JPS63236909A - Shape measuring instrument - Google Patents

Shape measuring instrument

Info

Publication number
JPS63236909A
JPS63236909A JP7064687A JP7064687A JPS63236909A JP S63236909 A JPS63236909 A JP S63236909A JP 7064687 A JP7064687 A JP 7064687A JP 7064687 A JP7064687 A JP 7064687A JP S63236909 A JPS63236909 A JP S63236909A
Authority
JP
Japan
Prior art keywords
light
spot
measured
scattered
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7064687A
Other languages
Japanese (ja)
Inventor
Masahiro Nakashiro
正裕 中城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7064687A priority Critical patent/JPS63236909A/en
Publication of JPS63236909A publication Critical patent/JPS63236909A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the variation and defect of a body to be measured at the same time without any mutual operation by photodetecting reflected light and scattered light from the body to be measured by a two-dimensional image pickup element and separating and processing them by an image processing part. CONSTITUTION:If the body 3 to be measured has the defect, a light spot projected on the body 3 to be measured is scattered at the part. Consequently, a light spot shown in a figure is formed on the two-dimensional image pickup element 5. This spot is separated by the image processing part into the reflected light and scattered light. Namely, when >=2 light spots are detected in the picked-up two-dimensional signal, a spot which is close to a circle is decided and in other cases, it is decided that the light spot is generated by the scattering. Namely, K=(L/S) (L: peripheral length, S: area) and the spot is closer and closer to the circle as K is smaller and smaller. Then, the displacement of the reflected light from the position of the center of gravity is calculated to find the defect from the position and intensity of the scattered light.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、物体の形状あるいは物体の変位を光学的に測
定する形状測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a shape measuring device that optically measures the shape of an object or the displacement of an object.

従来の技術 非接触測距隣方法として周知なもののひとつとして、ビ
ーム偏心法がある。この構成は、第3図に示すように、
光源1から出射される平行ビームを対物レンズ2に偏心
させて入射し、被測定物3よシの反射光を対物レンズ2
で再び受け、ビームスグリツタ−4で反射させ、尺鼾ビ
ーム位置を亨位置検出素子11で測定し、演算処理部1
2で変位を算出するものである。その原理は、被測定物
3が対物レンズ2の光軸方向罠上下変化すると対物レン
ズ2上でのビーム入射位置が変化し、それに伴って光位
置検出素子11上でのビーム位置が変化することによっ
ている。
BACKGROUND OF THE INVENTION One of the well-known non-contact ranging methods is the beam decentering method. This configuration, as shown in Figure 3,
A parallel beam emitted from a light source 1 is eccentrically incident on an objective lens 2, and the reflected light from the object to be measured 3 is sent to an objective lens 2.
The beam is received again by the beam sinter 4, the position of the beam is measured by the position detection element 11, and the arithmetic processing unit 1
2 to calculate the displacement. The principle is that when the object to be measured 3 moves up or down in the optical axis direction of the objective lens 2, the beam incident position on the objective lens 2 changes, and the beam position on the optical position detection element 11 changes accordingly. I am by.

発明が解決しようとする問題点 しかしながら上記のような構成では、被測定物に投光ス
ポットよシ微細な傷や異物、ピンホール等の欠陥が存在
すると光は散乱し、光位置検出素子12上での光スポッ
トは特定方向に広がったものとなる。そのため光スポッ
トの重心位置がずれ、測定誤差が生じるという問題点が
あった。
Problems to be Solved by the Invention However, with the above configuration, if there is a defect such as a fine scratch, foreign object, or pinhole on the object to be measured other than the projected light spot, the light will be scattered and the light will be scattered on the optical position detection element 12. The light spot will be spread out in a specific direction. Therefore, there was a problem in that the center of gravity of the light spot shifted, resulting in measurement errors.

本発明は上記問題点に鑑み、被測定物に投光スポットよ
り微細な欠陥が存在しても正しく形状を測定可能な形状
測定装置を提供するものである。
In view of the above-mentioned problems, the present invention provides a shape measuring device that can accurately measure the shape even if a defect smaller than the projected light spot exists on the object to be measured.

