JPS63239741A - Manufacture for superconductor - Google Patents

Manufacture for superconductor

Info

Publication number
JPS63239741A
JPS63239741A JP62073842A JP7384287A JPS63239741A JP S63239741 A JPS63239741 A JP S63239741A JP 62073842 A JP62073842 A JP 62073842A JP 7384287 A JP7384287 A JP 7384287A JP S63239741 A JPS63239741 A JP S63239741A
Authority
JP
Japan
Prior art keywords
superconducting
superconductor
oxide
superconductive
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62073842A
Other languages
Japanese (ja)
Other versions
JP2547209B2 (en
Inventor
Yasuzo Tanaka
田中 靖三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62073842A priority Critical patent/JP2547209B2/en
Publication of JPS63239741A publication Critical patent/JPS63239741A/en
Application granted granted Critical
Publication of JP2547209B2 publication Critical patent/JP2547209B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make a long-size oxide series superconductor continuously manufacturable in an efficient manner, by extruding slurry of the oxided series superconductor and a non-superconductive mineral with a die, setting it down to a complex line, and after heating and driving this complex line, carrying out a degressive process, then winding a metal tape on the outer circumference while carrying out a twisting process. CONSTITUTION:Slurries 1 and 2 of an oxide series superconductor and a non- superconductive mineral are set up so as to cause the non-superconductive mineral to surround the oxide series superconductor, and these slurries 1 and 2 are extruded by dead load of these slurries 1 and 2 or pressurization with a die 5, setting it down to a complex line 6. And, after this complex line is heated and dried up, a degressive process is carried out, then a metal tape 10 is wound on the outer circumference while performing a twisting process. With this constitution, a long-size line of the oxide series superconductive wire being in a low magnetic field and showing stable and excellent characteristics is seasily manufacturable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物系超電導線の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing an oxide superconducting wire.

(従来の技術) 従来酸化物系超電導線の製造方法としては、第5図およ
び第6図に示すように金属性パイプα4の中に酸化物超
電導体とすべく配合した原料粉α9を圧縮挿入し、これ
を伸線や圧延加工によって減面加工後最終的な熱処理を
施して原料粉を酸化物超電導体にする方法が行われてい
た。この方法ではパイプ中に原料粉を入れるため、長尺
のものができず、また超電導線の断面構造が単−芯のも
のしか製造できなかった。また超電導の低磁界不安定現
象や交流損失が大きいなどの特性面においても問題とな
っていた。
(Prior art) As shown in FIGS. 5 and 6, the conventional method for manufacturing oxide-based superconducting wire involves compressing and inserting raw material powder α9 blended to form an oxide superconductor into a metal pipe α4. However, the method used was to reduce the area by wire drawing or rolling and then subject it to a final heat treatment to turn the raw material powder into an oxide superconductor. In this method, raw material powder is put into the pipe, so long wires cannot be produced, and superconducting wires with a cross-sectional structure of only a single core can only be produced. There were also problems with the characteristics of superconductors, such as low magnetic field instability and high AC loss.

(発明が解決・しようとする問題点) 本発明は上記の問題に鑑みなされたもので長尺の酸化物
系超電導線が連続的に能率良く製造でき、しかも超電導
特性が優れた線の製造を可能としたものである。
(Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned problems, and is capable of manufacturing long oxide-based superconducting wires continuously and efficiently, and that also has excellent superconducting properties. This made it possible.

(問題点を解決するための手段および作用)本発明は酸
化物系超電導体および非超電導性無機物のスラリーを非
超電導性無機物が酸化物系超電導体を取囲むように配置
し、該スラリーの自重または加圧により、ダイスを用い
該スラリーを押出して複合線とし、該複合線を加熱乾燥
した後減面加工を施し、次いで捻り加工を施しながら外
周に金属テープを巻回することを特徴とする特許線の製
造方法である。
(Means and effects for solving the problem) The present invention arranges a slurry of an oxide superconductor and a non-superconducting inorganic substance so that the non-superconducting inorganic substance surrounds the oxide superconductor, and Alternatively, the slurry is extruded using a die under pressure to form a composite wire, the composite wire is heated and dried, then subjected to an area reduction process, and then a metal tape is wound around the outer periphery while being twisted. This is a patented wire manufacturing method.

