JPS63240946A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPS63240946A
JPS63240946A JP62070495A JP7049587A JPS63240946A JP S63240946 A JPS63240946 A JP S63240946A JP 62070495 A JP62070495 A JP 62070495A JP 7049587 A JP7049587 A JP 7049587A JP S63240946 A JPS63240946 A JP S63240946A
Authority
JP
Japan
Prior art keywords
catalyst
layer
alumina
palladium
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62070495A
Other languages
Japanese (ja)
Inventor
Hiroaki Yamamoto
裕朗 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP62070495A priority Critical patent/JPS63240946A/en
Publication of JPS63240946A publication Critical patent/JPS63240946A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance resistance to poisoning properties and low-temp. activity by carrying Pd or the like on the inner layer of alumina layers coated on the surface of a mineral carrier and carrying Ti and Pt, etc., on the outer layer thereof to form a catalyst for purifying exhaust gas. CONSTITUTION:The alumina layer consisting of at least two layers is laminated on the surface of the base material of a mineral carrier and also Pd or Pd and Rh are carried on the inner layer of the alumina layer and oxide of at least one kind of metal selected from among Ti, Te, Si and Zr, and Pt or Pt and Rh are carried on the outer layer of the alumina layer to form a catalyst for purifying exhaust gas. In this catalyst, Pd liable to poisoning can be effectively utilized as a catalytic component and furthermore activity at a time of low temp. can be enhanced and also the cost of this catalyst can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、内燃機関から排出される排ガス中の窒素酸
化物(NO,x) 、炭化水素(IIC)、−酸化炭素
(CO)を同時に効率よく、かつ低温より浄化低減でき
、さらに鉛(Pb)、リン(P)等の被毒物質に強い排
ガス浄化用触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention simultaneously removes nitrogen oxides (NO, The present invention relates to a catalyst for purifying exhaust gas that is efficient, can be purified at lower temperatures, and is resistant to poisonous substances such as lead (Pb) and phosphorus (P).

(従来の技術) 従来のこの種排ガス浄化用触媒としては、白金(Pt)
、ロジウム0?h)、パラジウム(Pd)等の触媒貴金
属が担持されているアルミナ層の表面にポーラスなアル
ミナ層を被覆した構造となっているものである。これに
関連して、例えば特開昭61−74650号公報には、
排ガス浄化用モノリス触媒においてガス流入口側に鉛化
合物が生成され易いことにより、担体のガス流入口側の
触媒層の表面を例えば活性アルミナから成る被IW層で
IWっだ触媒が開示されている。
(Prior art) Conventional catalysts for purifying this type of exhaust gas include platinum (Pt).
, rhodium 0? h) It has a structure in which the surface of an alumina layer supporting a catalytic noble metal such as palladium (Pd) is coated with a porous alumina layer. In this regard, for example, Japanese Patent Application Laid-Open No. 61-74650,
Since lead compounds are likely to be generated on the gas inlet side of a monolithic catalyst for exhaust gas purification, IW catalysts have been disclosed in which the surface of the catalyst layer on the gas inlet side of the carrier is coated with an IW layer made of activated alumina, for example. .

(発明が解決しようとする問題点) しかしながら、このような従来の排ガス浄化用触媒にあ
っては、燃料オイル中の鉛(Ilb)、リン(P)等の
被毒物質をトラップするために触媒貴金属担持アルミナ
層の表面側にポーラスなアルミナ層を被覆している構造
となっていたため、鉛、リンによる被毒を受けにくい白
金やロジウムが担持さ11゜ているアルミナ層まで被覆
され、低温時における触媒浄化皐が低く、また被覆層が
アルミナのみであるため、鉛、リン等をトランプする1
1ヒカが低いという問題点があった。
(Problems to be Solved by the Invention) However, in such conventional exhaust gas purification catalysts, catalysts are used to trap poisonous substances such as lead (Ilb) and phosphorus (P) in fuel oil. Because the structure was such that a porous alumina layer was coated on the surface side of the precious metal-supported alumina layer, even the alumina layer supporting platinum and rhodium, which is less susceptible to poisoning by lead and phosphorus, was covered, and the alumina layer with a thickness of 11° was coated. Since the catalyst purification rate is low and the coating layer is only alumina, it is difficult to remove lead, phosphorus, etc.
There was a problem that one signal was low.

