JPS63227087A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device

Info

Publication number
JPS63227087A
JPS63227087A JP62060158A JP6015887A JPS63227087A JP S63227087 A JPS63227087 A JP S63227087A JP 62060158 A JP62060158 A JP 62060158A JP 6015887 A JP6015887 A JP 6015887A JP S63227087 A JPS63227087 A JP S63227087A
Authority
JP
Japan
Prior art keywords
grooves
layer
high resistance
light emitting
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62060158A
Other languages
Japanese (ja)
Inventor
Kazuhiro Tanaka
一弘 田中
Masaaki Kuno
正明 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62060158A priority Critical patent/JPS63227087A/en
Publication of JPS63227087A publication Critical patent/JPS63227087A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To reduce parasitic capacitance by each forming a plurality of buried layers having flat surfaces and high resistance outside a striped oscillation region in a buried semiconductor laser. CONSTITUTION:High resistance layers 9 are buried into inverted mesa-shaped striped grooves on both sides of a light-emitting region 10 while a large number of grooves having the same shape as the high resistance layers 9 are shaped outside the high resistance layers 9, and high resistance layers 11 are also buried into these grooves. Accordingly, since a large number of the high resistance layers 9, 11 are formed on both sides of the light-emitting region 10, a large number of capacitances by active layers 3 are replaced with the capacitances of the high resistance layers 11, thus reducing the whole parasitic capacitance of a semiconductor laser.

Description

【発明の詳細な説明】 〔概 要〕 埋込み型半導体レーザであり、表面が平坦で高抵抗な埋
込み層をストライプ状発光領域の外側にそれぞれ複数個
形成して寄生容量を低減する。
[Detailed Description of the Invention] [Summary] This is a buried semiconductor laser, in which a plurality of buried layers each having a flat surface and high resistance are formed outside a striped light emitting region to reduce parasitic capacitance.

〔産業上の利用分野〕[Industrial application field]

本発明は埋込み型半導体レーザに係り、特に漏れ電流の
抑制および表面平坦化ができかつ寄生容量を低減した埋
込み型半導体レーザの構造に関する。
The present invention relates to a buried semiconductor laser, and more particularly to a structure of a buried semiconductor laser that can suppress leakage current, flatten the surface, and reduce parasitic capacitance.

〔従来の技術〕[Conventional technology]

光通信が実用期を迎え、さらに、超高速大容量の光通信
システムが望まれている。光源である半導体レーザには
、従来特性のすぐれた埋込みへテロ構造(BH)が用い
られてきた。これは発光領域の両わきをp−n接合を有
する半導体層で埋込んだものである。しかし、この構造
は、埋込み層の寄生容量が大きいため超高速変調(72
Gb/ s )が困難である・そこで、近年埋込み層に
高抵抗半導体層を用いて寄生容量を減らした半導体レー
ザが開発されてきた。
Optical communication has reached its practical stage, and ultra-high-speed, large-capacity optical communication systems are desired. A buried heterostructure (BH) with excellent characteristics has conventionally been used as a semiconductor laser as a light source. This is a device in which both sides of a light emitting region are buried with semiconductor layers having a pn junction. However, this structure has a large parasitic capacitance in the buried layer, so ultra-high speed modulation (72
Gb/s) Therefore, in recent years, semiconductor lasers have been developed in which the parasitic capacitance is reduced by using a high-resistance semiconductor layer in the buried layer.

第5図はこのような目的で我々が先に開示した埋込み型
半導体レーザの例を示す(特願昭60−57870号明
細書参照)。
FIG. 5 shows an example of a buried semiconductor laser previously disclosed by us for such a purpose (see Japanese Patent Application No. 60-57870).