本発明において酸化物系超電導体とはCa −Ba−C
U −O系、La−3r−Cu−0系、Y −Ba −
Cu −0系、5r−Ba−Cu−0系などに2N t
 F4型化合物超電導体やに3NiF、型化合物超電導
体であり、また非超電導性無機物としてはMgO1Ca
O1Y203、BaTiO3などが使用できる。
In the present invention, the oxide-based superconductor is Ca-Ba-C
U-O system, La-3r-Cu-0 system, Y-Ba-
2Nt for Cu-0 series, 5r-Ba-Cu-0 series, etc.
F4 type compound superconductor is 3NiF, type compound superconductor, and non-superconducting inorganic substance is MgO1Ca.
O1Y203, BaTiO3, etc. can be used.

しかして本発明は上記の酸化物系超電導体および非超電
導性無機物の粉末を例えば水などを加えて混練しスラリ
ーとし、第1図に示すような装置により製造するもので
ある。すなわち超電導性を示す酸化物スラ!J−(11
を必要とする単芯または多芯の数だけ、例えば中央に置
きその周囲を取囲むように非超電導性無機物スラリー(
2)を例えばホッパー(3)に仕切り(4)を設けて上
記酸化物スラリーが混合しないように配置する。そして
その下方に超電導性酸化物を非超電導性無機物が取囲む
形状の穴を有するダイス(5)が配置しである。
According to the present invention, the above-mentioned oxide superconductor and non-superconducting inorganic powder are kneaded with water, for example, to form a slurry, and the slurry is produced using an apparatus as shown in FIG. In other words, it is an oxide slurry that exhibits superconductivity! J-(11
For example, place the non-superconducting inorganic slurry (
2) is arranged, for example, by providing a partition (4) in the hopper (3) so that the oxide slurry does not mix. A die (5) having a hole shaped like a superconducting oxide surrounded by a non-superconducting inorganic substance is placed below it.

上記の超電導性および非超電導性無機物の酸化物スラリ
ーは、その自重または加圧によりダイスから水平に押出
され超電導性酸化物が非超電導性無機物に取囲まれた形
状に成形され線状体(6)となる。次いでこの線状体を
ガイドロール(7)により加熱炉(8)に誘導し、ここ
で一部加熱乾燥され、この後タークスヘッドやカセット
ローラダイスのロール(9)により所定の寸法まで減面
加工される。次にこの線状体に図示しない捻り装置によ
り捻り加工を施しながら金属テープ6Iを外周に巻回し
た後熱処理して第2図に示すような多芯の超電導性酸化
物αυの周囲を非超電導性無機物α擾が取囲み、その外
周に金属テープα〔が巻回された超電導線0国を製造す
るものである。
The above oxide slurry of superconducting and non-superconducting inorganic substances is extruded horizontally from a die by its own weight or pressure, and is formed into a shape in which the superconducting oxide is surrounded by non-superconducting inorganic substances, forming a linear body (6 ). Next, this linear body is guided to a heating furnace (8) by a guide roll (7), where it is partially heated and dried, and then subjected to area reduction processing to a predetermined size by a roll (9) of a Turk's head or a cassette roller die. be done. Next, a metal tape 6I is wound around the outer periphery of this linear body while being twisted using a twisting device (not shown), and then heat-treated to form a non-superconducting layer around the multi-core superconducting oxide αυ as shown in FIG. A superconducting wire surrounded by a magnetic inorganic material α and a metal tape α [wound around the outer periphery] is produced.

本発明においては断面が円形の超電導線の他、ダイスの
形状を変えることにより第3図に示すような偏平状の超
電導性酸化物αυの周囲を取囲む非超電導性無機物σ2
と、その外周を金属テープαCが巻回された断面が長方
形の超電導線0国も製造することが可能である。
In the present invention, in addition to a superconducting wire with a circular cross section, by changing the shape of the die, a non-superconducting inorganic material σ2 surrounding a flat superconducting oxide αυ as shown in FIG.
It is also possible to manufacture a superconducting wire with a rectangular cross section, the outer periphery of which is wound with a metal tape αC.

(実施例) 以下に本発明の一実施例について説明する。(Example) An embodiment of the present invention will be described below.