(問題点を解決するための手段) この発明は、鉛、リンによる被毒を受けやすいパラジウ
ム又はパラジウムとロジウムを主に担持したアルミナ層
のみをチタン(Ti)、テルル(Te)、ケイ素(Si
)およびジルコニウム(Zr)よりなる群から選定され
た少なくとも1種の金属酸化物を含むアルミナ層で被覆
することにより、上記問題点を解決し得ることを知見し
たことに基くものである。
(Means for Solving the Problems) This invention aims to replace only palladium, which is susceptible to poisoning by lead and phosphorus, or an alumina layer mainly supporting palladium and rhodium with titanium (Ti), tellurium (Te), and silicon (Si).
This is based on the finding that the above problems can be solved by coating with an alumina layer containing at least one metal oxide selected from the group consisting of ) and zirconium (Zr).

従って本発明の排ガス浄化用触媒は、無機質担体基材の
表面に被覆されているアルミナ層は少なくとも2層で構
成され、内側の層にはパラジウム又はパラジウムとロジ
ウムが担持され、外側の層にはチタン、テルル、ケイ素
およびジルコニウムよりなる群から選ばれた少なくとも
1種の金属の酸化物および白金または白金とロジウムが
担持されていることを特徴とする。
Therefore, in the exhaust gas purification catalyst of the present invention, the alumina layer coated on the surface of the inorganic carrier base material is composed of at least two layers, the inner layer supports palladium or palladium and rhodium, and the outer layer supports the alumina layer. It is characterized by supporting an oxide of at least one metal selected from the group consisting of titanium, tellurium, silicon, and zirconium, and platinum or platinum and rhodium.

本発明の好適例の触媒においては、内側の層の活性アル
ミナ層にはパラジウム又はパラジウムとロジウムが担持
され、外側の層の第1の活性アルミナ層にはチタン、テ
ルル、ケイ素およびジルコニウムよりなる群から選ばれ
た少なくとも1種の金属の酸化物が担持され、内側の層
を被覆し、更にこの上に白金または白金とロジウムが担
持された第2の活性アルミナ層を備える。
In a preferred embodiment of the catalyst of the present invention, palladium or palladium and rhodium is supported on the activated alumina layer of the inner layer, and a group consisting of titanium, tellurium, silicon, and zirconium is supported on the first activated alumina layer of the outer layer. The inner layer is coated with an oxide of at least one metal selected from the following, and is further provided with a second activated alumina layer on which platinum or platinum and rhodium are supported.

(作 用) パラジウムは白金、ロジウムと同じように三元触媒とし
て高い活性を持っているとともに、安価である。しかし
ながらパラジウムは白金、ロジウムに比べ燃料中の鉛に
よる被毒を受けやすく、鉛の存在下では活性が著しく落
ちる。よってパラジウムを触媒中の貴金属として用いる
ためには、鉛のトラップ層を設ける必要がある。一般に
鉛のトラップ層としてはアルミナ層が用いられているが
、アルミナだけではトラップ能力が十分ではない。
(Function) Like platinum and rhodium, palladium has high activity as a three-way catalyst and is inexpensive. However, palladium is more susceptible to poisoning by lead in fuel than platinum and rhodium, and its activity is significantly reduced in the presence of lead. Therefore, in order to use palladium as a noble metal in a catalyst, it is necessary to provide a lead trapping layer. Generally, an alumina layer is used as a lead trapping layer, but alumina alone does not have sufficient trapping ability.

鉛の反応性をみるとTi、 Te、 SiおよびZr等
の金属の酸化物と非常に容易に化合物を生成する。例え
ば TiO□は鉛と化合してPbTi0+となる。よっ
て鉛のトラップ層としてはTi、 Te、 Siおよび
Zrよりなる群から選定された少なくとも一種の金属の
酸化物を含むアルミナ層がよい。
Looking at the reactivity of lead, it very easily forms compounds with oxides of metals such as Ti, Te, Si, and Zr. For example, TiO□ combines with lead to become PbTi0+. Therefore, the lead trapping layer is preferably an alumina layer containing an oxide of at least one metal selected from the group consisting of Ti, Te, Si, and Zr.

