JPS63227671A - Electron beam-curing type conductive paste - Google Patents

Electron beam-curing type conductive paste

Info

Publication number
JPS63227671A
JPS63227671A JP6021787A JP6021787A JPS63227671A JP S63227671 A JPS63227671 A JP S63227671A JP 6021787 A JP6021787 A JP 6021787A JP 6021787 A JP6021787 A JP 6021787A JP S63227671 A JPS63227671 A JP S63227671A
Authority
JP
Japan
Prior art keywords
electron beam
conductive paste
fine powder
parts
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6021787A
Other languages
Japanese (ja)
Inventor
Toshiro Omawari
大廻 敏郎
Takashi Kobayashi
敬 小林
Yuki Matsuhashi
松橋 由記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP6021787A priority Critical patent/JPS63227671A/en
Publication of JPS63227671A publication Critical patent/JPS63227671A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain the titled paste having excellent printing and coating suitability even not contg. volatile solvent and providing printed or coated surfaces having smoothness and conductivity which is not inferior even under high humidity, by comprising a polyallyl compd., an electron beam-reactive group-contg. compd. and a conductive fine powder. CONSTITUTION:The objective paste comprises (A) a polyallyl compd. (preferably diallyl isophthalate oligomer), (B), if necessary, a >=two electron beam-reactive groups-contg. compd. excluding the component A [e.g., tris(2-acryloyloxyethyl) isocyanurate], (C) an one electron beam-reactive group-contg. compd. (e.g., 2-hydroxyethyl acrylate) and (D) a conductive fine powder (preferably >=one kind of carbon black having a oil absorption value of >=300cc/100g by DBP, graphite having an average particle size of 2-10mum and a conductive metal fine powder having an average particle size of <=5mum).

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は電子線硬化型導電ペーストに関する。さらに詳
しくは1本発明は電子機器部品およびプリント配線板な
どの基材に塗装または印刷した後に電子線を照射するこ
とにより硬化する導電ペーストに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an electron beam curable conductive paste. More specifically, the present invention relates to a conductive paste that is cured by applying electron beams after coating or printing on base materials such as electronic device parts and printed wiring boards.

(従来技術) 従来から、プリント配線回路あるいはハイブリッド厚膜
回路の製造工程において、導体回路形成のために導電ペ
ーストが用いられ、また、これらのペーストの導電性の
低いものが抵抗部分の形成の目的に使用されている。さ
らにこの種のペーストが」二記の回路形成の目的以外に
も膜スィッチ、抵抗器などの各種電子部品あるいは電磁
波遮悲用として使用されていることも周知である。しか
しながら1 これらのペーストは、バインダーとして熱
硬化型樹脂および/またはガラスフリットなどの無機物
質を用いているため、適用にあたっては基材に塗布また
は印刷後高温度に加熱して硬化焼成を行う必要があった
。しかしながら、硬化焼成には多大のエネルギー、加熱
のだめの時間、加熱装置設置のための床面積を必要とし
不経済であるばかりでなく3次に示すような大きな制約
があった。すなわち、バインダーとしてガラスフリット
などの無機物質を用いた導電ペーストは1通常s o 
o ’c以上での焼成を必要とするために合成樹脂系の
基材には適用できず、また熱硬化型樹脂バインダーを使
用した導電ペーストは合成樹脂系の基材に対しても適用
可能であるが、ペーストを硬化させる際の加熱によって
基材が変形し1例えばプリント配線回路配線板において
後工程の部品搭載に支障をきたすなど大きな障害となっ
ていた。
(Prior art) Conventionally, conductive pastes have been used to form conductor circuits in the manufacturing process of printed wiring circuits or hybrid thick film circuits, and these pastes with low conductivity have been used for the purpose of forming resistive parts. used in Furthermore, it is well known that this type of paste is used for various electronic components such as membrane switches and resistors, as well as for electromagnetic wave shielding, in addition to the purpose of forming circuits mentioned in "2" above. However, 1 these pastes use inorganic substances such as thermosetting resin and/or glass frit as binders, so when applying them, it is necessary to heat them to a high temperature to harden and bake them after coating or printing on the base material. there were. However, hardening and firing requires a large amount of energy, heating time, and floor space for installing a heating device, which is not only uneconomical but also has major restrictions as described below. That is, a conductive paste using an inorganic substance such as glass frit as a binder is usually
It cannot be applied to synthetic resin base materials because it requires firing at temperatures higher than o 'c, and conductive pastes using thermosetting resin binders cannot be applied to synthetic resin base materials. However, the heat used to harden the paste deforms the base material, which poses a major problem, such as hindering the mounting of components in subsequent processes on printed wiring circuit boards, for example.

また一部の導電ペーストにおいては、その組成中に粘度
調節のために揮発性溶剤が配合されており。
Additionally, some conductive pastes contain volatile solvents in their compositions to adjust viscosity.

硬化焼成前に溶剤を除去しなければならず溶剤の回収に
ついての配慮が必要であった。さらにまた溶剤含有型導
電ペーストの場合には、硬化後のペーストの導電性のバ
ラツキに及ぼす印刷条件の影響が大きく問題であった。
The solvent had to be removed before curing and firing, and consideration had to be given to recovering the solvent. Furthermore, in the case of a solvent-containing conductive paste, the influence of printing conditions on the variation in conductivity of the paste after hardening has been a major problem.