Y2O3、Ba2CO3およびCuO粉末をY:Ba:
Cu−1,78:0,25:1.25になるように配合
し、これらに対し約10%の水を加えて約50時間混練
する。一方MgO1CaOおよびTiO2と水よ・りな
るスラリーを用意し、これらのスラリーを第1図に示す
ように前者をホッパーの中央に、後者をその周囲に配置
し上方より加圧してダイス(5)より水平に押出し線状
(6)を成形した。これをロール(7)により減面加工
し、さらに捻り加工と同時に厚さ0,01in幅511
のキュプロニッケルテープ(IIを巻付は最終的に線径
1,5mmφ、長さ50mの線とした。この線を900
℃の温度で24時間熱処理を施して第3図に示す超電導
線a1を作製した。比較のため従来例としてY2O3、
Ba2Co、およびC10粉を同様に混練し、内径礼9
41m、外径3Mm、長さ300i+mのキュプロニッ
ケルパイプ中に圧縮充填し、カセットローラーダイスに
より外径1.5mi+、長さ120ONMの線に加工し
900℃の温度で24時間加熱した。上記の線から各々
10001111のサンプルを採り四端子法により臨界
電流を測定した。その結果を第1表に示す。
Y2O3, Ba2CO3 and CuO powder as Y:Ba:
Cu-1,78:0, 25:1.25 are blended, about 10% water is added to these, and the mixture is kneaded for about 50 hours. On the other hand, prepare a slurry consisting of MgO1CaO, TiO2 and water, place the former in the center of the hopper and the latter around it as shown in Figure 1, pressurize it from above, and pour it through the die (5). A horizontally extruded linear shape (6) was formed. This was subjected to surface reduction processing using a roll (7), and then twisted to a thickness of 0.01 inch and a width of 511 mm.
The cupronickel tape (II) was wound onto a wire with a wire diameter of 1.5 mmφ and a length of 50 m.
The superconducting wire a1 shown in FIG. 3 was produced by heat treatment at a temperature of .degree. C. for 24 hours. For comparison, as a conventional example, Y2O3,
Ba2Co and C10 powder were kneaded in the same way, and
It was compressed and filled into a cupronickel pipe of 41 m, outer diameter 3 Mm, and length 300 i+m, processed into a wire with outer diameter 1.5 mi+ and length 120 ONM using a cassette roller die, and heated at a temperature of 900° C. for 24 hours. 1,000,1111 samples were taken from each of the above lines, and the critical current was measured by the four-terminal method. The results are shown in Table 1.

第  1  表 表から明らかなように従来材の線材断面に占める超電導
体の面積は本発明材の約2倍であるにも拘らず、従来材
は本発明材より臨界電流密度が低い。また通電率を0.
I A / minから50A/minに変えた場合、
従来材は低磁界でフランクスジャンプを示し約2人でク
エンチ(常電導転移)したが本発明材は全(異常がなか
った。
As is clear from Table 1, although the area of the superconductor in the wire cross section of the conventional material is approximately twice that of the material of the present invention, the critical current density of the conventional material is lower than that of the material of the present invention. Also, the energization rate is set to 0.
When changing from IA/min to 50A/min,
The conventional material showed a Franks jump in a low magnetic field and quenched (normal conduction transition) in about two people, but the material of the present invention showed no abnormality.

(効 果) 以上に説明したように本発明によれば低磁界で安定な、
しかも優れた特性を示す酸化物超電導線の長尺の線が容
易に製造することができるもので工業上顕著な効果を奏
するものである。
(Effects) As explained above, according to the present invention, the magnetic field is stable in a low magnetic field.
In addition, long oxide superconducting wires exhibiting excellent properties can be easily produced, which brings about significant industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法の一例を示す模式図、第2図
乃至第4図は本発明により製造した超電導線の横断面図
、第5図および第6図は従来の超電導線の横断面図であ
る。 1・・・超電導性酸化物スラリー、2・・・非超電導性
無機物スラリー、3・・・ホッパー、4・・仕切り、5
・・・夕′イス、6・・・線状体、7・・・ガイドロー
ル、8・・・加熱炉、9・・・ロール、10・・金属テ
ープ、11・・・超電導性酸化物、12・・・非超電導
性無機物、13・・・超電導線、14・・・金属性パイ
プ、15・・・原料粉。
FIG. 1 is a schematic diagram showing an example of the manufacturing method of the present invention, FIGS. 2 to 4 are cross-sectional views of a superconducting wire manufactured according to the present invention, and FIGS. 5 and 6 are cross-sectional views of a conventional superconducting wire. It is a front view. 1... Superconducting oxide slurry, 2... Non-superconducting inorganic slurry, 3... Hopper, 4... Partition, 5
... Dinner chair, 6... Linear body, 7... Guide roll, 8... Heating furnace, 9... Roll, 10... Metal tape, 11... Superconducting oxide, 12... Non-superconducting inorganic substance, 13... Superconducting wire, 14... Metallic pipe, 15... Raw material powder.

