排出される水とを熱交換させる給水再冷却器33とを備え、脱気器31と給水予熱器32との間に、給水再冷却器33を経由する再冷却ラインと、脱気器31から排出された水を直接給水予熱器32に供給するバイパスラインとを設け、バイパスラインを通過する水量を調整することにより、ボイラー20の蒸気発生量を排熱回収設備の定格容量以下に制御することを特徴とする。この実施形態を以下では「第2の制御方法」とも呼ぶ。   Another embodiment of the control method of the exhaust heat recovery facility of the present invention includes a cooler pan 10 that moves the sintered ore supplied to the upper surface from the supply section toward the exhaust section, and a position below the cooler pan. Then, in the sintered ore cooler 1 provided with the blower duct 11 for supplying the cooling gas and the exhaust hood 12 that is located above the cooler pan 10 and collects the exhaust gas, the exhaust gas collected by the exhaust hood 12 is A method of controlling the exhaust heat recovery equipment 2 in which a boiler 20 for generating steam is supplied to the air duct 11 through heat exchange with water supplied from the water supply system 3 and supplied as a cooling gas. 3 is discharged from the deaerator 31 that superheats water to remove gas, the feed water preheater 32 that preheats the degassed water, and the water supplied to the deaerator 31 and the deaerator 31 Water supply re-exchanges heat with water And a recooling line that passes through the feed water recooler 33 and water discharged from the degasser 31 directly to the feed water preheater 32. A supply bypass line is provided, and the amount of steam generated in the boiler 20 is controlled to be equal to or less than the rated capacity of the exhaust heat recovery facility by adjusting the amount of water passing through the bypass line. Hereinafter, this embodiment is also referred to as a “second control method”.

給水予熱器32およびボイラー20には、再冷却ラインを通過した水およびバイパスラインを通過した水が供給される。本発明の第2の制御方法では、バイパスラインを通過する水量を調整することにより、給水予熱器32およびボイラー20に供給する水における再冷却ラインを通過した水とバイパスラインを通過した水との割合を変化させる。   The water preheater 32 and the boiler 20 are supplied with water that has passed through the recooling line and water that has passed through the bypass line. In the second control method of the present invention, by adjusting the amount of water passing through the bypass line, the water supplied to the feed water preheater 32 and the boiler 20 and the water passing through the bypass line and the water passing through the bypass line are adjusted. Change the ratio.

ここで、バイパスラインを通過した水は、脱気器で過熱されて130℃程度であり、再冷却ラインを通過した水は、給水再冷却器での熱交換により再冷却されて降温している。このため、バイパスラインを通過する水量を調整することにより、給水予熱器32およびボイラー20に供給する水の温度を変動させることができる。給水予熱器32およびボイラー20に供給する水の温度が変動すると、その変動に従ってボイラー20の蒸気発生量が増減する。   Here, the water that has passed through the bypass line is heated to about 130 ° C. by the deaerator, and the water that has passed through the re-cooling line is re-cooled by the heat exchange in the feed water re-cooler and lowered in temperature. . For this reason, the temperature of the water supplied to the feed water preheater 32 and the boiler 20 can be changed by adjusting the amount of water passing through the bypass line. When the temperature of the water supplied to the feed water preheater 32 and the boiler 20 varies, the amount of steam generated in the boiler 20 increases or decreases according to the variation.

このように本発明の第2の制御方法は、バイパスラインを通過する水量を調整することにより、冷却機に供給される冷却ガス量を減少させることなく、蒸気発生量を定格容量以下に制御することができる。例えば、冷却機1への焼結鉱の給鉱量やボイラー20の蒸気発生量、冷却機1の排気ガスの熱量に応じてバイパスラインを通過する水量を調整することにより、蒸気発生量を定格容量以下に制御することができる。   As described above, the second control method of the present invention controls the amount of steam generated below the rated capacity without reducing the amount of cooling gas supplied to the cooler by adjusting the amount of water passing through the bypass line. be able to. For example, the steam generation rate is rated by adjusting the amount of water passing through the bypass line according to the amount of sintered ore supplied to the cooler 1, the steam generation amount of the boiler 20, and the heat amount of the exhaust gas of the cooler 1. It can be controlled below the capacity.

前記図1に示す冷却機における排熱回収設備では、バイパスラインに設けた水量調整弁34を操作することにより、バイパスラインを通過する水量を調整できる。冷却機1への焼結鉱の給鉱量増加等により蒸気発生量が定格容量を超える様相の場合、水量調整弁34を操作してバイパスラインを通過する水量を減少させる調整を行う。これにより、給水予熱器32およびボイラー20に供給する水は、再冷却ラインを通過して再冷却された水の割合が増加するとともに、バイパスラインを通過して過熱された状態の水の割合が減少するので、給水予熱器32およびボイラー20に供給する水の温度が下降する。その結果、蒸気を発生させるために必要な熱量が増加することから、ボイラー20の蒸気発生量を減少させることができ、冷却機に供給される冷却ガス量を減少させることなく、定格容量を超える蒸気の発生を防止できる。   In the exhaust heat recovery facility in the cooler shown in FIG. 1, the amount of water passing through the bypass line can be adjusted by operating the water amount adjustment valve 34 provided in the bypass line. When the amount of steam generation exceeds the rated capacity due to an increase in the amount of sintered ore supplied to the cooler 1, etc., adjustment is made to reduce the amount of water passing through the bypass line by operating the water amount adjustment valve 34. As a result, the water supplied to the feed water preheater 32 and the boiler 20 increases in the proportion of water that has been re-cooled through the re-cooling line and the proportion of water that has been overheated through the bypass line. Since it decreases, the temperature of the water supplied to the feed water preheater 32 and the boiler 20 falls. As a result, since the amount of heat necessary for generating steam increases, the steam generation amount of the boiler 20 can be reduced, and the rated capacity is exceeded without reducing the amount of cooling gas supplied to the cooler. Steam generation can be prevented.