これらの欠点を改良するために、紫外線、電子線などの
活性エネルギー線の照射により、室温またはそれに近い
温度で導電ペーストを硬化させる方法が開発された。し
かしながら、これらの方法で硬化させた導電ペーストは
、一般に、高温度あるいは高湿度の環境下で、その導電
性が著しく低下するという欠点があった。また、これら
の方法において用いられる導電ペーストが実質的に揮発
性溶剤を含まない場合には、印刷適性および塗装適性に
劣り、得られる印刷面または塗装面は著しく粗であり、
また、印刷適性あるいは塗装適性を向上させるために揮
発性溶剤を含む場合には、前記の揮発性溶剤を含むため
の欠点は改良できなかった。
In order to improve these drawbacks, a method has been developed in which the conductive paste is cured at or near room temperature by irradiation with active energy rays such as ultraviolet rays and electron beams. However, conductive pastes cured by these methods generally have the disadvantage that their conductivity is significantly reduced in environments of high temperature or high humidity. Furthermore, when the conductive paste used in these methods does not substantially contain volatile solvents, the printability and paintability are poor, and the resulting printed or painted surface is extremely rough.
Further, when a volatile solvent is included to improve printability or coating suitability, the above-mentioned drawbacks due to the inclusion of a volatile solvent cannot be improved.

(発明が解決しようとする問題点) 本発明は、上記の種々の欠点を改良し、揮発性溶剤を添
加しなくとも十分印刷または塗装可能な程度に低粘度で
あって、印刷適性および塗装適性に優れ。
(Problems to be Solved by the Invention) The present invention improves the various drawbacks mentioned above, and has a viscosity that is sufficiently low to allow printing or painting without adding volatile solvents, and has good printability and paintability. Excellent for.

得られる印刷面および塗装面が平滑であり、室温または
それに近い温度で電子線照射により硬化させることがで
き、硬化後高温度あるいは高湿度の環境下でもその導電
性に変化がなく、無機質系および合成樹脂系両方の基材
に対して適用できるとともに、無機質系基材に従来用い
られていたガラスフリットをバインダーとした導電性ペ
ーストと同等の性能を有する電子線硬化型導電ペースト
を提供するものである。
The resulting printed and painted surfaces are smooth, can be cured by electron beam irradiation at or near room temperature, and after curing there is no change in conductivity even under high temperature or high humidity environments, making it suitable for inorganic and The present invention provides an electron beam-curable conductive paste that can be applied to both synthetic resin base materials and has performance equivalent to conductive pastes that use glass frit as a binder, which has been conventionally used for inorganic base materials. be.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、 (A)ポリアリル化合物、必要に応じて(
B)上記(A)以外の少なくとも2個以上の電子線反応
性基を有する化合物、 (C)電子線反応性基1個を有
する化合物、および(D)導電性微粉末からなり、実質
的にl)揮発性溶剤を含まないことを特徴とする電子線
硬化型導電ペーストである。
(Means for solving the problems) The present invention comprises (A) a polyallyl compound, optionally (
B) a compound having at least two or more electron beam-reactive groups other than the above (A), (C) a compound having one electron beam-reactive group, and (D) a conductive fine powder, consisting essentially of l) An electron beam curable conductive paste characterized by not containing volatile solvents.

本発明において、 (A)ポリアリル化合物としては、
トリアリルイソシアヌレート、トリアリルシアヌレート
、トリアリルトリメート、トリアリルシトレート、ジア
リルイソフタレート、ジアリルオルソフタレート ジア
リルクロレンデートなどのモノマーまたはオリゴマー、
あるいはこれらの混合物を用いることができるが、印刷
適性および導電性微粉末の分散性の面からジアリルイソ
フタレートオリゴマーを主成分とするものを用いること
が好ましい。
In the present invention, (A) the polyallyl compound is:
Monomers or oligomers such as triallyl isocyanurate, triallyl cyanurate, triallyl trimate, triallyl citrate, diallyl isophthalate, diallyl orthophthalate, diallyl chlorendate,
Alternatively, a mixture of these can be used, but from the viewpoint of printability and dispersibility of the conductive fine powder, it is preferable to use one containing diallylisophthalate oligomer as the main component.

本発明において、 (B)上記(A)以外の少なくとも
2個以上の電子線反応性基を有する化合物としでは、上
記(A)以外のエチレン性不飽和二重結合を少なくとも
2個以上有するモノマーおよびオリゴマー、例えば、不
飽和ポリエステル類、ポリエステルポリ (メタ)アク
リレート類、エポキシポリ (メタ)アクリレート類、
ポリウレタンポリ (メタ)アクリレート類、ポリオー
ルポリ (メタ)アクリレート類、ポリエーテルポリ 
(メタ)アクリレート類。
In the present invention, (B) compounds having at least two or more electron beam reactive groups other than the above (A) include monomers having at least two or more ethylenically unsaturated double bonds other than the above (A); Oligomers, such as unsaturated polyesters, polyester poly(meth)acrylates, epoxy poly(meth)acrylates,
Polyurethane poly(meth)acrylates, polyol poly(meth)acrylates, polyether poly
(Meth)acrylates.

ジビニル化合物など、あるいはこれらの混合物を使用す
ることができる。
Divinyl compounds, etc. or mixtures thereof can be used.