問題点を解決するための手段 上記問題点を解決するために本発明の形状測定装置は、
光源と流源の光軸と偏心して設置したレンズと、被測定
個所からの反射光及び散乱光を受光する2次元撮像素子
と、撮像した信号から反射光成分と散乱光成分を分離し
被測定個所の位置と欠陥を算出する画像処理部とから成
るものである。
Means for Solving the Problems In order to solve the above problems, the shape measuring device of the present invention has the following features:
A lens installed eccentrically with respect to the optical axis of the light source and flow source, a two-dimensional image sensor that receives reflected light and scattered light from the measurement target, and a two-dimensional image sensor that separates the reflected light component and scattered light component from the imaged signal. It consists of an image processing unit that calculates the location and defect of a spot.

作  用 本発明は上記した構成によって、被測定物よシの反射光
と散乱光を2次元撮像素子で受光するため、画像処理部
で反射光と散乱光を識別でき、反射光の重心位置で形状
測定を行ない、散乱光の位置及び強度で欠陥の有無、大
きさを測定できる。
Effect of the Invention With the above-described configuration, the present invention receives reflected light and scattered light from the object to be measured using a two-dimensional image sensor, so that the image processing section can distinguish between reflected light and scattered light, and the center of gravity of the reflected light can be determined by By performing shape measurement, it is possible to determine the presence or absence of defects and their size based on the position and intensity of scattered light.

実施例 以下、本発明の一実施例を図面にもとづいて説明する。Example Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図において、光源1を出射した平行ビームを対物レ
ンズ2に光軸から偏心させて入射し、被測定物3よシの
反射光及び散乱光を対物レンズ2で再び受け、ビームス
プリッタ−4にて反射し、2次元撮像素子5で受光する
In FIG. 1, a parallel beam emitted from a light source 1 is incident on an objective lens 2 eccentrically from the optical axis, and reflected light and scattered light from an object to be measured 3 is received again by the objective lens 2, and a beam splitter 4 The light is reflected by the two-dimensional image sensor 5 and received by the two-dimensional image sensor 5.

以上の構成において、被測定物3に欠陥が存在しない場
合は、従来例と同様の原理で2次元撮像素子上に被測定
物3の変位に対応した位置に反射光スポットが生じる。
In the above configuration, if there is no defect in the object to be measured 3, a reflected light spot is generated on the two-dimensional image sensor at a position corresponding to the displacement of the object to be measured 3, based on the same principle as in the conventional example.

その反射光スポットの光量分布の重心位置を画像処理部
6で算出し、さらに変位に換算する。スポット位置と変
位の関係はあらかじめ測定して記憶しておく。
The image processing unit 6 calculates the position of the center of gravity of the light intensity distribution of the reflected light spot, and further converts it into displacement. The relationship between spot position and displacement is measured and memorized in advance.

もし、被測定物3に欠陥があるときは、被測定物3へ照
射した光スポットがその部分で散乱を起こす。そのため
、2次元撮像素子6上には、たとえば第2図に示すよう
な光スポットが生じる。このスポットから画像処理部6
で反射光と散乱光を分離する。その方法は以下の通シで
ある。被測定物3上の欠陥は非等方的である場合がほと
んどであるので、撮像した2次元信号に2つ以゛上の光
スポットが検出された場合は、円に近いスポットを反射
光、それ以外を散乱によシ生じた光スポットと判断する
。スポットが円に近いかどうかの判定は、スポットの周
囲長をり1面積をSとしたとき、K= − で行なう。すなわちKが小さい程円に近いと判定するわ
けである。
If the object to be measured 3 has a defect, the light spot irradiated onto the object to be measured 3 will be scattered at that portion. Therefore, a light spot as shown in FIG. 2, for example, is generated on the two-dimensional image sensor 6. Image processing unit 6 from this spot
to separate reflected light and scattered light. The method is as follows. In most cases, defects on the object to be measured 3 are anisotropic, so if two or more light spots are detected in the captured two-dimensional signal, a spot close to a circle is used as the reflected light, Others are judged to be light spots caused by scattering. A determination as to whether a spot is close to a circle is made based on K=-, where the circumference of the spot is divided by 1 area and S is the area. In other words, the smaller K is, the closer it is to a circle.

次に、反射光の重心位置から変位を算出し、散乱光の位
置・強度から欠陥を求める。この散乱光の位置・強度と
欠陥の形状や大きさとの関係はあらかじめ測定し記憶し
ておくものとする。
Next, the displacement is calculated from the position of the center of gravity of the reflected light, and the defect is determined from the position and intensity of the scattered light. The relationship between the position and intensity of this scattered light and the shape and size of the defect is measured and memorized in advance.