この場合のTi、 Te、 SiおよびZrよりなる群
から選定された少なくとも1種の金属の酸化物の総混合
星はアルミナに対して金属換算で1〜50重量%、好ま
しくは5〜40重量%とするのがよい。これは、1重量
%未溝の場合、金属酸化物を添加しても耐被毒性向上の
効果が少なく、また50重量%より多くしてもこれによ
る耐被毒性向上効果はほとんどない。
In this case, the total mixed star of the oxide of at least one metal selected from the group consisting of Ti, Te, Si, and Zr is 1 to 50% by weight, preferably 5 to 40% by weight in terms of metal, based on the alumina. It is better to This means that when 1% by weight of the metal oxide is ungrooved, there is little effect of improving the poisoning resistance even if the metal oxide is added, and even if the amount is more than 50% by weight, there is almost no effect of improving the poisoning resistance.

また、このトラップ層の厚さとしては10μm〜50μ
mとするのがよい。これは10μm未満では鉛のトラッ
プ効果が不十分で耐被毒性向上の効果が少なくなり、5
0μmより厚くすると耐被毒性向上効果以上に低温時に
おける活性低下が起こる。
Moreover, the thickness of this trap layer is 10 μm to 50 μm.
It is better to set it to m. This is because if the diameter is less than 10 μm, the lead trapping effect is insufficient and the effect of improving poisoning resistance is reduced.
If the thickness is greater than 0 μm, the activity at low temperatures will decrease more than the effect of improving poisoning resistance.

また、パラジウムは白金に比べてCO及び不飽和炭化水
素の酸化に優れているが、飽和炭化水素の酸化能は劣る
ため、触媒中にはパラジウム、白金の両方を用いること
が必要である。しかし、白金とパラジウムがコート層中
に共存すると高温度下で合金を形成し活性を失なってし
まう。そこで白金を担持したコート層とパラジウムを担
持したコート層を別々に分ける必要がある。またRhは
NOX転化の必須成分であり、パラジウム、白金のシン
タリングを抑制する働きもあるため両方のコート層中に
担持するのが望ましい。
Further, although palladium is superior to platinum in oxidizing CO and unsaturated hydrocarbons, its ability to oxidize saturated hydrocarbons is inferior, so it is necessary to use both palladium and platinum in the catalyst. However, if platinum and palladium coexist in the coating layer, they will form an alloy at high temperatures and lose their activity. Therefore, it is necessary to separate the coat layer carrying platinum and the coat layer carrying palladium. Further, since Rh is an essential component for NOX conversion and also has the function of suppressing sintering of palladium and platinum, it is desirable to support it in both coat layers.

ところで、従来のトランプ層はパラジウム、白金、ロジ
ウム等の触媒貴金属成分を鉛などによる被毒を防ぐため
に、触媒貴金属成分が含まれるアルミナ層の上、つまり
コート層の最表面に設けられていた。
By the way, the conventional playing card layer was provided on the alumina layer containing the catalytic noble metal component, that is, on the outermost surface of the coating layer, in order to prevent the catalytic noble metal component such as palladium, platinum, or rhodium from being poisoned by lead or the like.

しかし、この方法で製造した触媒は低温時における活性
が低いという問題がある。これは、鉛などの被毒に比較
的強い白金、ロジウムまでもアルミナのトラップ層で覆
っているため、このトラップ層で拡散が律速となったり
排ガスの温度をうばわれたりするため低温時における活
性が低い。よって、トラップ層はパラジウムを主に含む
アルミナ層のみを覆うようにし、白金を主に含むアルミ
ナ層はトランプ層の表面側に設ける必要がある。
However, the catalyst produced by this method has a problem of low activity at low temperatures. This is because platinum and rhodium, which are relatively resistant to poisoning such as lead, are covered with an alumina trap layer, so this trap layer becomes rate-limiting for diffusion and steals the temperature of the exhaust gas, making it less active at low temperatures. is low. Therefore, the trap layer must cover only the alumina layer mainly containing palladium, and the alumina layer mainly containing platinum must be provided on the surface side of the playing card layer.