本発明において(C)電子線反応性基1個を有する化合
物としては、α−アルキルスチレン、スチレンなどのス
チレン類、(メタ)アクリル酸、(メタ)アクリル酸ア
ミド、 (メタ)アクリロニトリル。
In the present invention, (C) a compound having one electron beam-reactive group includes styrenes such as α-alkylstyrene and styrene, (meth)acrylic acid, (meth)acrylic acid amide, and (meth)acrylonitrile.

(メタ)アクリル酸アルキルエステル類、(メタ)アク
リル酸ヒドロキシアルキルエステル類、(メタ)アクリ
ル酸グリシジル、酢酸ビニル、フタル酸アリル、オリゴ
エステルモノ (メタ)アクリレート。
(Meth)acrylic acid alkyl esters, (meth)acrylic acid hydroxyalkyl esters, glycidyl (meth)acrylate, vinyl acetate, allyl phthalate, oligoester mono (meth)acrylate.

フェノキシエチル(メタ)アクリレート、テトラヒドロ
フルフリル(メタ)アクリレートなど、あるいはこれら
の混合物がある。
Examples include phenoxyethyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, and mixtures thereof.

本発明において(C)導電性微粉末としては、特に制限
はなく、カーボンブランク、グラファイト。
In the present invention, the conductive fine powder (C) is not particularly limited, and includes carbon blank and graphite.

導電性金属微粉、導電性金属酸化物微粉、あるいはこれ
らの混合物を用いることができる。
Conductive metal fine powder, conductive metal oxide fine powder, or a mixture thereof can be used.

カーボンブランクとしては、特に制限はなく、アセチレ
ンブラック、ファーネスブランク、サーマルブラック、
チャンネルブラック、あるいはこれらにビニルモノマー
をグラフト重合させたものや酸化処理を施したものなど
、あるいはこれらの混合物を用いることができる。グラ
ファイトとしては、特に制限はなく、りん片状黒鉛、玉
状黒鉛などの天然黒鉛の精製されたものや人造黒鉛、あ
るいはこれらの混合物をか用いられる。導電性金属微粉
としては、特に制限はなく、金、銀、白金、銅、ニッケ
ル、クロム、パラジウム、アルミニウム、タングステン
、モリブデンなど、あるいはこれらの合金からなる金属
微粉、あるいはこれらの金属または合金で被覆された無
機物微粉など、あるいはこれらの混合物を用いることが
できる。また、金属酸化物微粉としては。
There are no particular restrictions on carbon blanks, including acetylene black, furnace blank, thermal black,
Channel black, those obtained by graft polymerization of vinyl monomers or those subjected to oxidation treatment, or mixtures thereof can be used. The graphite is not particularly limited, and purified natural graphite such as flake graphite and bead graphite, artificial graphite, or a mixture thereof may be used. The conductive metal fine powder is not particularly limited, and includes metal fine powder made of gold, silver, platinum, copper, nickel, chromium, palladium, aluminum, tungsten, molybdenum, etc., or alloys of these metals, or coated with these metals or alloys. fine inorganic powder, etc., or a mixture thereof can be used. Also, as metal oxide fine powder.

特に制限はなく、錫、チタン、鉄などの酸化物の微粉、
あるいはこれらの混合物を用いることができる。
There are no particular restrictions; fine powder of oxides such as tin, titanium, iron, etc.
Alternatively, mixtures of these can be used.

しかしながら、これらの導電性微粉末の中でも、カーボ
ンブラック、とりわけDBP値で表わされる吸油量が3
00cc/100g以下のカーボンブラック。
However, among these conductive fine powders, carbon black, especially the oil absorption amount expressed by DBP value, is 3.
Carbon black below 00cc/100g.

グラファイト、とりわけ平均粒径2〜10μmのグラフ
ァイト、および導電性金属微粉、とりわけ平均粒径5μ
m以下の導電性金属微粉から選ばれる1種または2種以
上を主成分とするものを用いることが好ましい。
Graphite, especially graphite with an average particle size of 2 to 10 μm, and electrically conductive metal fine powder, especially with an average particle size of 5 μm
It is preferable to use one whose main component is one or more selected from conductive metal fine powders having a particle diameter of m or less.

カーボンブラックのDBP値で表わされる吸油量が30
0cc/100gを超える場合には、得られる導電性ペ
ーストの流動性が小さくなる傾向があり。
The oil absorption amount expressed by the DBP value of carbon black is 30
If it exceeds 0 cc/100 g, the resulting conductive paste tends to have low fluidity.

印刷適性、塗装適性の面からカーボンブラックの含有量
を大きくすることができず、そのため高い導電性を有す
るペーストが得られにくくなる傾向がある。
The content of carbon black cannot be increased from the viewpoint of printing suitability and coating suitability, and therefore it tends to be difficult to obtain a paste having high conductivity.

グラファイHk粉末の吸油量はきわめて小さく、得られ
る導電ペーストの粘度の面ではどのような吸油量のグラ
ファイトであってもよい。グラファイトの平均粒径が2
μm未満の場合、あるいは10μmを超える場合には、
得られる導電ペーストの硬化後の導電性が低くなり、所
望の導電性を得るにはグラファイトの充填量を多くする
必要があるため、得られる導電ペーストの粘度が高くな
り、印刷や塗装がより困難となる傾向がある。導電性金
属微粉の平均粒径が5μmを超えると、得られる導電ペ
ーストの硬化後の導電性が低くなり、所望の導電性を得
るには導電性金属微粉の充填量を多くする必要があるた
め。
The oil absorption amount of graphite Hk powder is extremely small, and any oil absorption amount of graphite may be used in terms of the viscosity of the resulting conductive paste. The average particle size of graphite is 2
If it is less than μm or more than 10 μm,
The resulting conductive paste has a lower conductivity after curing, and a higher loading of graphite is required to obtain the desired conductivity, resulting in a higher viscosity of the resulting conductive paste, which is more difficult to print or paint. There is a tendency to If the average particle size of the conductive metal fine powder exceeds 5 μm, the conductivity of the resulting conductive paste after curing will be low, and in order to obtain the desired conductivity, it is necessary to increase the amount of conductive metal fine powder packed. .