発明の効果 以上のように、本発明は被測定物からの反射光及び散乱
光を2次元撮像素子で受光し、画像処理部でそれらを分
離・演算しているので、被測定物の変位と欠陥を同時に
相互作用なく測定できる。
Effects of the Invention As described above, in the present invention, reflected light and scattered light from the object to be measured are received by a two-dimensional image sensor, and the image processing section separates and calculates them. Defects can be measured simultaneously without interaction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における形状測定装置の構成図
、第2図はその説明図、第3図は従来の形状測定装置の
構成図である。 1・・・・・・光源、2・・・・・・対物レンズ、3・
・・・・・被測定物、6・・・・・・2次元撮像素子、
6・・・・・・画像処理部。
FIG. 1 is a block diagram of a shape measuring device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram thereof, and FIG. 3 is a block diagram of a conventional shape measuring device. 1...Light source, 2...Objective lens, 3.
...Object to be measured, 6...Two-dimensional image sensor,
6... Image processing section.

Claims (1)

【特許請求の範囲】[Claims] 光源と、光源の光軸と偏心して設置したレンズと、被測
定個所からの反射光及び散乱光を受光する2次元撮像素
子と、撮像した信号から反射光成分と散乱光成分を分離
し被測定個所の位置と欠陥を算出する画像処理部とを有
する形状測定装置。
A light source, a lens installed eccentrically with respect to the optical axis of the light source, a two-dimensional image sensor that receives reflected light and scattered light from the measurement target, and a two-dimensional image sensor that separates the reflected light component and scattered light component from the imaged signal. A shape measuring device that includes an image processing unit that calculates the position and defect of a part.
JP7064687A 1987-03-25 1987-03-25 Shape measuring instrument Pending JPS63236909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7064687A JPS63236909A (en) 1987-03-25 1987-03-25 Shape measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7064687A JPS63236909A (en) 1987-03-25 1987-03-25 Shape measuring instrument

Publications (1)

Publication Number Publication Date
JPS63236909A true JPS63236909A (en) 1988-10-03

Family

ID=13437622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7064687A Pending JPS63236909A (en) 1987-03-25 1987-03-25 Shape measuring instrument

Country Status (1)

Country Link
JP (1) JPS63236909A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016577A (en) * 2018-07-26 2020-01-30 ファナック株式会社 Distance measuring device for detecting optical system abnormality

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016577A (en) * 2018-07-26 2020-01-30 ファナック株式会社 Distance measuring device for detecting optical system abnormality
US11525917B2 (en) 2018-07-26 2022-12-13 Fanuc Corporation Distance measuring apparatus which detects optical system abnormality

Similar Documents

Publication Publication Date Title
JPH03267745A (en) Surface property detecting method
JPS61235808A (en) Method and device for automatic focusing
KR100876257B1 (en) Optical measuring method and device therefor
JP3102925B2 (en) Particle analyzer
EP1020719A1 (en) Apparatus and method for determining the optical distortion of a transparent substrate
JP2008175604A (en) Optical displacement sensor and displacement measuring device using it
JP4534877B2 (en) Optical sensor device
JPS63236909A (en) Shape measuring instrument
CN108398104A (en) The photoelectricity dynamic angle measuring devices and its method of random error can be reduced
JP2004132773A (en) System for checking gloss of fruits and vegetables
JP2004163129A (en) Defect inspection method
JP3184641B2 (en) Edge detecting device for tapered hole and its depth measuring device
WO2020051780A1 (en) Image sensor surface defect detection method and detection system
JPH03276005A (en) Shape measuring device
JP2746852B2 (en) Transmitted light measurement device
JPH0729452Y2 (en) Displacement measuring device
JP3874047B2 (en) Laser diffraction / scattering particle size distribution analyzer
JPH08304259A (en) Sample detecting device
JPH01406A (en) Sample shape measuring device
JPH0471453B2 (en)
JP2519183B2 (en) Through-hole three-dimensional position measuring device
JPH03154854A (en) Detecting device for extremely small defect of thin wire
JPS6138506A (en) Focusing point deciding method of interference measuring machine
JPH0712829A (en) Method and device for detecting movement
JP2588679Y2 (en) Surface roughness inspection device