JPS63227036A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63227036A
JPS63227036A JP62061515A JP6151587A JPS63227036A JP S63227036 A JPS63227036 A JP S63227036A JP 62061515 A JP62061515 A JP 62061515A JP 6151587 A JP6151587 A JP 6151587A JP S63227036 A JPS63227036 A JP S63227036A
Authority
JP
Japan
Prior art keywords
recess
layer
impurity
type
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62061515A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kaimoto
博之 海本
Mutsuko Wakabayashi
若林 睦子
Kaori Moriyama
守山 かおり
Kikuyo Ooe
大江 きく代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62061515A priority Critical patent/JPS63227036A/en
Publication of JPS63227036A publication Critical patent/JPS63227036A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Abstract

PURPOSE:To prevent a leakage current between adjacent cell capacitors by forming channel stop layer on a recess bottom and also on the side by suitably selecting the angle of an ion beam, and locally increasing the impurity concentration of the lower corner of the recess. CONSTITUTION:After a recess 3 is formed on a silicon substrate 1, an N-type or P-type impurity is implanted to the side of the recess 3 to form, for example, a capacity electrode 5, the impurity is obliquely implanted to the bottom and sides of the recess 3 to form a channel stop. Then, after an insulating film 9 is formed on the surface of the recess 6, other capacity electrode is, for example, formed on the film 9 to form a capacitor. The impurity provides of an N<+> type layer 5 and a P<+> type layer 9 can be controlled by ion beam implanting angle, amount and energy to a wafer. Particularly, the impurity concentration can be locally enhanced by oblique ion implanting near the lower corner of the recess 6. Thus, it can prevent a leakage current between adjacent cell capacitors.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法、特にダイナミックRA
M等の素子間分離領域の形成法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor device, particularly a dynamic RA
The present invention relates to a method of forming an isolation region between elements such as M.

従来の技術 従来ダイナミックRAMの製造において、高密度化に伴
ない信号電荷蓄積用のメモリセル容量を増大させるため
に、溝掘りキャパシタが提案されている。
2. Description of the Related Art In the manufacture of conventional dynamic RAMs, grooved capacitors have been proposed in order to increase the capacity of memory cells for storing signal charges as density increases.

この提案は第2図に示すように、まずシリコン基板1に
レジスト又は酸化膜2を選択エツチングのマスクとして
用いてシリコン基板1をRIE(Reactive I
on Itching)によりエツチングし凹部3を形
成した後、レジスト又は酸化膜2をマスクとして用いて
前記凹部3の側面及び底面に砒素イオンビーム4を斜め
に注入してn+層5を形成する(第2図&)。
This proposal, as shown in FIG.
After forming a recess 3 by etching (on Itching), arsenic ion beam 4 is obliquely implanted into the side and bottom surfaces of the recess 3 using resist or oxide film 2 as a mask to form an n+ layer 5 (second figure&).

次にレジスト又は酸化膜2を選択エツチングのマスクと
して用いて凹部3の底部のn+層6が除去されるように
凹部3の底部をRIEによりエツチングし凹部6を形成
した後、レジスト又は酸化膜2をマスクとして用いて前
記凹部6の底面にほぼ垂直に硼素イオンビーム7を注入
してp+層8を形成する(第2図b)。
Next, using the resist or oxide film 2 as a mask for selective etching, the bottom of the recess 3 is etched by RIE so that the n+ layer 6 at the bottom of the recess 3 is removed to form the recess 6, and then the resist or oxide film 2 is etched. Using as a mask, a boron ion beam 7 is implanted almost perpendicularly to the bottom surface of the recess 6 to form a p+ layer 8 (FIG. 2b).