一方、冷却機1への焼結鉱の給鉱量減少等によりボイラーの蒸気発生量が定格容量を大幅に下回る様相の場合、水量調整弁34を操作してバイパスラインを通過する水量を増加させる調整を行う。これにより、給水予熱器32およびボイラー20に供給する水は、再冷却ラインを通過して再冷却された水の割合が減少するとともに、バイパスラインを通過して過熱された状態の水の割合が増加するので、給水予熱器32およびボイラー20に供給する水の温度が上昇する。その結果、蒸気を発生させるために必要な熱量が減少するので、ボイラー20の蒸気発生量を増加させることができ、冷却機に供給される冷却ガス量を減少させることなく、定格容量近傍で蒸気発生量を制御できる。   On the other hand, when the amount of steam generated by the boiler is substantially below the rated capacity due to a decrease in the amount of sintered ore supplied to the cooler 1, the water amount adjustment valve 34 is operated to increase the amount of water passing through the bypass line. Make adjustments. As a result, the water supplied to the feed water preheater 32 and the boiler 20 has a reduced ratio of water that has been re-cooled through the re-cooling line and a ratio of water that has been overheated through the bypass line. Since it increases, the temperature of the water supplied to the feed water preheater 32 and the boiler 20 rises. As a result, the amount of heat necessary for generating steam is reduced, so that the amount of steam generated in the boiler 20 can be increased, and the steam near the rated capacity can be reduced without reducing the amount of cooling gas supplied to the cooler. The amount generated can be controlled.

このように本発明の排熱回収設備の制御方法は、第1および第2の制御方法ともに、冷却機1に供給される冷却ガス量を減少させることなく、排気ガスを介してボイラー20に投入される熱量が同じ状態でボイラー20の蒸気発生量を制御できる。このため、本発明の排熱回収設備の制御方法は、冷却機1の冷却能力を変化させることなく、ボイラー20の蒸気発生量を制御できる。したがって、本発明の排熱回収設備の制御方法は、冷却機から排鉱された焼結鉱の冷却不足や散水によって強制冷却された焼結鉱の品質低下といった問題が生じない。   As described above, in the control method of the exhaust heat recovery facility of the present invention, both the first and second control methods are charged into the boiler 20 through the exhaust gas without reducing the amount of the cooling gas supplied to the cooler 1. The steam generation amount of the boiler 20 can be controlled with the same amount of heat being generated. For this reason, the control method of the exhaust heat recovery equipment of the present invention can control the steam generation amount of the boiler 20 without changing the cooling capacity of the cooler 1. Therefore, the control method of the exhaust heat recovery facility of the present invention does not cause problems such as insufficient cooling of the sintered ore exhausted from the cooler and deterioration of the quality of the sintered ore forcedly cooled by water spray.

本発明の排熱回収設備の制御方法による効果を検証するため、下記の試験を行った。   In order to verify the effect of the control method of the exhaust heat recovery facility of the present invention, the following test was performed.

[試験方法]
本試験では、前記図1に示した冷却機における排熱回収設備で、通常の操業状態から焼結鉱の生産量(冷却機への焼結鉱の給鉱量)を変化させ、変化後に平衡状態となった際の熱バランスを調査した。なお、本試験に用いた排熱回収設備の定格容量は34.0t/hであった。
[Test method]
In this test, the exhaust heat recovery equipment in the cooler shown in Fig. 1 changes the amount of sintered ore production (the amount of ore supplied to the cooler) from the normal operating state, and balances after the change. The heat balance at the time of the state was investigated. The rated capacity of the exhaust heat recovery equipment used in this test was 34.0 t / h.