得られる導電ペーストの粘度が高くなり、印刷や塗装が
より困難とな之傾向がある。
The viscosity of the resulting conductive paste tends to be high, making printing and painting more difficult.

本発明において、 (C)導電性微粉末は、(A)。In the present invention, (C) conductive fine powder is (A).

(B)および(C)の総和に対して、5〜90重量%の
範囲で用いることが好ましい。5重量%未満では、硬化
後の導電ペースト中で導電性微粉末同士の接触による導
電通路が形成されにくくなる傾向があり、また90重量
%を超える場合にはバインダーによる導電性微粉末の固
着効果が阻害される傾向がある。
It is preferably used in an amount of 5 to 90% by weight based on the total of (B) and (C). If it is less than 5% by weight, it tends to be difficult to form a conductive path due to contact between the conductive fine powders in the conductive paste after curing, and if it exceeds 90% by weight, the adhesive effect of the binder on the conductive fine powders will decrease. tends to be inhibited.

本発明において、 (C)がカーボンブランクのみから
なる場合には、得られる導電ペーストは、硬化後の導電
性が比較的低いいわゆる抵抗ペーストとして作用し、 
(C)が導電性金属微粉2例えば銀粉のみからなる場合
は硬化後の導電性が高い導電ペーストとなる。このよう
に1本発明において、 (C)の種類3組成および含有
量を適宜調節することによって所望の導電性のペースト
とすることができる。
In the present invention, when (C) consists only of carbon blank, the resulting conductive paste acts as a so-called resistance paste with relatively low conductivity after curing,
When (C) consists of only the conductive metal fine powder 2, for example, silver powder, the conductive paste becomes highly conductive after curing. As described above, in the present invention, a desired electrically conductive paste can be obtained by appropriately adjusting the composition and content of type 3 (C).

本発明の導電ペーストには実質的に揮発性溶剤が含まれ
ないので、硬化前に溶剤を除去し、それを回収処理する
工程と装置はいらず、導電ペーストの取り扱いも非危険
物の取り扱いですみ、硬化後の導電性のばらつきもなく
、溶剤資源の節約にもなる。
Since the conductive paste of the present invention does not substantially contain volatile solvents, there is no need for the process and equipment to remove the solvent and collect it before curing, and the conductive paste can be handled as a non-hazardous material. , there is no variation in conductivity after curing, and solvent resources can be saved.

本発明の導電ペーストには、上記(A)、必要に応じて
(B)、  (C)および(D)の他、その性能を阻害
しない範囲において、必要に応じて、微粉シリカなどの
チキソトロープ剤、シリカ、炭酸カルシウム、炭酸マグ
ネシウム、クレー、タルク、マイカ。
In addition to the above (A), optionally (B), (C), and (D), the conductive paste of the present invention may also contain a thixotropic agent such as finely divided silica to the extent that it does not impair its performance. , silica, calcium carbonate, magnesium carbonate, clay, talc, mica.

硫酸バリウムなどの無機充填剤、チタネート化合物など
の接着性向上剤などを添加することができる。
Inorganic fillers such as barium sulfate, adhesion improvers such as titanate compounds, etc. can be added.

本発明の導電ペーストは、上記(A)、必要に応じて(
B)、  (C)および(D)を混合後2通常の導電ペ
ーストの製造に用いられる方法9例えば3本ロール装置
などを用いる方法によって容易に製造することができる
The conductive paste of the present invention includes the above (A) and optionally (
After mixing B), (C) and (D), it can be easily produced by a method 9 which is commonly used in the production of conductive pastes, such as a method using a three-roll device.

本発明の導電ペーストを基材に適用する方法としてはス
クリーン印刷がもっとも適しているが、その他の印刷塗
装方法1例えばローラー塗装などを用いることも可能で
ある。
Although screen printing is the most suitable method for applying the conductive paste of the present invention to a substrate, other printing and coating methods such as roller coating can also be used.

本発明の導電ペーストは基材に印刷・塗装した□後。After the conductive paste of the present invention is printed and painted on the base material.

空気中または不活性ガス雰囲気中で電子線を照射するこ
とによって硬化される。電子線照射の条件としては、加
速電圧150〜300KV、吸収線量3〜3QMrad
の範囲にあることが望ましい。
It is cured by electron beam irradiation in air or an inert gas atmosphere. The conditions for electron beam irradiation are an acceleration voltage of 150 to 300 KV, and an absorbed dose of 3 to 3 Q Mrad.
It is desirable that it be within the range of .

本発明の導電ペーストは電子線照射による硬化後そのま
ま実用に供することが可能であるが、必要に応じて加熱
エージング処理を行うことや、保護のための塗料などに
よって被覆することも可能である。
The conductive paste of the present invention can be put to practical use as it is after being cured by electron beam irradiation, but it can also be subjected to heat aging treatment or coated with a protective paint, etc., if necessary.