Claims (1)

【特許請求の範囲】[Claims] 酸化物系超電導体および非超電導性無機物のスラリーを
非超電導性無機物が酸化物系超電導体を取囲むように配
置し、該スラリーの自重または加圧により、ダイスを用
い該スラリーを押出して複合線とし、該複合線を加熱乾
燥した後減面加工を施し、次いで捻り加工を施しながら
外周に金属テープを巻回することを特徴とする超電導線
の製造方法。
A slurry of an oxide superconductor and a non-superconducting inorganic substance is arranged so that the non-superconducting inorganic substance surrounds the oxide superconductor, and the slurry is extruded using a die using its own weight or pressure to form a composite wire. A method for manufacturing a superconducting wire, which comprises heating and drying the composite wire, subjecting it to area reduction processing, and then winding a metal tape around the outer periphery while subjecting it to twisting processing.
JP62073842A 1987-03-27 1987-03-27 Superconducting wire manufacturing method Expired - Lifetime JP2547209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62073842A JP2547209B2 (en) 1987-03-27 1987-03-27 Superconducting wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62073842A JP2547209B2 (en) 1987-03-27 1987-03-27 Superconducting wire manufacturing method

Publications (2)

Publication Number Publication Date
JPS63239741A true JPS63239741A (en) 1988-10-05
JP2547209B2 JP2547209B2 (en) 1996-10-23

Family

ID=13529796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62073842A Expired - Lifetime JP2547209B2 (en) 1987-03-27 1987-03-27 Superconducting wire manufacturing method

Country Status (1)

Country Link
JP (1) JP2547209B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09185915A (en) * 1987-02-05 1997-07-15 Sumitomo Electric Ind Ltd Manufacture of composite oxide ceramic superconducting wire
EP1187232A2 (en) * 2000-08-29 2002-03-13 Sumitomo Electric Industries, Ltd. Oxide high-temperature superconducting wire and method of producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09185915A (en) * 1987-02-05 1997-07-15 Sumitomo Electric Ind Ltd Manufacture of composite oxide ceramic superconducting wire
EP1187232A2 (en) * 2000-08-29 2002-03-13 Sumitomo Electric Industries, Ltd. Oxide high-temperature superconducting wire and method of producing the same
EP1187232A3 (en) * 2000-08-29 2005-06-29 Sumitomo Electric Industries, Ltd. Oxide high-temperature superconducting wire and method of producing the same
US7162287B2 (en) 2000-08-29 2007-01-09 Sumitomo Electric Industries, Ltd. Oxide high-temperature superconducting wire and method of producing the same

Also Published As

Publication number Publication date
JP2547209B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
KR960015425B1 (en) Method for manufacturing an oxide superconducting wire
JPH04237910A (en) Manufacture of bismuth oxide superconducting wire rod
AU699997B2 (en) Torsional texturing of superconducting oxide composite articles
JPS63239741A (en) Manufacture for superconductor
JPH09167530A (en) Oxide multi-core superconductive conductor and its manufacture
JP2775946B2 (en) Manufacturing method of oxide superconducting wire
JPH06325634A (en) Multi-core oxide superconducting wire
JP3108543B2 (en) Manufacturing method of multilayer ceramic superconductor
JPH05334921A (en) Ceramic superconductor
JPH04337213A (en) Manufacture of multi-layer ceramic superconductor
JP3042558B2 (en) Ceramic superconducting conductor
JP3154239B2 (en) Manufacturing method of ceramic superconducting conductor
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JP2951423B2 (en) Manufacturing method of ceramic superconducting conductor
JP3052309B2 (en) Method for producing multi-core oxide superconducting wire
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JPH05250937A (en) Manufacture of multi-conductor oxide superconductive wire
JPH04277410A (en) Tape-like multi-core ceramic superconductor and cable using it
JP2507745B2 (en) Method for producing single-core and multi-core oxide superconducting wires
JP2599138B2 (en) Method for producing oxide-based superconducting wire
KR0174386B1 (en) Method for manufacturing high temperature superconducting multicore wire
JPH0528857A (en) Manufacture of ceramic superconductor
JPH04317415A (en) Production of bi-based oxide superconductor
JPH05120931A (en) Oxide superconductor and manufacture thereof
JPH02192619A (en) Manufacture of oxide superconductor