JPS63229743A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63229743A
JPS63229743A JP62062386A JP6238687A JPS63229743A JP S63229743 A JPS63229743 A JP S63229743A JP 62062386 A JP62062386 A JP 62062386A JP 6238687 A JP6238687 A JP 6238687A JP S63229743 A JPS63229743 A JP S63229743A
Authority
JP
Japan
Prior art keywords
film
oxide film
thickness
trench
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62062386A
Other languages
Japanese (ja)
Inventor
Masashi Takahashi
正志 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP62062386A priority Critical patent/JPS63229743A/en
Publication of JPS63229743A publication Critical patent/JPS63229743A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To enable long-term reliability as determined by TDDB to be improved only by changing composition of an insulation film, by forming a silicon nitride film so as to have a thickness 1.5 times as large as that of a first silicon oxide film. CONSTITUTION:In a trench MOS capacitor, a trench is provided in a silicon substrate 11 and then there is formed a three-layer insulation film consisting of a thermal oxide film 16, a CVD nitride film 17 and an oxide film 18 which is formed by oxidizing the nitride film. The ratio of the thickness of the thermal oxide film (B-SiO2) 16 to that of the CVD nitride film (Si3N4) 17 should be 1.5 or more. For example, when the B-SiO2 has a thickness of 90 Angstrom , the Si3N4 should have a thickness of 150 Angstrom . Thereby, it is possible to obviate the need of performing oxidation for rounding the corners of the trench at a temperature over 1100 deg.C as would be required by prior arts. Further, the semiconductor device is allowed to have improved long-term reliability as determined by time- dependent dielectric breakdown (TDDB), only by changing composition of the insulation film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体装置、特に、トレンチキャパシタ(C
CC(Corrugated capacitor c
ell))における絶縁膜の構造に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to semiconductor devices, particularly trench capacitors (C
CC (corrugated capacitor c)
The present invention relates to the structure of an insulating film in ELL)).

(従来の技術) 従来、このような分野の技術としては、例えば、以下に
示すようなものがあった。
(Prior Art) Conventionally, as technologies in this field, there have been, for example, the following.

第3図は係るトレンチMOSキャパシタの断面図である
FIG. 3 is a cross-sectional view of such a trench MOS capacitor.

この図において、MOSキャパシタは、P型シリコン基
板1上に形成されたトレンチ(間口は狭いが深い溝: 
trench ) 2に沿って形成されたシリコン酸化
膜3、LPCVD法によって堆積されたシリコン窒化膜
4、及びシリコン窒化膜4を酸化したシリコン酸化1l
I5をゲート膜として多結晶シリコン電極6で挟む構造
を有している。なお、7はトレンチを埋める多結晶シリ
コン又はシリコン酸化膜、8は上部コーナ一部のエツジ
、9は下部コーナ一部のエツジである。
In this figure, a MOS capacitor is formed in a trench (a narrow but deep trench) formed on a P-type silicon substrate 1.
a silicon oxide film 3 formed along the trench ) 2, a silicon nitride film 4 deposited by the LPCVD method, and a silicon oxide film 1l obtained by oxidizing the silicon nitride film 4.
It has a structure in which I5 is used as a gate film and sandwiched between polycrystalline silicon electrodes 6. Note that 7 is a polycrystalline silicon or silicon oxide film filling the trench, 8 is an edge of a portion of the upper corner, and 9 is an edge of a portion of the lower corner.