(実 施 例) 以下に実施例により本発明をさらに詳しく説明する。例
中1部とは重量部を表わす。
(Examples) The present invention will be explained in more detail below using Examples. In the examples, 1 part means part by weight.

実施例1 ジアリルイソフタレートオリゴマー    11部トリ
ス(2−アクリロイルオキシエチル)イソシアヌレート
                 22部アクリル#
2−ヒドロキシエチル     33部アセチレンブラ
ック「デンカブラック」 (電気化学工業■製、商品名
、DBP値250cc/100g)3部 ファーネスブラックr U K −V U L CA 
N  P J(CABOT社製、商品名、DBP値11
6cc/ 100 g)              
 17部グラファイトrPOG−10J  (住友アル
ミニウム製諌■製、商品名、平均粒径6μm)    
14部上記組成の電子線硬化型導電ペーストを、165
meshのステンレススチール製スクリーン版を用い。
Example 1 Diallylisophthalate oligomer 11 parts Tris(2-acryloyloxyethyl)isocyanurate 22 parts Acrylic #
2-Hydroxyethyl 33 parts Acetylene black "Denka Black" (manufactured by Denki Kagaku Kogyo ■, trade name, DBP value 250cc/100g) 3 parts Furnace black r U K -V U L CA
N P J (manufactured by CABOT, product name, DBP value 11
6cc/100g)
17 parts graphite rPOG-10J (manufactured by Sumitomo Aluminum Co., Ltd., trade name, average particle size 6 μm)
14 parts of electron beam curable conductive paste having the above composition, 165 parts
Using mesh stainless steel screen plate.

あらかじめエツチング処理および研摩処理によって銅箔
電極部分を作った片面銅張紙フエノール積層板上に印刷
した。印刷された導電ペーストの銅箔電極間の大きさは
たて1龍よこ10龍であった。つぎに電子線照射装置(
エナージー・サイエンス社製150B−15型)を用い
、ちっ素ガス雰囲気中で加速電圧160KV、吸収線量
10Mradの条件下でこの積層板の印刷面側より電子
線を照射し、導電ペーストを硬化させた。さらに硬化後
の導電ペーストの上に200 meshのナイロン製ス
クリーン版を用いて紫外線硬化型ソルダーレジスト(タ
ムラ化研■製USR−2B)を印刷し、紫外線照射装置
(オゾンレス高圧水銀灯、  2 KW、  80 W
/cm、ランプ試料間距離10cm、コンベアー速度1
.0m/分)を用いてソ= 11− ルダーレジストを硬化させた。この様にして得られた積
層板試料について1表面状態を評価するとともに、つぎ
の3種類の試験を行ない、試験前後の抵抗値を測定、試
験によるシート抵抗値の変化率を計算した。
Printing was performed on a single-sided copper-clad paper phenol laminate on which a copper foil electrode portion had been previously formed by etching and polishing. The size between the copper foil electrodes of the printed conductive paste was 1 x 1 x 10 x 1 x 1 x x 1 x x 1 x x 1 x x 1 x x 1 x x 1 x x 1 x x 1 x x 1 x x 1 x x 1 x x 1 x x 1 x x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 , 1 x 1 , 2 , 3 , 3 and 4 , respectively . Next, the electron beam irradiation device (
The conductive paste was cured by irradiating an electron beam from the printed side of the laminate under conditions of an accelerating voltage of 160 KV and an absorbed dose of 10 Mrad in a nitrogen gas atmosphere. . Furthermore, an ultraviolet curing solder resist (USR-2B manufactured by Tamura Kaken) was printed on the cured conductive paste using a 200 mesh nylon screen plate, and an ultraviolet ray irradiation device (ozone-less high pressure mercury lamp, 2 KW, 80 W
/cm, distance between lamp samples 10cm, conveyor speed 1
.. The solder resist was cured using 0 m/min). In addition to evaluating the surface condition of the laminate sample thus obtained, the following three types of tests were conducted, the resistance before and after the test was measured, and the rate of change in sheet resistance due to the test was calculated.

半田浸漬試験:温度260℃の溶融半田浴(スズ60/
鉛40)に10秒間浸漬。
Solder immersion test: Molten solder bath (Tin 60/
Immerse in lead 40) for 10 seconds.

耐湿性試験:温度40°C1相対湿度90〜95%の恒
温恒温中に500時間放置。
Humidity resistance test: Leave for 500 hours in a constant temperature at a temperature of 40° C. and a relative humidity of 90 to 95%.

温度サイクル試験:タバイエスベソク■製恒温恒温器P
L−2GP型を用いて一40°c30分、室温15分、
85℃30分、室温15分のサイクルを5回くり返した
Temperature cycle test: Constant temperature incubator P made by Tabai Esbesoku ■
Using L-2GP type, -40°C 30 minutes, room temperature 15 minutes,
A cycle of 30 minutes at 85°C and 15 minutes at room temperature was repeated 5 times.

なお、シート抵抗値は、銅箔電極間の抵抗値を三相計器
製作所製ワイドレンジ・デジタルオームメータDR−1
000CUを用いて測定し、単位Ω/口で表して導電性
の尺度とした。また、各試験による抵抗変化率は次の式
により算出した。
The sheet resistance value is determined by measuring the resistance value between the copper foil electrodes using a wide range digital ohmmeter DR-1 manufactured by Sansho Keiki Seisakusho.
000 CU and expressed in the unit Ω/mouth as a measure of conductivity. In addition, the resistance change rate in each test was calculated using the following formula.