図2は、通常の操業状態における熱バランスを示す図である。同図では、熱バランスを説明する際に特に必要がない部分を省略した。同図に示すように、通常の操業状態(焼結鉱の生産量が270t/h)では、冷却機1から排鉱される焼結鉱の温度が70℃、冷却機の冷却ガス量が380,000Nm3/h、ボイラーで発生させる蒸気の圧力が0.7MPa、バイパスラインを通過する水量が17.0t/hであった。この状態でボイラー20の蒸気発生量は34.0t/hであり、定格容量と等しい値であった。このような通常の操業状態から、本試験では、焼結鉱の生産量を280t/hに変化させた。 FIG. 2 is a diagram showing a heat balance in a normal operation state. In the figure, portions that are not particularly necessary when explaining the heat balance are omitted. As shown in the figure, in a normal operation state (sintered ore production amount is 270 t / h), the temperature of the sintered ore discharged from the cooler 1 is 70 ° C., and the cooling gas amount of the cooler is 380. , 000 Nm 3 / h, the pressure of steam generated by the boiler was 0.7 MPa, and the amount of water passing through the bypass line was 17.0 t / h. In this state, the steam generation amount of the boiler 20 was 34.0 t / h, which was a value equal to the rated capacity. From this normal operating state, the production of sintered ore was changed to 280 t / h in this test.

比較例1では、冷却機1から排鉱される焼結鉱の温度を70℃に維持するため、焼結鉱の生産量(冷却機への焼結鉱の給鉱量)に応じて冷却機の冷却ガス量を調整し、380,000Nm3/hから410,000Nm3/hに変化させた。また、比較例2では、排気ガスを介してボイラー20に投入される熱量を一定にしてボイラー20の蒸気発生量が定格容量を超えるのを防止するため、冷却機の冷却ガス量を380,000Nm3/hに維持し、焼結鉱の給鉱量に対する冷却ガス量を減少させた。 In Comparative Example 1, in order to maintain the temperature of the sintered ore discharged from the cooler 1 at 70 ° C., the cooler according to the production amount of the sintered ore (the amount of the ore supplied to the cooler) The amount of the cooling gas was adjusted and changed from 380,000 Nm 3 / h to 410,000 Nm 3 / h. Further, in Comparative Example 2, in order to prevent the steam generation amount of the boiler 20 from exceeding the rated capacity by keeping the amount of heat input to the boiler 20 through the exhaust gas constant, the cooling gas amount of the cooler is set to 380,000 Nm. 3 / h was maintained, and the amount of cooling gas relative to the amount of sintered ore supplied was reduced.

本発明例1では、ボイラー20の蒸気発生量を定格容量近傍で制御するため、焼結鉱の生産量に応じて圧力調整弁24を操作し、ボイラーで発生させる蒸気の圧力を0.7MPaから0.9MPaに増加させた。また、本発明例2では、ボイラー20の蒸気発生量を定格容量近傍で制御するため、焼結鉱の生産量に応じて水量調整弁34を操作し、バイパスラインを通過する水量を17.0t/hから10.0t/hに減少させた。   In the present invention example 1, in order to control the steam generation amount of the boiler 20 in the vicinity of the rated capacity, the pressure regulating valve 24 is operated according to the production amount of sintered ore, and the pressure of the steam generated by the boiler is reduced from 0.7 MPa. Increased to 0.9 MPa. Further, in the present invention example 2, in order to control the steam generation amount of the boiler 20 in the vicinity of the rated capacity, the water amount adjustment valve 34 is operated according to the production amount of the sintered ore, and the amount of water passing through the bypass line is reduced to 17.0 t. / H to 10.0 t / h.

本発明例および比較例ともに、冷却機から排鉱される焼結鉱の温度が70℃を超えた場合は、排鉱された焼結鉱が搬入されるベルトコンベアが焼損するのを防止するため、排鉱された焼結鉱を散水により70℃以下に強制冷却した。   In both the inventive example and the comparative example, when the temperature of the sintered ore exhausted from the cooler exceeds 70 ° C., the belt conveyor into which the exhausted sintered ore is carried is prevented from burning out. The discharged ore was forcedly cooled to 70 ° C. or less by watering.

[評価基準]
得られた焼結鉱を放冷して常温にし、この焼結鉱の冷間強度をJIS M 8712に規定された回転強度TI(+5mm)を用いて評価した。
[Evaluation criteria]
The obtained sintered ore was allowed to cool to room temperature, and the cold strength of the sintered ore was evaluated using the rotational strength TI (+5 mm) defined in JIS M 8712.

[試験結果]
図3〜6は、焼結鉱の生産量を変化させた状態における熱バランスを示す図であり、図3は比較例1、図4は比較例2、図5は本発明例1、図6は本発明例2の熱バランスをそれぞれ示す。図3〜6では、熱バランスを説明する際に特に必要がない部分を省略した。
[Test results]
3-6 is a figure which shows the heat balance in the state which changed the production amount of the sintered ore, FIG. 3 is the comparative example 1, FIG. 4 is the comparative example 2, FIG. 5 is this invention example 1, FIG. Indicates the heat balance of Example 2 of the present invention. In FIGS. 3-6, the part which is not especially required when demonstrating a heat balance was abbreviate | omitted.