従来、この種の半導体装置は、主にMO5型ダイナミッ
クランダムアクセスメモリ (DRAM)のメモリセル
部の容量として用いられてきた。ゲート膜は重要な絶縁
膜であるが、反応性イオンエツチング(RIE )によ
るトレンチ形成時のダメージ及び上部コーナ一部のエツ
ジ8、下部コーナ一部のエツジ9での電界集中やシリコ
ン酸化膜3の薄膜化のだめに、耐圧リーク電流の劣化が
発生する。これを防ぐため、高温(1100℃以上)で
の酸化及び酸化膜の除去による各コーナ一部のエツジの
丸め処理(丸め酸化)及び上記したような絶縁膜の多層
膜化によって、耐圧、リーク電流等の初期特性の改善が
行われている。
Conventionally, this type of semiconductor device has been mainly used as a capacitor of a memory cell portion of an MO5 type dynamic random access memory (DRAM). The gate film is an important insulating film, but it can be damaged by reactive ion etching (RIE) during trench formation, electric field concentration at edges 8 in the upper corner and edges 9 in the lower corner, and damage to the silicon oxide film 3. As the film becomes thinner, the withstand voltage leakage current deteriorates. In order to prevent this, the edges of some corners of each corner are rounded (rounding oxidation) by oxidation and removal of the oxide film at high temperatures (1100°C or higher), and the insulation film is made into a multilayer film as described above to reduce the breakdown voltage and leakage current. Improvements have been made to initial characteristics such as:

(発明が解決しようとする問題点) しかしながら、以上述べた従来の方法では、丸め酸化の
場合、高温処理による不純物の再分布が行われ、又、多
層膜化しても経時絶縁破壊(TODB(TiIIe  
Dependent  Dielectric  Br
eakdown)  )  測定による長期信頼性が劣
化するという問題があった。
(Problems to be Solved by the Invention) However, in the conventional method described above, in the case of rounding oxidation, impurities are redistributed due to high temperature treatment, and even in the case of multilayer film formation, dielectric breakdown over time (TODB (TiIIe
Dependent Dielectric Br
eakdown) ) There was a problem in that the long-term reliability of measurements deteriorated.

この点について第4図を参照しながら説明する。This point will be explained with reference to FIG.

この図は、定電圧における経時絶縁破壊特性を示す図で
あり、トレンチ数1oooo個、キャパシタ面積1 x
m” 、5i(h(150人)  /5iN(150人
)/5iOz(20人)の条件で、横軸は印加電界(M
V/(J)、縦軸は経時絶縁破壊の累積不良率が50%
に至る時間(秒)を示しており、この図から明らかなよ
うに、プレーナーキャパシタaに比べて、トレンチキャ
パシタbの場合は約2桁寿命が短いということがわかる
This figure shows the dielectric breakdown characteristics over time at constant voltage, and the number of trenches is 1oooo, and the capacitor area is 1 x
m'', 5i (h (150 people) / 5iN (150 people) / 5iOz (20 people), and the horizontal axis is the applied electric field (M
V/(J), the vertical axis is the cumulative failure rate of dielectric breakdown over time of 50%
As is clear from this figure, the lifespan of trench capacitor b is about two orders of magnitude shorter than that of planar capacitor a.

本発明は、上記問題点を除去し、簡単な構成で、TDD
B測定における長期信頼性を向上し得る半導体装置を提
供することを目的とする。
The present invention eliminates the above problems, has a simple configuration, and provides TDD
An object of the present invention is to provide a semiconductor device that can improve long-term reliability in B measurements.

(問題点を解決するための手段) 本発明は、上記問題点を解決するために、トレンチMO
Sキャパシタにおいて、トレンチを形成した後、熱酸化
膜(B−3iO□) 、CVD窒化膜及び窒化膜の酸化
による酸化膜の3層絶縁膜の形成において、熱酸化膜(
B−Si(h)とCVD窒化膜(Si3Nm )との膜
厚比(Thickness SiJ*/Th1ckne
ss 5iOz)を1.5以上にするように構成したも
のである。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides trench MO
In the S capacitor, after forming a trench, a thermal oxide film (B-3iO□), a CVD nitride film, and an oxide film formed by oxidizing the nitride film are formed to form a three-layer insulating film.
Film thickness ratio of B-Si (h) and CVD nitride film (Si3Nm) (Thickness SiJ*/Th1ckne
ss 5iOz) of 1.5 or more.