〕 試験前の抵抗値 得られた結果を表1に示す。] Resistance value before test The results obtained are shown in Table 1.

12一 実施例2 ジアリルイソフタレートオリゴマー    10部トリ
メチロールプロパントリアクリレート 22部トリス(
2−アクリロイルオキシエチル)イソシアヌレート  
               22部アクリル酸2−
ヒドロキシエチル     12部「デンカブラック」
             3部rUK−VtJLcA
N  Pj       17部rPOG−10J  
         14部上記組成の電子線硬化型導電
ペーストを、実施例1と同様の方法により印刷硬化させ
た後の表面状態を評価し、抵抗値および抵抗値の変化率
を測定した結果を表1に示す。
121 Example 2 Diallylisophthalate oligomer 10 parts Trimethylolpropane triacrylate 22 parts Tris(
2-Acryloyloxyethyl) isocyanurate
22 parts acrylic acid 2-
Hydroxyethyl 12 parts “Denka Black”
Part 3 rUK-VtJLcA
N Pj 17 part rPOG-10J
14 parts The electron beam curable conductive paste having the above composition was printed and cured by the same method as in Example 1, and the surface condition was evaluated, and the resistance value and the rate of change in resistance value were measured. Table 1 shows the results. .

実施例3 ジアリルイソフタレートオリゴマー    11部メタ
アクリル酸メチル          22部オリゴエ
ステルモノアクリレート[アロニソクスM−IIIJ(
東亜合成化学工業■製、商品名)33部 「デンカブラック」             3部r
UK−VULCAN  PJ       17部rP
OG−10J           14部上記組成の
電子線硬化型導電ペーストを、実施例1と同様の方法に
より印刷硬化させた後の表面状態を評価し、抵抗値およ
び抵抗値の変化率を測定した結果を表1に示す。
Example 3 Diallylisophthalate oligomer 11 parts Methyl methacrylate 22 parts Oligoester monoacrylate [Alonisox M-IIIJ (
Manufactured by Toagosei Chemical Industry ■, product name) 33 parts "Denka Black" 3 parts r
UK-VULCAN PJ 17th part rP
OG-10J 14 parts The electron beam curable conductive paste having the above composition was printed and cured in the same manner as in Example 1, and the surface condition was evaluated, and the results of measuring the resistance value and the rate of change in resistance value are shown below. Shown in 1.

実施例4 ジアリルオルトフタレートオリゴマー   22部トリ
メチロールプロパントリアクリレート 22部テトラヒ
Fロフルフリルメタアクリレート 22部「デンカブラ
ック」             3部rUK−VUL
CAN  PJ       17部rPOG−10J
           14部上記組成の電子線硬化型
導電ペーストを、実施例1と同様の方法により印刷硬化
させた後の表面状態を評価し、抵抗値および抵抗値の変
化率を測定した結果を表1に示す。
Example 4 Diallyl orthophthalate oligomer 22 parts Trimethylolpropane triacrylate 22 parts TetrahyF rofurfuryl methacrylate 22 parts "Denka Black" 3 parts rUK-VUL
CAN PJ 17 part rPOG-10J
14 parts The electron beam curable conductive paste having the above composition was printed and cured by the same method as in Example 1, and the surface condition was evaluated, and the resistance value and the rate of change in resistance value were measured. Table 1 shows the results. .

実施例4 ジアリルオルトフタレートオリゴマー   22部トリ
メチロールプロパントリアクリレート 22部テトラヒ
ドロフルフリルメタアクリレ−I・ 22部「デンカブ
ランク」             3部rUK−VU
LCAN  PJ       17部rPOG−10
J           14部上記組成の電子線硬化
型導電ペーストを、実施例1と同様の方法により印刷硬
化さセた後の表面状態を評価し、抵抗値および抵抗値の
変化率を測定した結果を表1に示す。
Example 4 Diallyl orthophthalate oligomer 22 parts Trimethylolpropane triacrylate 22 parts Tetrahydrofurfuryl methacrylate-I 22 parts "Denka Blank" 3 parts rUK-VU
LCAN PJ 17th part rPOG-10
J 14 parts The electron beam curable conductive paste having the above composition was printed and cured in the same manner as in Example 1, and the surface condition was evaluated. The resistance value and the rate of change in resistance value were measured. Table 1 shows the results. Shown below.

実施例5 ジアリルイソフタレートオリゴマー     8部トリ
メチロールプロパントリアクリレート 11部フェノキ
シエチルアクリレート        6部銀粉rD−
25j  (デグザジャパン側製、商品名。
Example 5 Diallylisophthalate oligomer 8 parts trimethylolpropane triacrylate 11 parts phenoxyethyl acrylate 6 parts silver powder rD-
25j (manufactured by Deguza Japan, product name.

平均粒径1.1μm)           75部上
記組成の電子線硬化型導電ペーストを、実施例Iと同様
の方法により印刷硬化させた後の表面状態を評価し、抵
抗値および抵抗値の変化率を測定した結果を表1に示す
Average particle size: 1.1 μm) 75 parts The electron beam curable conductive paste having the above composition was printed and cured in the same manner as in Example I, and the surface condition was evaluated, and the resistance value and the rate of change in resistance value were measured. The results are shown in Table 1.