次にレジスト又は酸化膜2を除去し、シリコン基板1に
酸化膜9ff:形成し、CV D (Chemical
Vapos Deposition)法によってポリシ
リコ/10を堆積させた後、ポリシリコン1oを二ノー
f−7クバツクによシ平坦化し、セルプレート部のみを
残してポリシリコン1oを除去する(第2図C)。
Next, the resist or oxide film 2 is removed, an oxide film 9ff: is formed on the silicon substrate 1, and CVD (Chemical
After depositing polysilicon/10 by a vapor deposition method, the polysilicon 1o is planarized using a Nino F-7 vacuum, and the polysilicon 1o is removed leaving only the cell plate portion (FIG. 2C).

発明が解決しようとする問題点 従来のメモリセル構造では、隣接するセル容量部を分離
するために、硼素イオンビームをウェハーに対してほぼ
垂直にイオン注入し溝底部のみにチャネルストップ用9
層を形成してセル容量間を流れるリーク電流を抑制して
いた。しかし溝幅が狭くなるにしたがってチャネルスト
ップ用p領域の幅も狭くなるため、リーク電流11は増
加してしまう。
Problems to be Solved by the Invention In the conventional memory cell structure, a boron ion beam is implanted almost perpendicularly to the wafer in order to separate adjacent cell capacitance parts, and a channel stopper 9 is implanted only at the bottom of the groove.
A layer was formed to suppress leakage current flowing between cell capacitances. However, as the groove width becomes narrower, the width of the channel stop p region also becomes narrower, so that the leakage current 11 increases.

本発明は以上のような従来の素子分離法の欠点を考えて
、隣接するセル容量部間のリーク電流防゛止法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks of the conventional element isolation method, it is an object of the present invention to provide a method for preventing leakage current between adjacent cell capacitance sections.

問題点を解決するための手段 シリコン基板に凹部を形成した後、前記凹部の側面にn
型あるいはp型の不純物を注入してたとえば容量電極を
形成した後、前記凹部の底面及び側面にp型あるいはn
型の不純物を斜めに注入してチャネルストップを形成す
る。次に前記凹部表面に絶縁膜を形成した後、前記絶縁
膜上にたとえば他方の容量電極を形成することによって
容量を形成する。
Means for Solving the Problems After forming a recess in a silicon substrate, n is formed on the side surface of the recess.
After implanting p-type or p-type impurities to form, for example, a capacitor electrode, p-type or n-type impurities are implanted into the bottom and side surfaces of the recess.
Type impurities are implanted obliquely to form channel stops. Next, after forming an insulating film on the surface of the recess, a capacitor is formed by forming, for example, the other capacitor electrode on the insulating film.

作用 n+層及びp+層の不純物プロファイルは、ウェハーに
対するイオンビームの注入角度、注入量及び注入エネル
ギーによって制御することが出来る。特に凹部の下部コ
ーナ付近では、斜めイオン注入によって不純物濃度を局
所的に高くすることが出来る。
The impurity profiles of the working n+ and p+ layers can be controlled by the implantation angle of the ion beam relative to the wafer, the implantation dose, and the implantation energy. Particularly near the lower corner of the recess, the impurity concentration can be locally increased by oblique ion implantation.

実施例 本発明の実施例を第1図を参照しながら説明する。第1
図はダイナミックランダムアクセスメモリのメモリセル
部の溝掘りキャパシタ部の製造工程を示す。
Embodiment An embodiment of the present invention will be described with reference to FIG. 1st
The figure shows the manufacturing process of a grooved capacitor section of a memory cell section of a dynamic random access memory.

まずシリコン基板1にレジスト又は酸化膜2を選択エツ
チングのマスクとして用いてシリコン基板1をRIMに
よりエツチングし凹部3を形成した後、レジスト又は酸
化膜2をマスクとして用いて前記凹部3の側面及び底面
に砒素イオンビーム4を斜めに注入してn+十層を形成
する(第1図a)。この層5はたとえばメモリ素子の゛
容量電極となる。
First, the silicon substrate 1 is etched by RIM using the resist or oxide film 2 as a mask for selective etching to form the recess 3, and then the side and bottom surfaces of the recess 3 are etched using the resist or oxide film 2 as a mask. An arsenic ion beam 4 is implanted obliquely to form an n+10 layer (FIG. 1a). This layer 5 becomes, for example, a capacitive electrode of a memory element.