以上のことから、Ti、、Te、 SiおよびZrより
なる群から選定された少なくとも1種の金属酸化物を含
むアルミナ層より表面側の層には主に白金または白金と
ロジウムを含むアルミナ層とし、内側の層には主にパラ
ジウムまたはパラジウムとロジウムを含むアルミナ層を
用いることで、触媒の耐被毒性、低温活性を向上させる
ことができる。
From the above, the layer on the surface side of the alumina layer containing at least one metal oxide selected from the group consisting of Ti, Te, Si, and Zr is an alumina layer containing mainly platinum or platinum and rhodium. By using mainly palladium or an alumina layer containing palladium and rhodium as the inner layer, the poisoning resistance and low-temperature activity of the catalyst can be improved.

(実験例) 以下、本発明を実施例、比較例及び試験例により説明す
る。
(Experimental Examples) The present invention will be described below with reference to Examples, Comparative Examples, and Test Examples.

去施五土 活性アルミナ担体を硝酸セリウム水溶液に含浸し、乾燥
した後、空気気流中600°Cで1.5時間焼成し、ア
ルミナに対しセリウムを金属換算で3.0重量%含む活
性アルミナ担体を得た。次に硝酸酸性ベーマイトゾル(
ベーマイトアルミナ10重量%懸濁液に10重量%HN
O3を転化することによって得られたゾル)1240g
、上記活性アルミナ担体503g、酸化セリウム粉末2
58gをボールミルボットに投入し、8時間粉砕してス
ラリーAを得た。
An activated alumina support was impregnated with a cerium nitrate aqueous solution, dried, and then fired at 600°C in an air stream for 1.5 hours to obtain an activated alumina support containing 3.0% by weight of cerium based on alumina in terms of metal. I got it. Next, nitric acid acidic boehmite sol (
10% by weight HN in a 10% by weight suspension of boehmite alumina
Sol obtained by converting O3) 1240g
, 503 g of the above activated alumina carrier, 2 cerium oxide powder
Slurry A was obtained by putting 58 g into a ball mill bot and grinding for 8 hours.

また、前記活性アルミナ担体168g、硝酸酸性ベーマ
イトゾル413g、酸化チタン粉末123gをボールミ
ルポットに投入し、8時間粉砕してスラリーBを得た。
Further, 168 g of the activated alumina carrier, 413 g of nitric acidic boehmite sol, and 123 g of titanium oxide powder were placed in a ball mill pot and ground for 8 hours to obtain slurry B.

コーディエライト質一体型担体(400セル、1.71
)にスラリーAをコーティングし、乾燥した後650°
Cで2時間空気気流中で焼成し、170g/個のコーテ
ィング層を得た。この触媒担体に塩化パラジウム溶液と
塩化ロジウム溶液を用い、含浸法によりパラジウムを触
媒1個あたり0.95g、ロジウムを触媒1個あたり0
.10g担持した後、焼成ガス気流中600°Cで2時
間焼成した。次いでこの触媒担体にスラリーBをコーテ
ィングした後、空気気流中650 ’Cで2時間焼成し
、57g/個のコーティング層を得た。次いでこの触媒
担体にスラリーAをコーティングし、乾燥した後、65
0°Cで2時間空気気流中で焼成し、170g/個のコ
ーティング層を得た。この触媒担体に、塩化白金酸溶液
と酸化ロジウム溶液を用い、含浸法により白金を触媒1
個あたり0.95g、ロジウムを触媒1個あたり0.1
0g担持した後、焼成ガス気流中600°Cで2時間焼
成して、本実施例の排ガス浄化用触媒Aを形成した。
Cordierite integrated carrier (400 cells, 1.71
) was coated with slurry A and dried at 650°.
C. for 2 hours in a stream of air to obtain 170 g/piece of coating layer. Using a palladium chloride solution and a rhodium chloride solution on this catalyst carrier, the impregnation method was used to add 0.95 g of palladium per catalyst and 0.0 g of rhodium per catalyst.
.. After supporting 10 g, it was fired at 600°C for 2 hours in a firing gas stream. The catalyst carrier was then coated with slurry B and then calcined at 650'C in an air stream for 2 hours to obtain a coating layer of 57 g/piece. Next, this catalyst carrier was coated with slurry A, and after drying, 65
It was baked at 0° C. for 2 hours in a stream of air, yielding 170 g/piece of coating layer. Using a chloroplatinic acid solution and a rhodium oxide solution, platinum was added to the catalyst carrier by an impregnation method.
0.95g per piece, 0.1 rhodium per catalyst
After supporting 0 g, it was fired at 600°C for 2 hours in a firing gas stream to form exhaust gas purifying catalyst A of this example.