比較例1 ジアリルイソフタレートオリゴマーの代りにトリス(2
−アクリロイルオキシエチル)イソシアヌレートを用い
た以外は、実施例1と同様にして、電子線硬化型導電ベ
ース]・を印刷硬化させた後の表面状態を評価し、抵抗
値および抵抗値の変化率を測定した結果を表1に示す。
Comparative Example 1 Tris(2
-The surface condition after printing and curing of the electron beam curable conductive base was evaluated in the same manner as in Example 1 except that acryloyloxyethyl) isocyanurate was used, and the resistance value and the rate of change in resistance value were evaluated. The results of the measurements are shown in Table 1.

比較例2 テトラメチロールメタントリアクリレート 22部トリ
ス(2−アクリロイルオキシエチル)イソシアスレート
                 22部ポリエステ
ルジアクリレートl0E−A410J(日本触媒化学工
業91製、商品名)     22部「デンカブラック
」             3部rUK−VULCA
N  PJ       17部rPOG−10j  
         1.4部」1記組成の電子線硬化型
導電ペーストを、実施例1と同様の方法により印刷硬化
させた後の表面状態を評価し、抵抗値および抵抗値の変
化率を測定した結果を表1に示す。
Comparative Example 2 Tetramethylolmethane triacrylate 22 parts Tris(2-acryloyloxyethyl) isocyanate 22 parts Polyester diacrylate 10E-A410J (manufactured by Nippon Shokubai Kagaku Kogyo 91, trade name) 22 parts "Denka Black" 3 parts rUK-VULCA
NPJ 17 part rPOG-10j
The electron beam curable conductive paste having the composition 1.4 parts was printed and cured in the same manner as in Example 1, and the surface condition was evaluated, and the resistance value and the rate of change in resistance value were measured. It is shown in Table 1.

(以下余白) = 16= 表  1 比較例3 トリメチロールプロパントリアクリレート 24部トリ
ス(2−アクリロイルエチルエステル)イソシアヌレー
ト                12部酸化錫粉I
T−IJ  (三菱金属(構製、商品名、平均粒径0.
1μm)             34部上記組成の
電子線硬化型導電ペーストを、実施例1と同様の方法に
より印刷硬化さゼた後の抵抗イ11′Iは5MΩ/口以
上であり、到底実用に耐えるものではなかった。
(Margin below) = 16 = Table 1 Comparative Example 3 Trimethylolpropane triacrylate 24 parts Tris(2-acryloyl ethyl ester) isocyanurate 12 parts Tin oxide powder I
T-IJ (Mitsubishi Metals (Structure, product name, average particle size 0.
1 μm) 34 parts After printing and curing the electron beam curable conductive paste with the above composition in the same manner as in Example 1, the resistance 11'I was 5 MΩ/mouth or more, which was completely unacceptable for practical use. Ta.

比較例4 トリメチロールプロパントリアクリレート 12部トリ
ス(2−アクリロイルエチルエステル)イソシアヌレー
ト                12部2−ヒドロ
キシエチルアクリレート    12部りん片状酸化錫
粉rSn−3−200J  (福田金属箔粉工業側製、
商品名、平均粒径6.θμm、厚さ0゜4μm以下) 
    ″         34部上記組成の電子線
硬化型導電ペーストを、実施例1と同様の方法により印
刷硬化させた後の抵抗値は5MΩ/口以上であり、到底
実用に耐えるものではなかった。
Comparative Example 4 Trimethylolpropane triacrylate 12 parts Tris(2-acryloyl ethyl ester) isocyanurate 12 parts 2-hydroxyethyl acrylate 12 parts Scale-like tin oxide powder rSn-3-200J (manufactured by Fukuda Metal Foil and Powder Industry)
Product name, average particle size 6. θμm, thickness 0゜4μm or less)
34 parts After printing and curing the electron beam curable conductive paste having the above composition in the same manner as in Example 1, the resistance value was 5 MΩ/mouth or more, which was completely unsuitable for practical use.

〔発明の効果〕〔Effect of the invention〕

本発明により、(1)揮発性溶剤を含まないけれども。 According to the present invention: (1) Although free of volatile solvents.

印刷または塗装しうる程度に十分低粘度である。(2)
揮発性溶剤を含まないので、揮発性溶剤を蒸発させる工
程および回収など蒸発した揮発性溶剤を処理する工程を
省略でき、工程の合理化ができ、大気汚染の防止、省資
源・省エネルギーがはかれ、導電ペーストの非危険物の
扱いができ、従来の熱硬化型導電ペーストの硬化の場合
のように、基材を損傷することがない、(2)印刷硬化
後の導電ペーストの表面が平滑であり硬度が高いので、
プリント配線板としてだけでなく、キーボード接点など
にも利用できる。(3)硬化後、高温度または高湿度の
環境下に長期間保持しても導電性の低下がなく、経時の
品質の信頼性が高い、電子線硬化型導電ペーストが得ら
れるようになった。
It has a sufficiently low viscosity that it can be printed or painted. (2)
Since it does not contain volatile solvents, it is possible to omit the process of evaporating the volatile solvent and the process of treating the evaporated volatile solvent, such as recovering it, streamlining the process, preventing air pollution, and saving resources and energy. The conductive paste can be treated as a non-hazardous material, and the base material will not be damaged as in the case of conventional curing of thermosetting conductive paste. (2) The surface of the conductive paste after printing and curing is smooth. Because of its high hardness,
It can be used not only as a printed wiring board, but also as keyboard contacts, etc. (3) After curing, it is now possible to obtain an electron beam-curable conductive paste that does not lose its conductivity even when kept in a high-temperature or high-humidity environment for a long period of time, and whose quality is highly reliable over time. .