同図中、1はn形基板、2はn形りラッド層、3は活性
層、4はp形りラッド層、5はp′″形コンタクト層、
6は絶縁膜、7はn側電極、8はp側電極、9は高抵抗
層であり、発光領域は高抵抗層9に挾まれたストライプ
状領域である。この半導体レーザは発光領域の両側の溝
に高抵抗層9を埋め込み成長したものであり、これによ
って寄生容量を10p下前後に低減している。
In the figure, 1 is an n-type substrate, 2 is an n-type rad layer, 3 is an active layer, 4 is a p-type rad layer, 5 is a p''-type contact layer,
6 is an insulating film, 7 is an n-side electrode, 8 is a p-side electrode, 9 is a high-resistance layer, and the light-emitting region is a striped region sandwiched between the high-resistance layers 9. This semiconductor laser is grown with high resistance layers 9 buried in grooves on both sides of the light emitting region, thereby reducing the parasitic capacitance to around 10p or less.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の如く、第5図に示した半導体レーザでは寄生容量
がまだ残っており、これをさらに小さくすることが望ま
しい。第5図の構造での寄生容量は、高抵抗層9の容量
、絶縁膜6の容量、発光9■域の外側の活性層3の容量
などがあるが、10pFの容量の主体は高抵抗層9の外
側の絶縁膜6の容量と活性層3の容量との直列容量であ
る。これを低減させるには、発光領域のみを残して、残
りの部分をすべて高抵抗層にすればよいが、選択成長性
のすぐれたVPE法で埋込み成長を行なうと平坦なウェ
ハ表面が得られないという欠点があり、埋込高抵抗層は
溝形状である必要がある。
As mentioned above, parasitic capacitance still remains in the semiconductor laser shown in FIG. 5, and it is desirable to further reduce this parasitic capacitance. The parasitic capacitance in the structure shown in FIG. 5 includes the capacitance of the high resistance layer 9, the capacitance of the insulating film 6, and the capacitance of the active layer 3 outside the light emitting region 9. However, the main part of the 10 pF capacitance is the high resistance layer. This is the series capacitance between the capacitance of the insulating film 6 on the outside of 9 and the capacitance of the active layer 3. To reduce this, it is possible to leave only the light-emitting region and make the rest a high-resistance layer, but if buried growth is performed using the VPE method, which has excellent selective growth properties, a flat wafer surface cannot be obtained. This has the drawback that the buried high-resistance layer needs to be in the shape of a groove.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、本発明は、第5図に示す
半導体レーザの発光領域を狭む高抵抗層のさらに外側に
も高抵抗層を形成する。
In order to solve the above-mentioned problems, the present invention forms a high-resistance layer further outside the high-resistance layer that narrows the light emitting region of the semiconductor laser shown in FIG.

すなわち、本発明は、半導体基板上に、1導電型のクラ
ッド層、活性層及び反対導電型のクラッド層の各層を順
に含む半導体層が形成され、該半導体層のストライプ状
発光領域の両側のそれぞれに表面における幅が10μm
以下の逆メサ形状をなす複数の溝が少なくとも前記活性
層より深く設けられ、該複数の溝が高抵抗成長層により
埋込まれてなることを特徴とする半導体発光装置にある
That is, in the present invention, a semiconductor layer including a cladding layer of one conductivity type, an active layer, and a cladding layer of an opposite conductivity type is formed on a semiconductor substrate, and each of the semiconductor layers on both sides of a striped light emitting region of the semiconductor layer is formed on a semiconductor substrate. The width at the surface is 10μm
A semiconductor light emitting device characterized in that a plurality of grooves having the following inverted mesa shape are provided deeper than at least the active layer, and the plurality of grooves are filled with a high resistance growth layer.

また、本発明の好ましい態様によれば、発光領域の両側
のそれぞれの複数の溝が発光領域を除いて逆メサの底部
において相互に連通して半導体層が基板から分離され、
かつその連通した複数の溝が高抵抗成長層により埋込ま
れてなることによって、寄生容量がさらに低減される。
Further, according to a preferred embodiment of the present invention, the plurality of grooves on each side of the light emitting region communicate with each other at the bottom of the inverted mesa except for the light emitting region, so that the semiconductor layer is separated from the substrate;
In addition, since the plurality of interconnected grooves are filled with a high resistance growth layer, parasitic capacitance is further reduced.