プJdLL 実施例1において、スラリーBの酸化チタン粉末123
gを酸化テルル(TeO□)粉末91gに変えた以外は
同様にして触媒Bを形成した。
In Example 1, titanium oxide powder 123 of slurry B
Catalyst B was formed in the same manner except that g was changed to 91 g of tellurium oxide (TeO□) powder.

尖詣■主 実施例1において、スラリーBの酸化チタン粉末123
gを酸化ジルコニウム(ZrOz)粉末100gに変え
た以外は同様にして触媒Cを形成した。
Tip: In main example 1, titanium oxide powder 123 of slurry B
Catalyst C was formed in the same manner except that g was changed to 100 g of zirconium oxide (ZrOz) powder.

災施拠工 実施例1において、スラリーBの酸化チタン粉末123
gを酸化ケイ素(SiO□)粉末162gに変えた以外
は同様にして触媒りを形成した。
In disaster construction example 1, titanium oxide powder 123 of slurry B
A catalyst was formed in the same manner except that 162 g of silicon oxide (SiO□) powder was used instead of 162 g of silicon oxide (SiO□) powder.

ル較拠土 実施例1において、スラリーBの酸化チタン粉末123
gを取り除いた以外は同様にして触媒1を形成した。
In Example 1, titanium oxide powder 123 of slurry B
Catalyst 1 was formed in the same manner except that g was removed.

比較1 実施例1において、スラリーBをコーティングせず、白
金、ロジウムを含むアルミナ層とパラジウム、ロジウム
を含むアルミナ層のみにした以外は同様にして、触媒2
を形成した。
Comparison 1 Catalyst 2 was prepared in the same manner as in Example 1, except that slurry B was not coated and only the alumina layer containing platinum and rhodium and the alumina layer containing palladium and rhodium were used.
was formed.

ル較拠主 実施例1において、パラジウム0.95 g / 個、
ロジウム0.10g/個担持したアルミナ層についで触
媒担体にスラリーAをコーティングした後、空気気流中
650°Cで2時間焼成し、170g/個ノコーティン
グ層を得た。この触媒担体に実施例1と同様にして白金
0.95 g /個、ロジウム0.10 g /個を担
持した後、燃焼ガス気流中600″Cで2時間焼成した
。次いでこの触媒担体にスラリーBをコーティングした
後、空気気流中650 ’Cで2時間焼成し、57g/
個のコーティング層を得、触媒3を形成した。
In Comparative Example 1, palladium 0.95 g/piece,
The alumina layer supporting 0.10 g of rhodium was then coated on the catalyst carrier with slurry A, and then calcined in an air stream at 650°C for 2 hours to obtain a coating layer of 170 g/layer. This catalyst carrier was loaded with 0.95 g/piece of platinum and 0.10 g/piece of rhodium in the same manner as in Example 1, and then calcined at 600"C for 2 hours in a combustion gas stream. Next, a slurry was added to the catalyst carrier. After coating B, it was baked at 650'C in an air stream for 2 hours to give 57g/
A catalyst 3 was obtained by obtaining two coating layers.

、比較」■工 実施例1において、パラジウムと白金を担持する位置を
逆にし赳以外同様にして触媒4を形成した。
, Comparison ①Catalyst 4 was formed in the same manner as in Example 1 except that the positions of supporting palladium and platinum were reversed.