また、表1に通常の操業状態、比較例1および2並びに本発明例1および2の試験条件および試験結果をそれぞれ示す。表1に示す試験条件および試験結果は、ボイラーで発生させた蒸気について、発生量(t/h)、温度(℃)、圧力(MPa)およびその圧力おける飽和温度(℃)を示す。また、冷却機について、焼結鉱の生産量(t/h)、冷却ガス量(Nm3/h)および排気ガス量(Nm3/h)、並びに、冷却機の給鉱部および排鉱部での焼結鉱の温度(℃)を示す。 Table 1 shows normal operating conditions, test conditions and results of Comparative Examples 1 and 2 and Invention Examples 1 and 2, respectively. The test conditions and test results shown in Table 1 show the generation amount (t / h), temperature (° C.), pressure (MPa), and saturation temperature (° C.) at the pressure for the steam generated in the boiler. In addition, regarding the cooler, the production amount of sintered ore (t / h), the amount of cooling gas (Nm 3 / h) and the amount of exhaust gas (Nm 3 / h), as well as the supply section and exhaust section of the cooler Shows the temperature (° C) of the sintered ore.

ボイラーについて、供給された排気ガスの温度(℃)、排出した冷却ガスの温度(℃)、供給された水量(t/h)、再冷却ラインを通過した水量(t/h)、バイパスラインを通過した水量(t/h)、ボイラーに供給された水の温度(℃)および蒸気ドラムの圧力(MPa)を示す。さらに、冷却機から排鉱された焼結鉱について、散水による強制冷却の有無および冷間強度TI(%)を示す。   For the boiler, the temperature of the supplied exhaust gas (° C), the temperature of the discharged cooling gas (° C), the amount of water supplied (t / h), the amount of water passed through the recooling line (t / h), and the bypass line The amount of water passed (t / h), the temperature of water supplied to the boiler (° C.), and the pressure of the steam drum (MPa) are shown. Furthermore, about the sintered ore discharged | emitted from the cooler, the presence or absence of forced cooling by watering and cold strength TI (%) are shown.

Figure 2013024522
Figure 2013024522

図3〜6および表1より、比較例1では、焼結鉱の生産量に応じて冷却機の冷却ガス量を調整し、380,000Nm3/hから410,000Nm3/hに変化させた。その結果、冷却機から排鉱された焼結鉱の温度は70℃に維持されたが、排気ガスを介してボイラーに供給される熱量が増加したことから、ボイラーの蒸気発生量が36.0t/hとなって定格容量を超えた。 3 to 6 and Table 1, in Comparative Example 1, the cooling gas amount of the cooling machine was adjusted according to the production amount of the sintered ore and changed from 380,000 Nm 3 / h to 410,000 Nm 3 / h. . As a result, the temperature of the sintered ore exhausted from the cooler was maintained at 70 ° C., but the amount of heat supplied to the boiler via the exhaust gas increased, so the steam generation amount of the boiler was 36.0 t. / H and exceeded the rated capacity.

比較例2では、排気ガスを介してボイラー20に投入される熱量を一定にすることによってボイラー20の蒸気発生量を定格容量以下に制御するため、冷却機の冷却ガス量を380,000Nm3/hに維持し、焼結鉱の給鉱量に対する冷却ガス量を減少させた。その結果、ボイラーの蒸気発生量が34.0t/hと定格容量以下となったが、冷却機から排鉱された焼結鉱の温度が70℃を超えて90℃となった。 In Comparative Example 2, since the amount of steam generated in the boiler 20 is controlled below the rated capacity by making the amount of heat input to the boiler 20 through exhaust gas constant, the amount of cooling gas in the cooler is 380,000 Nm 3 / The amount of the cooling gas with respect to the supply amount of the sinter was decreased. As a result, the steam generation amount of the boiler was 34.0 t / h, which was below the rated capacity, but the temperature of the sintered ore discharged from the cooler exceeded 70 ° C. and became 90 ° C.

このため、冷却機から排鉱された焼結鉱に散水による強制冷却を施し、その結果、焼結鉱の冷却強度TIは76.5%となった。表1に示すように、通常の操業状態、比較例1、本発明例1および本発明例2では散水による強制冷却を施すことなく、その結果、焼結鉱の冷却強度TIは78%であることから、散水による強制冷却を実施すると焼結鉱の強度が低下することが確認された。   For this reason, forced cooling by watering was performed on the sintered ore discharged from the cooler, and as a result, the cooling strength TI of the sintered ore was 76.5%. As shown in Table 1, in the normal operating state, Comparative Example 1, Invention Example 1 and Invention Example 2, without forced cooling by watering, the cooling strength TI of the sintered ore is 78%. From these results, it was confirmed that the strength of the sintered ore was reduced when forced cooling by watering was performed.

本発明例1では、ボイラーで発生させる蒸気の圧力を0.7MPaから0.9MPaに増加させた。これにより、ボイラーの蒸気飽和温度が160℃から170℃に上昇し、ボイラーの蒸気発生量が34.0t/hとなり、定格容量を超えるのを防止できた。この際、冷却機の冷却能力を確保するため、比較例1と同様に、焼結鉱の生産量に応じて冷却機の冷却ガス量を調整し、380,000Nm3/hから410,000Nm3/hに変化させた。その結果、冷却機から排鉱される焼結鉱の温度を70℃に維持でき、散水による強制冷却は実施しなかった。 In Example 1 of the present invention, the pressure of the steam generated in the boiler was increased from 0.7 MPa to 0.9 MPa. As a result, the steam saturation temperature of the boiler increased from 160 ° C. to 170 ° C., and the steam generation amount of the boiler became 34.0 t / h, thereby preventing the rated capacity from being exceeded. At this time, in order to secure the cooling capacity of the cooler, similarly to Comparative Example 1, the amount of cooling gas of the cooler was adjusted according to the production amount of sintered ore, and from 380,000 Nm 3 / h to 410,000 Nm 3 / H. As a result, the temperature of the sintered ore discharged from the cooler could be maintained at 70 ° C., and forced cooling by watering was not performed.