〔作 用〕[For production]

従来の活性層の外側の活性層による容量と比べて本発明
による高抵抗層の容量は数十分の−と小さいので、全体
としての寄生容量は本発明により大きく低減する。これ
らの容量と、おのおの直上の絶縁膜の容量とを直列に合
成した容量がそれぞれ寄生容量となるが、高抵抗層を用
いれば、これも数分の1となり、全体としての寄生容量
は大きく低減する。
Since the capacitance of the high resistance layer according to the present invention is several tenths of a second smaller than the capacitance due to the active layer outside the conventional active layer, the overall parasitic capacitance is greatly reduced by the present invention. The combined capacitance in series of these capacitances and the capacitance of the insulating film directly above each becomes parasitic capacitance, but if a high-resistance layer is used, this will be reduced to a fraction of what it is, and the overall parasitic capacitance will be greatly reduced. do.

〔実施例〕〔Example〕

第1図に本発明の実施例の半導体レーザを示す。 FIG. 1 shows a semiconductor laser according to an embodiment of the present invention.

同図中、第5図の従来例と同じ部分は同じ参照数字で示
す。図に見られる如く、この実施例では、第5図の例と
同様に、発光領域10の両側の逆メサ形状をなすストラ
イプ状の溝に高抵抗層9が埋め込まれると共に、その外
側に高抵抗層9と同じ形状の溝が多数形成され、これら
の溝にも高抵抗層11が埋め込まれている。このように
、高抵抗層9.11が発光領域10の両側に多数形成さ
れることによって、第5図の例の活性N3による容量の
多くが高抵抗Nllの容量に置き換えられるため、半導
体レーザ全体の寄生容量は、例えば、1opF’から3
pF程度に減少する。
In the figure, the same parts as in the conventional example of FIG. 5 are indicated by the same reference numerals. As seen in the figure, in this embodiment, similarly to the example in FIG. A large number of grooves having the same shape as layer 9 are formed, and high resistance layer 11 is also embedded in these grooves. In this way, by forming a large number of high resistance layers 9,11 on both sides of the light emitting region 10, most of the capacitance due to active N3 in the example of FIG. For example, the parasitic capacitance of
It decreases to about pF.

このような半導体レーザの製造は第5図の例すなわち特
願昭60−57870号明細書に開示した方法と基本的
に同じ方法で実施することが可能である。
Such a semiconductor laser can be manufactured by basically the same method as the example shown in FIG. 5, that is, the method disclosed in Japanese Patent Application No. 60-57870.

但し、第2図に示す如く、基板1上に各半導体層2〜5
を成長した後、溝12を多数形成する点が異なる。その
ために、p1形コンタクト層5上のレジスト層13を多
数の溝にあわせてパターニングする。溝12の形状、寸
法はすべて同一でよく、例えば幅(最上部)8μm、深
さ5μmとする。
However, as shown in FIG.
The difference is that a large number of grooves 12 are formed after the growth. For this purpose, the resist layer 13 on the p1 type contact layer 5 is patterned to match a large number of grooves. The shape and dimensions of the grooves 12 may all be the same, for example, the width (top) is 8 μm and the depth is 5 μm.

溝12への高抵抗層9.11の埋め込みは、上記明細書
に詳細に記載されている如くクロライドVPE法を用い
ると、埋込み高抵抗1m!9 、11の表面が平坦にな
り好ましい。
The high resistance layer 9.11 is buried in the groove 12 using the chloride VPE method as described in detail in the above specification, and the high resistance layer 9.11 is buried in the groove 12 with a high resistance of 1 m! The surfaces of 9 and 11 are preferably flat.

第3図は本発明のもう1つの実施例を示す。この実施例
においても、発光領域10の両側にそれぞれ多数のスト
ライプ溝が形成され、それに高抵抗層9.15が形成さ
れている点は第1図の実施例と同じであるが、これらの
溝9,15は発光領域10を除いて相互に溝の底が連通
している点が第1図の実施例と異なる。この実施例の溝
も第1図の実施例の溝と形状は略同−であるが、溝の底
部が連通しているので、第1図の実施例と比べて溝の間
の間隔が小さくなり、その分だけ活性層3による容量も
低下するので、全体としての寄生容量も第1図の実施例
よりは低減される。例えば、第1図の実施例の寄生容量
を3pFとすると2.5pF程度に低減される。
FIG. 3 shows another embodiment of the invention. This embodiment is also the same as the embodiment shown in FIG. 1 in that a large number of striped grooves are formed on both sides of the light emitting region 10, and a high resistance layer 9.15 is formed thereon. 9 and 15 are different from the embodiment shown in FIG. 1 in that the bottoms of the grooves communicate with each other except for the light emitting region 10. The grooves in this embodiment have approximately the same shape as the grooves in the embodiment shown in FIG. Since the capacitance due to the active layer 3 is reduced by that amount, the parasitic capacitance as a whole is also reduced compared to the embodiment shown in FIG. For example, if the parasitic capacitance of the embodiment shown in FIG. 1 is 3 pF, it is reduced to about 2.5 pF.