次にレジスト又は酸化膜2を選択エツチングのマスクと
して用いて前記四部3の底部のn 層6が除去されるよ
うに凹部3の底部iRI!!:によりエツチングし凹部
6を形成した後、レジスト又は酸化膜2をマスクとして
用いて前記凹部6の底面及び側面に硼素イオンビーム7
を注入してチャネルストップ用のp+十層を形成する(
第1図b)。
Next, using the resist or oxide film 2 as a mask for selective etching, the bottom iRI of the recess 3 is removed so that the n layer 6 at the bottom of the four parts 3 is removed. ! : After forming the recess 6 by etching, a boron ion beam 7 is applied to the bottom and side surfaces of the recess 6 using the resist or oxide film 2 as a mask.
is implanted to form a p+ layer for channel stop (
Figure 1 b).

次にレジスト又は酸化膜2を除去し、シリコン基板1に
酸化膜9を形成し、CVD法によってポリシリコン10
を堆積させた後、ポリシリコン10をエツチングバック
により平坦化し、セルプレート部のみを残してポリシリ
コン10を除去する(第1図C)。ポリシリコン1oは
他方の容量電極となる。
Next, the resist or oxide film 2 is removed, an oxide film 9 is formed on the silicon substrate 1, and a polysilicon layer 10 is formed by CVD.
After depositing polysilicon 10, the polysilicon 10 is planarized by etching back, and the polysilicon 10 is removed leaving only the cell plate portion (FIG. 1C). Polysilicon 1o becomes the other capacitor electrode.

発明の効果 本発明によれば、イオンビームの角度を適切に選択する
ことによって前記凹部の底面のみならず側面にもチャネ
ルストップ層を形成できる上に、凹部の下部コーナの不
純物濃度を局所的に高くすることが出来るので、実効的
なチャネルストップ領域の幅が増加し、隣接するセル容
量部間を流れるリーク電流を減少させることが出来る。
Effects of the Invention According to the present invention, by appropriately selecting the angle of the ion beam, a channel stop layer can be formed not only on the bottom surface but also on the side surfaces of the recess, and the impurity concentration at the lower corner of the recess can be locally reduced. Since the height can be increased, the effective width of the channel stop region increases, and leakage current flowing between adjacent cell capacitance parts can be reduced.

また、適切なイオンビーム角度、ドーズ量、エネルギー
を選択することによってチャネルストップを形成すると
同時に容量部にp−n接合を伴ったHIC構造にするこ
とも可能なため、セル容量を増加し、セル内リーク電流
を防止すると言う付随効果も有している。
In addition, by selecting appropriate ion beam angle, dose, and energy, it is possible to form a channel stop and at the same time create an HIC structure with a p-n junction in the capacitor, increasing the cell capacity and increasing the cell capacity. It also has the additional effect of preventing internal leakage current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の溝掘りキャパシタ部の製造
工程を示す断面図、第2図は従来の同キャパシタ部の製
造工程を示す断面図である。 1・・・・・・シリコン基板、2・・・・・・レジスト
又は酸化膜、3・・・・・・凹部、4・・・・・・砒素
イオンビーム、6・・・・・・n+層、6・・・・・・
凹部、7・・・・・・硼素イオンビーム、8・・・・・
・p土層、9・・・・・・酸化膜、1o・・・・・・ポ
リシリコン。
FIG. 1 is a sectional view showing the manufacturing process of a grooved capacitor part according to an embodiment of the present invention, and FIG. 2 is a sectional view showing the manufacturing process of the conventional capacitor part. 1...Silicon substrate, 2...Resist or oxide film, 3...Concave portion, 4...Arsenic ion beam, 6...N+ Layer, 6...
Concave portion, 7...Boron ion beam, 8...
-p soil layer, 9...oxide film, 1o...polysilicon.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板に凹部を形成する工程と、前記凹部の側面
にn型あるいはp型の不純物をイオン注入して前記凹部
の側面に電極用n層あるいはp層を形成する工程と、前
記凹部の底面及び側面にp型あるいはn型の不純物を斜
めにイオン注入して反転チャネル抑制用のp層あるいは
n層を形成する工程と、前記凹部表面に絶縁膜を形成す
る工程を含んでなる半導体装置の製造方法。
a step of forming a recess in a semiconductor substrate; a step of ion-implanting an n-type or p-type impurity into the side surface of the recess to form an n-layer or p-layer for an electrode on the side surface of the recess; Manufacturing a semiconductor device comprising the steps of forming a p-layer or n-layer for suppressing an inversion channel by obliquely ion-implanting p-type or n-type impurities into the side surface, and forming an insulating film on the surface of the recess. Method.
JP62061515A 1987-03-17 1987-03-17 Manufacture of semiconductor device Pending JPS63227036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62061515A JPS63227036A (en) 1987-03-17 1987-03-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62061515A JPS63227036A (en) 1987-03-17 1987-03-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63227036A true JPS63227036A (en) 1988-09-21