ここで、本発明例1では、給水再冷却器や再冷却ラインおよびバイパスラインの水量についての条件を、通常の操業状態から変更していない。このため、給水再冷却器を装備していない排熱回収設備であっても、本発明の第1の制御方法を適用することにより、本発明例1と同様の効果を得ることができると考えられる。   Here, in Example 1 of the present invention, the conditions regarding the amount of water in the feed water recooler, the recooling line, and the bypass line are not changed from the normal operation state. For this reason, even if it is the waste heat recovery equipment which is not equipped with the feed water recooler, it is considered that the same effect as Example 1 of the present invention can be obtained by applying the first control method of the present invention. It is done.

本発明例2では、バイパスラインを通過する水量を17.0t/hから10.0t/hに減少させ、それに伴い再冷却ラインを通過する水量が17.0t/hから24.0t/hに増加した。これにより、給水予熱器に供給する水の温度を90℃から70℃に降温させるとともに、ボイラーに供給する水の温度を110℃から90℃に降温させ、その結果、蒸気発生量を34.0t/hに維持できた。この際、冷却機の冷却能力を確保するため、比較例1と同様に、焼結鉱の生産量に応じて冷却機の冷却ガス量を調整し、380,000Nm3/hから410,000Nm3/hに変化させた。その結果、冷却機から排鉱される焼結鉱の温度を70℃に維持でき、散水による強制冷却は実施しなかった。 In Example 2 of the present invention, the amount of water passing through the bypass line is reduced from 17.0 t / h to 10.0 t / h, and accordingly, the amount of water passing through the recooling line is changed from 17.0 t / h to 24.0 t / h. Increased. As a result, the temperature of the water supplied to the feed water preheater is lowered from 90 ° C. to 70 ° C., and the temperature of the water supplied to the boiler is lowered from 110 ° C. to 90 ° C. As a result, the steam generation amount is reduced to 34.0 t. / H. At this time, in order to secure the cooling capacity of the cooler, similarly to Comparative Example 1, the amount of cooling gas of the cooler was adjusted according to the production amount of sintered ore, and from 380,000 Nm 3 / h to 410,000 Nm 3 / H. As a result, the temperature of the sintered ore discharged from the cooler could be maintained at 70 ° C., and forced cooling by watering was not performed.

すなわち、本発明例2では、バイパスラインを通過する水量を減少させることにより、給水再冷却器に供給する水量(再冷却ラインを通過する水量)を増加させ、給水予熱器およびボイラーに供給する水の温度を下降させる。その結果、焼結鉱の生産量が増加するのに伴って冷却機の排気ガスの熱量が増加するのに応じ、給水予熱器およびボイラーで回収される排気ガスの熱量を増加させ、ボイラーの蒸気発生量が定格容量を超えるのを防止できた。   That is, in the present invention example 2, by reducing the amount of water passing through the bypass line, the amount of water supplied to the feed water recooler (the amount of water passing through the recool line) is increased, and the water supplied to the feed water preheater and the boiler is increased. Decrease the temperature. As a result, the calorific value of the exhaust gas recovered by the feed water preheater and the boiler is increased as the calorific value of the exhaust gas of the chiller increases as the production of sintered ore increases. It was possible to prevent the generated amount from exceeding the rated capacity.

これらから、本発明の第1および第2の制御方法によって、焼結鉱冷却機の冷却能力を変化させることなく、排熱回収設備に設置されるボイラーで発生する蒸気発生量を制御し、蒸気発生量が定格容量を超えるのを防止できることが明らかになった。   From these, the first and second control methods of the present invention control the amount of steam generated in the boiler installed in the exhaust heat recovery facility without changing the cooling capacity of the sinter cooler, It became clear that the generation amount can be prevented from exceeding the rated capacity.

本発明の排熱回収設備の制御方法は、ボイラーで発生させる蒸気の圧力、または、再冷却ラインとバイパスラインとを設けた給水系統においてバイパスラインを通過する水量を調整する。これにより、本発明の排熱回収設備の制御方法は、冷却機への焼結鉱の給鉱量増加等によりボイラーの蒸気発生量が定格容量を超える様相の場合であっても、冷却機の冷却能力を変化させることなく、ボイラーの蒸気発生量を定格容量以下に制御することができる。   The control method of the exhaust heat recovery facility of the present invention adjusts the pressure of steam generated by a boiler or the amount of water passing through the bypass line in a water supply system provided with a recooling line and a bypass line. As a result, the control method of the exhaust heat recovery facility of the present invention can be applied to the cooling machine even if the steam generation amount of the boiler exceeds the rated capacity due to an increase in the amount of sintered ore supplied to the cooling machine. Without changing the cooling capacity, the steam generation amount of the boiler can be controlled below the rated capacity.