この実施例の特徴はストライプ状溝の底が連通している
ことであり、そのために溝の間に存在するストライ、ブ
状の半導体部分は基板Iあるいは2より分離され、浮上
した状態で存在する。このような構造は第4図に示すよ
うなパターンのマスクを用いて半導体層をエツチングす
ることによって形成することができる。第3図(断面図
)において、発光領域工0の幅aを5μm、その両側の
溝の幅すを8μm、溝と溝の間の幅Cを3μm、発光領
域の両側以外の溝の幅dを6μmとすると、第4図(平
面図)において、これらの幅に対応するストライプ状の
パターン16〜19を形成し、かつそのストライブ方向
に例えば距離i’ = 1.5 t@の間隔でストライ
ブ状のパターン17〜19を結ぶそれらと直角方向のパ
ターン20を例えば幅w=3μmで形成する。このとき
、基板表面を(100)面、ストライブ状パターン16
〜19を<011>方向、パターン20が(OIT)方
向にする。そしてBrとエタノールでエツチングすると
、<011>方向のパターン16〜19の下方は第3図
に示す如く、逆メサ形断面の半導体部分を残すようにエ
ツチングが進行して、ついには両隣の溝の底部が連通ず
るに至る。しかし、<011>方向のパターン20の下
方は、エツチングによってメサ形断面の半導体部分が残
るので、ストライプ状パターン18が基板から分離され
てもこれらをその分離されたままの状態で支持するよう
に働く。こうして、溝の底部が相互に連通した多数の溝
が形成される。
The feature of this embodiment is that the bottoms of the striped grooves are in communication, so that the striped or strip-shaped semiconductor portions existing between the grooves are separated from the substrate I or 2 and exist in a floating state. . Such a structure can be formed by etching the semiconductor layer using a mask having a pattern as shown in FIG. In Fig. 3 (cross-sectional view), the width a of the light emitting area 0 is 5 μm, the width of the grooves on both sides thereof is 8 μm, the width C between the grooves is 3 μm, and the width d of the grooves other than both sides of the light emitting area. Assuming that 6 μm, in FIG. 4 (plan view), striped patterns 16 to 19 corresponding to these widths are formed, and at intervals of, for example, a distance i' = 1.5 t@ in the stripe direction. A pattern 20 connecting the striped patterns 17 to 19 in a direction perpendicular to them is formed with a width w of 3 μm, for example. At this time, the substrate surface is the (100) plane, and the striped pattern 16
-19 is in the <011> direction, and pattern 20 is in the (OIT) direction. Then, when etching is performed with Br and ethanol, the etching progresses so as to leave a semiconductor portion with an inverted mesa cross section below the patterns 16 to 19 in the <011> direction, as shown in FIG. The bottom part is connected. However, under the pattern 20 in the <011> direction, a semiconductor portion with a mesa-shaped cross section remains due to etching, so even if the striped pattern 18 is separated from the substrate, it is necessary to support the semiconductor portion in the separated state. work. In this way, a large number of grooves are formed in which the bottoms of the grooves communicate with each other.

この後、特願昭60−57870号明細書に開示したク
ロライドPVE法で高抵抗層9,15を溝内に選択成長
させると、溝を埋めた高抵抗層9.15の表面は平坦で
ある。溝の幅すとdを変えたのは、発光領域の両側の溝
は底部の片方は他の溝と連通していないので、この形状
の相異を考慮して溝内が平坦に埋められるまでの時間を
一致させるためである。
Thereafter, when high resistance layers 9 and 15 are selectively grown in the grooves using the chloride PVE method disclosed in Japanese Patent Application No. 1987-57870, the surfaces of the high resistance layers 9 and 15 filling the grooves are flat. . The reason for changing the width of the groove is that one of the grooves on both sides of the light emitting area does not communicate with the other groove at the bottom, so taking into consideration this difference in shape, we changed the width of the groove until the inside of the groove was filled flatly. This is to match the times.