(作用) 本発明によれば、上記のように構成したので、従来のよ
うに、高温(1100℃以上)によるトレンチのコーナ
一部の丸め酸化を行う必要がなく、絶縁膜の構成比を変
えるだけでTDDB測定による長期信頼性の向上を図る
ことができる。
(Function) According to the present invention, with the above structure, there is no need to round off and oxidize a part of the corner of the trench at high temperature (1100° C. or higher) as in the conventional method, and the composition ratio of the insulating film can be changed. It is possible to improve the long-term reliability by TDDB measurement only by this method.

(実施例) 以下、本発明の実施例について図面を参照しながら詳細
に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例を示す半導体装置の製造工程断
面図である。
FIG. 1 is a cross-sectional view of the manufacturing process of a semiconductor device showing an embodiment of the present invention.

まず、第1図(a)に示されるように、P型シリコン基
板11上に熱酸化法によりシリコン酸化膜12を200
〜500人程度成長させ、その上に、LPCVD法によ
りシリコン窒化膜13を100〜400人成長させる。
First, as shown in FIG. 1(a), a silicon oxide film 12 with a thickness of 200 mm is deposited on a P-type silicon substrate 11 by thermal oxidation.
The silicon nitride film 13 is grown on the silicon nitride film 13 by 100 to 400 people using the LPCVD method.

更に、その上に、CVD法によりシリコン酸化膜14を
3000〜10000 大成長する。この後、ホトレジ
スト15を塗布し、ホトリソグラフィーを行う。
Furthermore, a silicon oxide film 14 with a thickness of 3,000 to 10,000 times is grown thereon by the CVD method. After this, a photoresist 15 is applied and photolithography is performed.

次に、第1図(b)に示されるように、RTE法により
、ホトレジスト15をマスクとして、シリコン酸化膜1
4/シリコン窒化膜13/シリコン酸化膜12をエツチ
ングし、ホトレジストを除去する。
Next, as shown in FIG. 1(b), using the photoresist 15 as a mask, the silicon oxide film 1 is
4/Etch the silicon nitride film 13/silicon oxide film 12 and remove the photoresist.

この後、第1図(c)に示されるように、RIB法によ
り、CC24等のガスを用いてシリコン基板11をエツ
チングしてエツチングマスクのシリコン酸化膜14、窒
化膜13、酸化膜12を除去する。
Thereafter, as shown in FIG. 1(c), the silicon substrate 11 is etched by the RIB method using a gas such as CC24 to remove the silicon oxide film 14, nitride film 13, and oxide film 12 of the etching mask. do.

この後、熱酸化法(900〜tooo℃)により、シリ
コン酸化膜を500〜1000人形成し、エツチングに
よるダメージを除去し、この酸化膜を除去する。
Thereafter, 500 to 1,000 silicon oxide films are formed by a thermal oxidation method (900 DEG to 1,000 DEG C.), damage caused by etching is removed, and this oxide film is removed.

次に、900〜950℃の熱酸化によりシリコン酸化膜
(B−5iOz) 16、その上ニLPCVD法により
シリコン酸化膜(SisL ) 17、そのシリコン窒
化膜を900〜950℃で酸化することにより、シリコ
ン酸化膜18を形成する。この時、B−SiOzと5i
Jsの膜厚比が重要である。
Next, a silicon oxide film (B-5iOz) 16 is formed by thermal oxidation at 900 to 950°C, a silicon oxide film (SisL) 17 is formed by LPCVD, and the silicon nitride film is oxidized at 900 to 950°C. A silicon oxide film 18 is formed. At this time, B-SiOz and 5i
The film thickness ratio of Js is important.

即ち、その膜厚比Th1ckness 5isNs/T
h1cknessB−5i(h)が1.5以上になるよ
うに構成する0例えば、シリコン酸化膜(B−3iO□
)の膜厚が90人に対してシリコン窒化膜(st3N4
)の膜厚を150人にする。
That is, the film thickness ratio Th1ckness 5isNs/T
For example, a silicon oxide film (B-3iO□
) film thickness for 90 people, silicon nitride film (st3N4
) to 150 people.

また、シリコン窒化膜の酸化によって形成されるシリコ
ン酸化膜の膜厚を20人にする。
Further, the thickness of the silicon oxide film formed by oxidizing the silicon nitride film is set to 20.