拭笠開 実施例1〜4より得た触媒A−D、比較例1〜4で得た
触媒1〜4について下記条件で耐久試験を行なった後、
性能評価試験を行ない、その結果を表1に示した。
After carrying out a durability test under the following conditions for Catalysts A-D obtained from Fukkasa Kai Examples 1 to 4 and Catalysts 1 to 4 obtained in Comparative Examples 1 to 4,
A performance evaluation test was conducted and the results are shown in Table 1.

耐久試筋逢並 (1)排ガス温度   750°C (2)空間速度(SV)   約7万Hr−’(3)耐
久時間    100時間 (4)エンジン    排気量2.200cc(5)燃
料      有鉛ガソリン(Pb 12mg/1ls
G)(6)耐久中入ロエミッション 空燃比(A/F)
=14.6■囁拭狙条ユ (1)空間速度(SV)     38.80011r
” ’(2)エンジン      排気量2,0OOc
c(3)燃料        無鉛ガソリン(4)大口
エミッション  A/F=14.6(5)排ガス中の濃
度   HC: 2,600ppmCo : 6,00
0ppm No : 1,500ppm O□: 7,000ppm 評価は触媒入口温度を200°C〜400″Cまで徐々
に上昇させ(10°C/90sec)、転化率が50%
となる時の入口温度をT、。とじて比較した。
Durability test specifications (1) Exhaust gas temperature 750°C (2) Space velocity (SV) Approx. 70,000 Hr-' (3) Endurance time 100 hours (4) Engine displacement 2.200cc (5) Fuel Leaded gasoline (Pb 12mg/1ls
G) (6) Endurance low emissions air-fuel ratio (A/F)
= 14.6■ Whisper Wipe Aijo Yu (1) Space velocity (SV) 38.80011r
” '(2) Engine displacement 2,0OOc
c (3) Fuel Unleaded gasoline (4) Large emission A/F = 14.6 (5) Concentration in exhaust gas HC: 2,600ppmCo: 6,00
0ppm No: 1,500ppm O□: 7,000ppm For evaluation, the catalyst inlet temperature was gradually raised from 200°C to 400″C (10°C/90sec), and the conversion rate was 50%.
The inlet temperature when becomes T. I closed it and compared it.

表  1 (発明の効果) 以上説明してきたように、この発明によれば、その構成
を鉛、リンによる被毒を受けやすいパラジウムまたはパ
ラジウムとロジウムを担持したアルミナ層のみをTi、
 Te、 SiおよびZrよりなる群から選定された少
なくとも1種の金属の酸化物を含むアルミナ層で被覆し
、比較的被毒に強い白金または白金とロジウム担持した
アルミナ層を表面にコーティングした構造としたため、
被毒を受けやすいパラジウムも触媒成分として有効に活
用することができ、さらに低温時における活性も向上で
き、さらに触媒のコストも低減できるという効果が得ら
れる。
Table 1 (Effects of the Invention) As explained above, according to the present invention, only the alumina layer supporting palladium or palladium and rhodium, which is susceptible to poisoning by lead and phosphorus, is Ti,
It has a structure in which it is coated with an alumina layer containing an oxide of at least one metal selected from the group consisting of Te, Si, and Zr, and its surface is coated with platinum, which is relatively resistant to poisoning, or an alumina layer carrying platinum and rhodium. Because of that,
Palladium, which is susceptible to poisoning, can be effectively used as a catalyst component, and furthermore, the activity at low temperatures can be improved, and the cost of the catalyst can also be reduced.