こうして底が連通した多数の溝を高抵抗層で埋めた後、
電極等を形成し、そして半導体ウェハをスクライブして
例えば300μmX300 μm程度の半導体レーザチ
ップを得る。こうして形成されたチップには、一般的に
は、第4図のパターン20の下方に形成された半導体領
域は存在しない。
After filling a large number of grooves with interconnected bottoms with a high-resistance layer,
Electrodes and the like are formed, and the semiconductor wafer is scribed to obtain a semiconductor laser chip of, for example, about 300 μm×300 μm. A chip thus formed generally does not have the semiconductor region formed below the pattern 20 in FIG. 4.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体レーザの寄生容量を大きく低減
できる効果があり、かつ高抵抗埋込層により漏れ電流を
抑え、あるいは平坦な表面ゆえにプロセスやマウント(
特にヒートシンクのマウント)を容易にするなどの利点
が保持されている。
According to the present invention, the parasitic capacitance of a semiconductor laser can be greatly reduced, leakage current is suppressed by a high-resistance buried layer, and process and mounting (
Advantages such as ease of mounting (especially heat sink mounting) are retained.

なお、本発明の半導体レーザで電極面積を小さくできれ
ば、寄生容量をさらに小さくできることはいうまでもな
い。
It goes without saying that if the electrode area of the semiconductor laser of the present invention can be reduced, the parasitic capacitance can be further reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の半導体レーザの断面図、第2図は第1
図の半導体レーザの製造工程要部の断面図、第3図は別
の実施例の半導体レーザの断面図、第4図は第3図の半
導体レーザの製造に用いるマスクパターンの平面図、第
5図は先行例の半導体レーザの断面図である。 ■・・・基板、     2・・・n形りラッド層、3
・・・活性層、    4・・・p形りラッド層、5・
・・p゛形コンタクト層、 6・・・絶縁膜、    7・・・n側電極、8・・・
p側電極、   9・・・高抵抗層、10・・・発光領
域、   11・・・高抵抗層、12・・・溝、   
   13・・・レジスト、15・・・高抵抗層、 16〜19・・・レジスト(<OI N方向)、20・
・・レジスト(<011>方向)。
Figure 1 is a cross-sectional view of the semiconductor laser of the example, and Figure 2 is the cross-sectional view of the semiconductor laser of the example.
3 is a sectional view of a semiconductor laser of another embodiment; FIG. 4 is a plan view of a mask pattern used in manufacturing the semiconductor laser of FIG. 3; The figure is a cross-sectional view of a semiconductor laser of a prior example. ■...Substrate, 2...N-shaped rad layer, 3
...active layer, 4...p-shaped rad layer, 5.
...p-type contact layer, 6...insulating film, 7...n-side electrode, 8...
P-side electrode, 9... High resistance layer, 10... Light emitting region, 11... High resistance layer, 12... Groove,
13...Resist, 15...High resistance layer, 16-19...Resist (<OIN direction), 20...
...Resist (<011> direction).

Claims (1)