したがって、本発明の排熱回収設備の制御方法を焼結鉱の製造に適用すれば、焼結鉱の生産量の変化に対応しつつ、蒸気発生量が定格容量を超えるのを防止できる。これにより、定格容量を超えて排熱回収設備が故障したり、高温の焼結鉱が冷却機から排鉱されて設備が焼損等したりするのを防止できるとともに、高品質の焼結鉱を製造できる。このような本発明の排熱回収設備の制御方法は、焼結鉱の製造に有用である。   Therefore, if the control method of the exhaust heat recovery equipment of the present invention is applied to the production of sintered ore, it is possible to prevent the steam generation amount from exceeding the rated capacity while responding to the change in the production amount of the sintered ore. As a result, it is possible to prevent the exhaust heat recovery equipment from malfunctioning beyond the rated capacity, or the high temperature sintered ore from being discharged from the cooler and the equipment to be burned out. Can be manufactured. Such a control method for exhaust heat recovery equipment of the present invention is useful for the production of sintered ore.

1:焼結鉱冷却機、 10:クーラーパン、 11:送風ダクト、
12:排気フード、 1a:給鉱部、 1b:排鉱部、 2:排熱回収設備、
20:ボイラー、 21:蒸発器、 22:過熱器、 23:蒸気ドラム、
24:圧力調整弁、 25:循環ファン、 3:給水系統、 30:給水ピット、
31:脱気器、 32:給水予熱器、 33:給水再冷却器、 34:水量調整弁、
4:焼結機、 5:クラッシャー、 6:焼結ケーキ、 7:焼結鉱、 8:蒸気
1: Sinter cooler, 10: Cooler pan, 11: Air duct,
12: exhaust hood, 1a: supply section, 1b: exhaust section, 2: exhaust heat recovery equipment,
20: Boiler, 21: Evaporator, 22: Superheater, 23: Steam drum,
24: Pressure regulating valve, 25: Circulating fan, 3: Water supply system, 30: Water supply pit,
31: Deaerator, 32: Feed water preheater, 33: Feed water recooler, 34: Water quantity adjustment valve,
4: Sintering machine, 5: Crusher, 6: Sintered cake, 7: Sinter ore, 8: Steam

Claims (2)

上面に供給された焼結鉱を給鉱部から排鉱部に向かって移動させるクーラーパンと、前記クーラーパンの下方に位置して冷却ガスを供給する送風ダクトと、前記クーラーパンの上方に位置して排気ガスを回収する排気フードとを備えた焼結鉱冷却機において、
前記排気フードで回収した前記排気ガスを、給水系統から供給された水と熱交換させて冷却ガスとして前記送風ダクトに供給するとともに、蒸気を発生させるボイラーが設置される排熱回収設備を制御する方法であって、
前記ボイラーで発生させる蒸気の圧力を調整して蒸気発生量を前記排熱回収設備の定格容量以下に制御することを特徴とする焼結鉱冷却機における排熱回収設備の制御方法。
A cooler pan that moves the sintered ore supplied to the upper surface from the supply section toward the discharge section, a blower duct that is positioned below the cooler pan and supplies cooling gas, and is positioned above the cooler pan In a sinter cooler equipped with an exhaust hood that collects exhaust gas,
The exhaust gas collected by the exhaust hood is heat-exchanged with water supplied from a water supply system and supplied to the air duct as a cooling gas, and exhaust heat recovery equipment in which a boiler for generating steam is installed is controlled. A method,
A method for controlling an exhaust heat recovery facility in a sinter cooler, wherein the pressure of steam generated by the boiler is adjusted to control a steam generation amount to be equal to or less than a rated capacity of the exhaust heat recovery facility.
上面に供給された焼結鉱を給鉱部から排鉱部に向かって移動させるクーラーパンと、前記クーラーパンの下方に位置して冷却ガスを供給する送風ダクトと、前記クーラーパンの上方に位置して排気ガスを回収する排気フードとを備えた焼結鉱冷却機において、
前記排気フードで回収した前記排気ガスを、給水系統から供給された水と熱交換させて冷却ガスとして前記送風ダクトに供給するとともに、蒸気を発生させるボイラーが設置される排熱回収設備を制御する方法であって、
前記給水系統が、水を過熱してガスを除去する脱気器と、脱気された水を予熱する給水予熱機器と、前記脱気器に供給される水と前記脱気器から排出される水とを熱交換させる給水再冷却器とを備え、
前記脱気器と前記給水予熱器との間に、前記給水再冷却器を経由する再冷却ラインと、前記脱気器から排出された水を直接前記給水予熱器に供給するバイパスラインとを設け、
前記バイパスラインを通過する水量を調整することにより、前記ボイラーの蒸気発生量を前記排熱回収設備の定格容量以下に制御することを特徴とする焼結鉱冷却機における排熱回収設備の制御方法。
A cooler pan that moves the sintered ore supplied to the upper surface from the supply section toward the discharge section, a blower duct that is positioned below the cooler pan and supplies cooling gas, and is positioned above the cooler pan In a sinter cooler equipped with an exhaust hood that collects exhaust gas,
The exhaust gas collected by the exhaust hood is heat-exchanged with water supplied from a water supply system and supplied to the air duct as a cooling gas, and exhaust heat recovery equipment in which a boiler for generating steam is installed is controlled. A method,
The water supply system is exhausted from a deaerator that superheats water to remove gas, a water supply preheating device that preheats the degassed water, water supplied to the deaerator, and the deaerator A water recooler that exchanges heat with water,
Provided between the deaerator and the feed water preheater are a recooling line that passes through the feed water recooler and a bypass line that directly supplies water discharged from the deaerator to the feed water preheater. ,
A method for controlling exhaust heat recovery equipment in a sinter cooler, wherein the amount of steam generated by the boiler is controlled to be equal to or less than a rated capacity of the exhaust heat recovery equipment by adjusting an amount of water passing through the bypass line. .
JP2011161979A 2011-07-25 2011-07-25 Control method of exhaust heat recovery equipment in sinter cooler Active JP5659981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011161979A JP5659981B2 (en) 2011-07-25 2011-07-25 Control method of exhaust heat recovery equipment in sinter cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011161979A JP5659981B2 (en) 2011-07-25 2011-07-25 Control method of exhaust heat recovery equipment in sinter cooler