その後、多結晶シリコン電極19を形成して、第1図(
d)に示されるように、本発明に係る半導体装置(トレ
ンチMOSキャパシタ)を得ることができる。
Thereafter, a polycrystalline silicon electrode 19 is formed, and as shown in FIG.
As shown in d), a semiconductor device (trench MOS capacitor) according to the present invention can be obtained.

第2図は、全体の絶縁膜の膜厚を誘電率を考慮して酸化
lIu換算で180〜220人にした時の定電流でのT
DDB測定による経時絶縁破壊特性図である。
Figure 2 shows the T at constant current when the total insulating film thickness is 180 to 220 in terms of lIu oxide considering the dielectric constant.
It is a diagram of dielectric breakdown characteristics over time obtained by DDB measurement.

なお、この時の条件として、トレンチ数10000個、
キャパシタ面積L mm” 、5 X 10−’ A 
/ mu”の定電流で、横軸はシリコン窒化膜(Siz
Na)厚/シリコン酸化膜(B−5iO7)厚、縦軸は
経時絶縁破壊の累積不良率が50%に至る時間(秒)を
示している。
The conditions at this time are 10,000 trenches,
Capacitor area L mm", 5 x 10-' A
/ mu” constant current, and the horizontal axis is the silicon nitride film (Siz
Na) thickness/silicon oxide film (B-5iO7) thickness, the vertical axis indicates the time (seconds) for the cumulative failure rate of dielectric breakdown over time to reach 50%.

この図によれば、5iJa /B−5iO1の膜厚比が
、1.5以上になると、急激に蓄積不良率の50%に至
る時間、つまり、寿命が長くなり、長期信頼性が改善さ
れることが明らかである。
According to this figure, when the film thickness ratio of 5iJa/B-5iO1 becomes 1.5 or more, the time to reach 50% of the accumulated failure rate, that is, the life span, increases and the long-term reliability improves. That is clear.

なお、本発明は上記実施例に限定されるものではなく、
本発明の趣旨に基づいて種々の変形が可能であり、これ
らを本発明の範囲から排除するものではない。
Note that the present invention is not limited to the above embodiments,
Various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

(発明の効果) 以上、詳細に説明したように、本発明によれば、従来の
ように、高温(1100℃以上)によるトレンチのコー
ナ一部の丸め酸化を行うことなく、絶縁膜の構成比を変
えるだけでTD[lB測測定よる長3IJl信頼性を大
幅に改善することができる。
(Effects of the Invention) As described above in detail, according to the present invention, the composition ratio of the insulating film can be improved without rounding off and oxidizing a part of the corner of the trench at high temperature (1100° C. or higher) as in the conventional method. It is possible to greatly improve the reliability of long 3IJl measured by TD [lB measurement] by simply changing .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す半導体装置の製造工程断
面図、第2図は定電流における半導体装置の経時絶縁破
壊特性図、第3図は従来のトレンチMOSキャパシタの
断面図、第4図はその定電圧における経時絶縁破壊特性
図である。 11・・・P型シリコン基板、12.14.16.18
・・・シリコン酸化膜、13.17・・・シリコン窒化
膜、15・・・ホトレジスト、19・・・多結晶シリコ
ン電極。
FIG. 1 is a cross-sectional view of the manufacturing process of a semiconductor device showing an embodiment of the present invention, FIG. 2 is a diagram of dielectric breakdown characteristics over time of the semiconductor device at constant current, FIG. 3 is a cross-sectional view of a conventional trench MOS capacitor, and FIG. The figure shows the dielectric breakdown characteristics over time at constant voltage. 11...P-type silicon substrate, 12.14.16.18
... silicon oxide film, 13.17 ... silicon nitride film, 15 ... photoresist, 19 ... polycrystalline silicon electrode.