【特許請求の範囲】 1、半導体基板上に、1導電型のクラッド層、活性層及
び反対導電型のクラッド層の各層を順に含む半導体層が
形成され、 該半導体層のストライプ状発光領域の両側のそれぞれに
表面における幅が10μm以下の逆メサ形状をなす複数
の溝が少なくとも前記活性層より深く設けられ、 該複数の溝が高抵抗成長層により埋込まれてなることを
特徴とする半導体発光装置。 2、前記発光領域の両側のそれぞれの複数の溝が前記発
光領域を除いて前記逆メサの底部において相互に連通し
て前記半導体層が前記基板から分離され、かつ該連通し
た複数の溝が高抵抗成長層により埋込まれてなる特許請
求の範囲第1項記載の半導体発光装置。
[Claims] 1. A semiconductor layer including a cladding layer of one conductivity type, an active layer, and a cladding layer of an opposite conductivity type in this order is formed on a semiconductor substrate, and both sides of a striped light emitting region of the semiconductor layer are formed. A semiconductor light emitting device characterized in that a plurality of grooves each having an inverted mesa shape and a width of 10 μm or less at the surface thereof are provided deeper than at least the active layer, and the plurality of grooves are filled with a high-resistance growth layer. Device. 2. The plurality of grooves on both sides of the light emitting region communicate with each other at the bottom of the inverted mesa except for the light emitting region, so that the semiconductor layer is separated from the substrate, and the plurality of interconnected grooves have a height. A semiconductor light emitting device according to claim 1, which is embedded in a resistive growth layer.
JP62060158A 1987-03-17 1987-03-17 Semiconductor light-emitting device Pending JPS63227087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62060158A JPS63227087A (en) 1987-03-17 1987-03-17 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62060158A JPS63227087A (en) 1987-03-17 1987-03-17 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JPS63227087A true JPS63227087A (en) 1988-09-21

Family

ID=13134064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62060158A Pending JPS63227087A (en) 1987-03-17 1987-03-17 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPS63227087A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941148A (en) * 1986-11-12 1990-07-10 Sharp Kabushiki Kaisha Semiconductor laser element with a single longitudinal oscillation mode
US6403986B1 (en) 1994-09-28 2002-06-11 Nippon Telegraph And Telephone Corporation Optical semiconductor device and method of fabricating the same
JP2016197658A (en) * 2015-04-03 2016-11-24 住友電気工業株式会社 Quantum cascade semiconductor laser
JP2016197657A (en) * 2015-04-03 2016-11-24 住友電気工業株式会社 Quantum cascade semiconductor laser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941148A (en) * 1986-11-12 1990-07-10 Sharp Kabushiki Kaisha Semiconductor laser element with a single longitudinal oscillation mode
US6403986B1 (en) 1994-09-28 2002-06-11 Nippon Telegraph And Telephone Corporation Optical semiconductor device and method of fabricating the same
US6790697B2 (en) 1994-09-28 2004-09-14 Nippon Telegraph And Telephone Corporation Optical semiconductor device and method of fabricating the same
JP2016197658A (en) * 2015-04-03 2016-11-24 住友電気工業株式会社 Quantum cascade semiconductor laser
JP2016197657A (en) * 2015-04-03 2016-11-24 住友電気工業株式会社 Quantum cascade semiconductor laser

Similar Documents

Publication Publication Date Title
JPS61190993A (en) Manufacture of semiconductor laser element
CN209088264U (en) buried DFB laser
JPS63227087A (en) Semiconductor light-emitting device
JP2005183621A (en) Method for manufacturing semiconductor light emitting device
JPS60169184A (en) Semiconductor laser
JPH0716081B2 (en) Semiconductor light emitting device
JPS63276287A (en) Semiconductor light emitting device
JPS58131785A (en) Single axis mode oscillating semiconductor laser
JPS6180889A (en) Making of laser diode
JPS5984592A (en) Semiconductor laser element and manufacture thereof
JPH07297497A (en) Semiconductor laser and its manufacturing method
JPS5884483A (en) Buried hetero-structure semiconductor laser
JPH0590700A (en) Semiconductor light-emitting device and manufacture thereof
JPH0243789A (en) Manufacture of buried type semiconductor laser element
JPH02251181A (en) Light-emitting diode device
JP2566985B2 (en) Semiconductor device and manufacturing method thereof
JPH01111393A (en) Semiconductor laser
JPS62217690A (en) Semiconductor light-emitting device and manufacture thereof
CN109510062A (en) buried DFB laser and preparation method thereof
JPH01208871A (en) Quantum fine line structure and formation thereof
JPS62185390A (en) Semiconductor laser diode
JPH04297082A (en) Semiconductor light emitting element and manufacture thereof
JPH03102890A (en) Light emitting semiconductor device and manufacture thereof
JPS6453489A (en) Planar electrode type semiconductor element
JPH0213471B2 (en)