Publications (2)

Publication Number Publication Date
JP2013024522A true JP2013024522A (en) 2013-02-04
JP5659981B2 JP5659981B2 (en) 2015-01-28

Family

ID=47783080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011161979A Active JP5659981B2 (en) 2011-07-25 2011-07-25 Control method of exhaust heat recovery equipment in sinter cooler

Country Status (1)

Country Link
JP (1) JP5659981B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234363A (en) * 2013-04-15 2013-08-07 中信重工机械股份有限公司 Furnace type efficient recovery system for flue gas waste heat of cooled sinter
CN103644743A (en) * 2013-12-11 2014-03-19 北京志能祥赢节能环保科技有限公司 Combination system for efficiently using waste heat in iron mine sintering cooling process
CN104296532A (en) * 2014-01-24 2015-01-21 宁波钢铁有限公司 Automatic smoke mixing device for multiple sintering machines
CN106123606A (en) * 2016-06-30 2016-11-16 中冶华天工程技术有限公司 Sintering circular-cooler exhaust heat utilization system
CN106556258A (en) * 2015-09-28 2017-04-05 宝钢工程技术集团有限公司 Sintering mine sensible heat retracting device and its using method
CN109612285A (en) * 2018-12-05 2019-04-12 东北大学 A kind of ring cold machine waste-heat recovery device of variable working condition classification
WO2023157779A1 (en) * 2022-02-18 2023-08-24 スチールプランテック株式会社 Air supply/exhaust device for sintered ore cooling machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107687767B (en) * 2017-08-15 2019-07-26 中冶华天工程技术有限公司 A kind of sinter residual neat recovering system and its exhaust heat recovering method
CN109724425B (en) * 2019-01-29 2020-04-03 四会市国耀铝业有限公司 Heat accumulating type flue gas recovery device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714101A (en) * 1980-06-30 1982-01-25 Sumitomo Heavy Industries Waste heat recovery apparatus for sintering equipment
JPS58214702A (en) * 1982-06-09 1983-12-14 三井造船株式会社 Method and device for operating waste-heat recovery device
JPS59131908U (en) * 1983-02-25 1984-09-04 株式会社東芝 Combined cycle power plant
JPS6125077B2 (en) * 1981-04-20 1986-06-13 Sumitomo Heavy Industries
JPS61246329A (en) * 1985-04-23 1986-11-01 Kawasaki Steel Corp Method for controlling quantity of recovered heat in waste heat recovering installation
JPS63201488A (en) * 1987-02-16 1988-08-19 住友重機械工業株式会社 Sintering exhaust-heat recovery device
JPS63241124A (en) * 1987-03-27 1988-10-06 Sumitomo Metal Ind Ltd Method for controlling temperature of circulating gas for sintering
JPS6468429A (en) * 1987-09-08 1989-03-14 Kobe Steel Ltd Method for controlling exhaust heat recovery equipment in sintering machine
JPH01208602A (en) * 1988-02-16 1989-08-22 Kawasaki Heavy Ind Ltd Method and apparatus for controlling an exhaust gas economizer
JPH0474294U (en) * 1990-11-06 1992-06-29
JPH09119780A (en) * 1995-10-25 1997-05-06 Sumitomo Metal Ind Ltd Method for detecting sealing fault in sintered ore cooler
JP2005015530A (en) * 2003-06-23 2005-01-20 Nippon Steel Corp Method for supplying water to boiler of coke dry quenching installation and facility for supplying water