Claims (1)

【特許請求の範囲】 1、(A)ポリアリル化合物、必要に応じて(B)上記
(A)以外の少なくとも2個以上の電子線反応性基を有
する化合物、(C)電子線反応性基1個を有する化合物
、および(D)導電性微粉末からなり、実質的に(E)
揮発性溶剤を含まないことを特徴とする電子線硬化型導
電ペースト。 2、(D)導電性微粉末が、DBP値で表わされる吸油
量が300cc/100g以下のカーボンブラック、平
均粒径2〜10μmのグラファイト、および平均粒径5
μm以下の導電性金属微粉から選ばれる1種または2種
以上を主成分とするものである特許請求の範囲第1項記
載の電子線硬化型導電ペースト。 3、(A)ポリアリル化合物がジアリルイソフタレート
オリゴマーを主成分とするものである特許請求の範囲第
1項または第2項記載の電子線硬化型導電ペースト。
[Claims] 1. (A) a polyallyl compound, optionally (B) a compound having at least two or more electron beam reactive groups other than the above (A), (C) an electron beam reactive group 1 and (D) a conductive fine powder, substantially consisting of (E)
An electron beam-curable conductive paste that does not contain volatile solvents. 2. (D) The conductive fine powder is carbon black with an oil absorption amount expressed by DBP value of 300 cc/100 g or less, graphite with an average particle size of 2 to 10 μm, and an average particle size of 5
The electron beam curable conductive paste according to claim 1, which contains as a main component one or more kinds selected from conductive metal fine powder of .mu.m or less. 3. The electron beam curable conductive paste according to claim 1 or 2, wherein the polyallyl compound (A) contains diallyl isophthalate oligomer as a main component.
JP6021787A 1987-03-17 1987-03-17 Electron beam-curing type conductive paste Pending JPS63227671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6021787A JPS63227671A (en) 1987-03-17 1987-03-17 Electron beam-curing type conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6021787A JPS63227671A (en) 1987-03-17 1987-03-17 Electron beam-curing type conductive paste

Publications (1)

Publication Number Publication Date
JPS63227671A true JPS63227671A (en) 1988-09-21

Family

ID=13135775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6021787A Pending JPS63227671A (en) 1987-03-17 1987-03-17 Electron beam-curing type conductive paste

Country Status (1)

Country Link
JP (1) JPS63227671A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240168A (en) * 1989-03-14 1990-09-25 Asahi Chem Ind Co Ltd Curing of conductive paint
JPH04269403A (en) * 1991-02-25 1992-09-25 Nec Kagoshima Ltd Conductive paste
JPH1022594A (en) * 1996-07-03 1998-01-23 Toppan Printing Co Ltd Radiation-hardened composition for baking
JP2006199912A (en) * 2004-12-24 2006-08-03 Jsr Corp Curable composition containing conductive particle, cured product thereof and laminate
TWI471339B (en) * 2006-04-18 2015-02-01 Dongjin Semichem Co Ltd Paste composition for printing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240168A (en) * 1989-03-14 1990-09-25 Asahi Chem Ind Co Ltd Curing of conductive paint
JPH04269403A (en) * 1991-02-25 1992-09-25 Nec Kagoshima Ltd Conductive paste
JPH1022594A (en) * 1996-07-03 1998-01-23 Toppan Printing Co Ltd Radiation-hardened composition for baking
JP2006199912A (en) * 2004-12-24 2006-08-03 Jsr Corp Curable composition containing conductive particle, cured product thereof and laminate
TWI471339B (en) * 2006-04-18 2015-02-01 Dongjin Semichem Co Ltd Paste composition for printing

Similar Documents

Publication Publication Date Title
US5242511A (en) Copper alloy compositions
US3988647A (en) Method for making a circuit board and article made thereby
USRE30274E (en) Method for making a circuit board and article made thereby
US4049844A (en) Method for making a circuit board and article made thereby
USRE31411E (en) Radiation curable inks
TWI534838B (en) Copper particulate dispersion
JPS63227671A (en) Electron beam-curing type conductive paste
CN112602158B (en) conductive paste
JPS63205375A (en) Electron beam-curable electrically conductive paste
JPS63228525A (en) Electron beam hardening type conducting paste
JPS62270675A (en) Electron beam-curable electrically conductive paste
CA1129560A (en) Thick film silver conductor compositions for fine line electrodes
WO2011125741A1 (en) Membrane wiring board
JP2758432B2 (en) Electron beam curable conductive paste
JPS63189477A (en) Electron radiation curing electrically conductive paste
EP0425677B1 (en) Conductive paste composition and curing thereof
JPH02177388A (en) Manufacture of printed wiring board
JPH02199179A (en) Curing of paint
JPS5842651A (en) Electrically conductive paste
JPH023454A (en) Radiation-curable covering composition, solder resist, and plated resist
JPH0251297A (en) Manufacture of printed wiring board
JPH06162818A (en) Activated energy ray setting type conductive composition
JPH0463881B2 (en)
JPS62200703A (en) Manufacture of printed resistance
JPS60229965A (en) Radiation-curing electrically conductive paint