Claims (1)

【特許請求の範囲】[Claims] 1、無機質担体基材の表面に被覆されるアルミナ層が少
なくとも2層で構成され、内側の層にはパラジウム又は
パラジウムとロジウムが担持され、外側の層にはチタン
、テルル、ケイ素およびジルコニウムよりなる群から選
ばれた少なくとも1種の金属の酸化物および白金または
白金とロジウムが担持されていることを特徴とする排ガ
ス浄化用触媒。
1. The alumina layer coated on the surface of the inorganic carrier base material is composed of at least two layers, the inner layer carries palladium or palladium and rhodium, and the outer layer consists of titanium, tellurium, silicon, and zirconium. A catalyst for exhaust gas purification, characterized in that it supports an oxide of at least one metal selected from the group consisting of platinum or platinum and rhodium.
JP62070495A 1987-03-26 1987-03-26 Catalyst for purifying exhaust gas Pending JPS63240946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070495A JPS63240946A (en) 1987-03-26 1987-03-26 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070495A JPS63240946A (en) 1987-03-26 1987-03-26 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS63240946A true JPS63240946A (en) 1988-10-06

Family

ID=13433160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070495A Pending JPS63240946A (en) 1987-03-26 1987-03-26 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS63240946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000050169A1 (en) * 1999-02-23 2000-08-31 Nikki Chemical Co., Ltd. Catalyst for removing nitrogen oxides and method for removing nitrogen oxides
WO2014119749A1 (en) * 2013-01-31 2014-08-07 ユミコア日本触媒株式会社 Exhaust-gas purification catalyst and exhaust-gas purification method using said catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000050169A1 (en) * 1999-02-23 2000-08-31 Nikki Chemical Co., Ltd. Catalyst for removing nitrogen oxides and method for removing nitrogen oxides
EP1075870A1 (en) * 1999-02-23 2001-02-14 Nikki Chemical Co., Ltd. Catalyst for removing nitrogen oxides and method for removing nitrogen oxides
EP1075870A4 (en) * 1999-02-23 2002-01-09 Nikki Chem Co Ltd Catalyst for removing nitrogen oxides and method for removing nitrogen oxides
JP4774153B2 (en) * 1999-02-23 2011-09-14 日揮触媒化成株式会社 Nitrogen oxide removing catalyst and nitrogen oxide removing method
WO2014119749A1 (en) * 2013-01-31 2014-08-07 ユミコア日本触媒株式会社 Exhaust-gas purification catalyst and exhaust-gas purification method using said catalyst
CN104968430A (en) * 2013-01-31 2015-10-07 优美科触媒日本有限公司 Exhaust-gas purification catalyst and exhaust-gas purification method using said catalyst
US9433927B2 (en) 2013-01-31 2016-09-06 Umicore Shokubai Japan Co., Ltd. Exhaust gas purification catalyst and exhaust gas purification method using said catalyst
JPWO2014119749A1 (en) * 2013-01-31 2017-01-26 ユミコア日本触媒株式会社 Exhaust gas purification catalyst and exhaust gas purification method using the catalyst

Similar Documents

Publication Publication Date Title
JP4838258B2 (en) Exhaust gas purification catalyst
JP3956437B2 (en) Exhaust gas purification catalyst
JPH0910594A (en) Catalyst for purifying exhaust gas
JP2009541041A (en) Three-way catalyst
JPH09500570A (en) Layered catalyst composite
JPH08281107A (en) Catalyst for purifying exhaust gas
JP2006523530A (en) Catalyst support
JP5504834B2 (en) Exhaust gas purification catalyst
JPS6384635A (en) Catalyst for purifying exhaust gas
JP3872153B2 (en) Exhaust gas purification catalyst
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JPS63240946A (en) Catalyst for purifying exhaust gas
JPS61274746A (en) Monolithic exhaust gas purifying catalyst
JPS61293550A (en) Catalyst for purifying exhaust gas
JPH0857315A (en) Catalyst for purification of exhaust gas
JPS61209045A (en) Catalyst for purifying exhaust gas
JPH03196841A (en) Catalyst for purification of exhaust gas
JPH01107847A (en) Catalyst for purification of exhaust gas from diesel
JPH0331396Y2 (en)
JP2001113171A (en) Method of manufacturing catalyst for cleaning exhaust gas
JP3330154B2 (en) Exhaust gas purification catalyst
JP2993297B2 (en) Exhaust gas purification catalyst
JP2948232B2 (en) Exhaust gas purification catalyst
JPS6268545A (en) Monolithic catalyst for purifying exhaust gas
JPH05285391A (en) Catalyst for purification of exhaust gas