Claims (1)

【特許請求の範囲】  シリコン基板に形成した溝内に絶縁膜として第1のシ
リコン酸化膜、シリコン窒化膜、第2のシリコン酸化膜
を順次形成し、前記溝の側壁を含む領域に設けたキャパ
シタ部と、スイッチ用素子部とを有する半導体装置にお
いて、 前記第1のシリコン酸化膜の膜厚に対して前記シリコン
窒化膜の膜厚が1.5倍以上になるように構成すること
を特徴とする半導体装置。
[Scope of Claims] A first silicon oxide film, a silicon nitride film, and a second silicon oxide film are sequentially formed as insulating films in a trench formed in a silicon substrate, and a capacitor is provided in a region including the sidewalls of the trench. A semiconductor device having a switching element section and a switching element section, characterized in that the silicon nitride film has a thickness 1.5 times or more greater than the thickness of the first silicon oxide film. semiconductor devices.
JP62062386A 1987-03-19 1987-03-19 Semiconductor device Pending JPS63229743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62062386A JPS63229743A (en) 1987-03-19 1987-03-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62062386A JPS63229743A (en) 1987-03-19 1987-03-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63229743A true JPS63229743A (en) 1988-09-26

Family

ID=13198632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62062386A Pending JPS63229743A (en) 1987-03-19 1987-03-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63229743A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263461A (en) * 1989-04-03 1990-10-26 Nec Yamaguchi Ltd Manufacture of semiconductor integrated circuit device
US6469345B2 (en) 2000-01-14 2002-10-22 Denso Corporation Semiconductor device and method for manufacturing the same
US6521538B2 (en) 2000-02-28 2003-02-18 Denso Corporation Method of forming a trench with a rounded bottom in a semiconductor device
US6864532B2 (en) 2000-01-14 2005-03-08 Denso Corporation Semiconductor device and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263461A (en) * 1989-04-03 1990-10-26 Nec Yamaguchi Ltd Manufacture of semiconductor integrated circuit device
US6469345B2 (en) 2000-01-14 2002-10-22 Denso Corporation Semiconductor device and method for manufacturing the same
US6864532B2 (en) 2000-01-14 2005-03-08 Denso Corporation Semiconductor device and method for manufacturing the same
US7354829B2 (en) 2000-01-14 2008-04-08 Denso Corporation Trench-gate transistor with ono gate dielectric and fabrication process therefor
US6521538B2 (en) 2000-02-28 2003-02-18 Denso Corporation Method of forming a trench with a rounded bottom in a semiconductor device

Similar Documents

Publication Publication Date Title
JPH11289006A (en) Method for formation of trench isolation in integrated circuit
KR0148679B1 (en) Stacked insulating film including yttrium oxide
KR20030015000A (en) Method for manufacturing capacitor having improved leakage current characteristic at interface between dielectric layer and upper electrode
JP2004006660A (en) Method for manufacturing semiconductor device
JPS63229743A (en) Semiconductor device
JP2001196587A (en) Semiconductor device and method of manufacturing the same
US5380675A (en) Method for making closely spaced stacked capacitors on DRAM chips
JPH06310654A (en) Semiconductor device and its manufacture
JP2001210821A (en) Semiconductor device and manufacturing method therefor
JP2721157B2 (en) Semiconductor device
JPS6178138A (en) Manufacture of semiconductor device
JPS6028270A (en) Manufacture of semiconductor integrated circuit
JPS6342164A (en) Manufacture of semiconductor integrated circuit device
JPH07122627A (en) Fabrication of semiconductor device
JPH06140627A (en) Field-effect transistor and manufacture thereof
JP3085817B2 (en) Method for manufacturing semiconductor device
JPH11261058A (en) Manufacture of semiconductor device
JPS6036111B2 (en) Manufacturing method of semiconductor device
KR100272268B1 (en) Semiconductor device and manufacturing method thereof
JPH0456160A (en) Semiconductor device
Liu et al. Excellent low-pressure-oxidized Si 3 N 4 films on roughened poly-Si for high-density DRAMs
JP3499769B2 (en) Method of forming oxide film, capacitor
JPH07176528A (en) Manufacture of semiconductor device insulating film
JPS63177546A (en) Semiconductor device
JPS63234555A (en) Semiconductor device