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714101A (en) * 1980-06-30 1982-01-25 Sumitomo Heavy Industries Waste heat recovery apparatus for sintering equipment
JPS6125077B2 (en) * 1981-04-20 1986-06-13 Sumitomo Heavy Industries
JPS58214702A (en) * 1982-06-09 1983-12-14 三井造船株式会社 Method and device for operating waste-heat recovery device
JPS59131908U (en) * 1983-02-25 1984-09-04 株式会社東芝 Combined cycle power plant
JPS61246329A (en) * 1985-04-23 1986-11-01 Kawasaki Steel Corp Method for controlling quantity of recovered heat in waste heat recovering installation
EP0302120A1 (en) * 1987-02-16 1989-02-08 Sumitomo Heavy Industries, Ltd Apparatus for recovering waste heat of sintering
JPS63201488A (en) * 1987-02-16 1988-08-19 住友重機械工業株式会社 Sintering exhaust-heat recovery device
JPS63241124A (en) * 1987-03-27 1988-10-06 Sumitomo Metal Ind Ltd Method for controlling temperature of circulating gas for sintering
JPS6468429A (en) * 1987-09-08 1989-03-14 Kobe Steel Ltd Method for controlling exhaust heat recovery equipment in sintering machine
JPH01208602A (en) * 1988-02-16 1989-08-22 Kawasaki Heavy Ind Ltd Method and apparatus for controlling an exhaust gas economizer
JPH0474294U (en) * 1990-11-06 1992-06-29
JPH09119780A (en) * 1995-10-25 1997-05-06 Sumitomo Metal Ind Ltd Method for detecting sealing fault in sintered ore cooler
JP2005015530A (en) * 2003-06-23 2005-01-20 Nippon Steel Corp Method for supplying water to boiler of coke dry quenching installation and facility for supplying water

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234363A (en) * 2013-04-15 2013-08-07 中信重工机械股份有限公司 Furnace type efficient recovery system for flue gas waste heat of cooled sinter
CN103644743A (en) * 2013-12-11 2014-03-19 北京志能祥赢节能环保科技有限公司 Combination system for efficiently using waste heat in iron mine sintering cooling process
CN103644743B (en) * 2013-12-11 2015-05-20 北京志能祥赢节能环保科技有限公司 Combination system for efficiently using waste heat in iron mine sintering cooling process
CN104296532A (en) * 2014-01-24 2015-01-21 宁波钢铁有限公司 Automatic smoke mixing device for multiple sintering machines
CN106556258A (en) * 2015-09-28 2017-04-05 宝钢工程技术集团有限公司 Sintering mine sensible heat retracting device and its using method
CN106123606A (en) * 2016-06-30 2016-11-16 中冶华天工程技术有限公司 Sintering circular-cooler exhaust heat utilization system
CN109612285A (en) * 2018-12-05 2019-04-12 东北大学 A kind of ring cold machine waste-heat recovery device of variable working condition classification
WO2023157779A1 (en) * 2022-02-18 2023-08-24 スチールプランテック株式会社 Air supply/exhaust device for sintered ore cooling machine

Also Published As

Publication number Publication date
JP5659981B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5659981B2 (en) Control method of exhaust heat recovery equipment in sinter cooler
RU2539449C2 (en) Method and installation for recovering heat from ash residues
JP6076977B2 (en) Waste heat recovery power plant for sintering equipment
JP2012251698A (en) Waste heat recovery equipment of sintered ore cooling device, waste heat recovering method, and sintering machine system
CN102016241A (en) Oxyfuel combusting boiler system and a method of generating power by using the boiler system
CN106556008A (en) Large circulating fluidized bed boiler vast scale mixes burned coal gangue coal mud method simultaneously
JP6605934B2 (en) Coal fired boiler and low-grade coal drying method
JP5840024B2 (en) Plant for combined power generation using wet fuel and fuel drying method thereof
JP3783024B2 (en) Sludge treatment system and method
CN101709873B (en) Banking-up operation method of 300000KW circulating fluidized bed boiler
EP2249079B1 (en) Method and apparatus for improving the efficiency of a heat generator for industrial or domestic use
JP5092114B2 (en) In-furnace fluidity management method for fluidized media accompanying coal type switching in fluidized bed boiler
JP4690924B2 (en) Coal-fired boiler control equipment
JP2007091512A (en) Method of utilizing heat energy in cement manufacturing apparatus, and cement manufacturing equipement
JP2012189297A (en) Boiler equipment and control method for outlet gas temperature therefor
KR101690384B1 (en) Waste heat recovery apparatus for combustion furnace and method thereof
JP2007322070A (en) Furnace bed temperature/bed height management method following coal type switching in fluidized bed boiler
DE102014100378B3 (en) Clinker cooler and method for cooling clinker
CN106705013B (en) Electric furnace flue gas afterheat utilizing system based on multiple pressure mode
CN106679439B (en) A kind of heater for rolling steel afterheat utilizing system
WO2018096757A1 (en) Heat exchange system and operating method therefor, cooling system and cooling method for gas turbine, and gas turbine system
JP2005015530A (en) Method for supplying water to boiler of coke dry quenching installation and facility for supplying water
JP5183649B2 (en) Forced cooling method for once-through boiler
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP2017206643A (en) Integrated gasification combined cycle plant and operation method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R151 Written notification of patent or utility model registration

Ref document number: 5659981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350