Family

ID=13173296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62061515A Pending JPS63227036A (en) 1987-03-17 1987-03-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63227036A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021355A (en) * 1989-05-22 1991-06-04 International Business Machines Corporation Method of fabricating cross-point lightly-doped drain-source trench transistor
US5114865A (en) * 1989-04-07 1992-05-19 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a solid-state image sensing device having an overflow drain structure
US5156985A (en) * 1990-05-08 1992-10-20 Matsushita Electric Industrial Co., Ltd. Method for making a charge transfer semiconductor device having an oblong trench
CN107403726A (en) * 2016-05-20 2017-11-28 中芯国际集成电路制造(天津)有限公司 The preparation method of semiconductor devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114865A (en) * 1989-04-07 1992-05-19 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a solid-state image sensing device having an overflow drain structure
US5021355A (en) * 1989-05-22 1991-06-04 International Business Machines Corporation Method of fabricating cross-point lightly-doped drain-source trench transistor
US5156985A (en) * 1990-05-08 1992-10-20 Matsushita Electric Industrial Co., Ltd. Method for making a charge transfer semiconductor device having an oblong trench
CN107403726A (en) * 2016-05-20 2017-11-28 中芯国际集成电路制造(天津)有限公司 The preparation method of semiconductor devices
CN107403726B (en) * 2016-05-20 2019-12-27 中芯国际集成电路制造(天津)有限公司 Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
CA1289266C (en) Vertical trench transistor/capacitor memory cell
US5434812A (en) Method for fabricating stacked capacitors with increased capacitance in a DRAM cell
EP0135942A2 (en) Semiconductor memory and method of producing the same
US4961165A (en) Semiconductor memory device having a charge barrier layer for preventing soft error
JPH0777236B2 (en) Method of manufacturing DRAM cell having structure of split-merging trench
US5410503A (en) Semiconductor memory device having memory cells including transistors and capacitors
EP0203960B1 (en) High-performance trench capacitors for dram cells
JPH0715949B2 (en) DRAM cell and manufacturing method thereof
JPS63227036A (en) Manufacture of semiconductor device
JPH03268356A (en) Formation of contact on wall extending to board
JPS60224260A (en) Semiconductor memory device
US5578510A (en) Method of making an isolation layer stack semiconductor device
JPS6324660A (en) Semiconductor memory and manufacture thereof
KR930004985B1 (en) Dram cell having a stacked capacitor and method of fabricating therefor
US5300800A (en) Low leakage substrate plate DRAM cell
JPH0310235B2 (en)
JPH0685426B2 (en) Dynamic random access memory
JPS62199045A (en) Manufacture of semiconductor device
JP2900717B2 (en) Semiconductor device
JPH04137557A (en) Memory cell
KR920010847B1 (en) Stacked dram cell and method of manufacturing the same
JPH022672A (en) Semiconductor memory cell and manufacture thereof
JPS61234066A (en) Semiconductor device
KR0136919B1 (en) Dynamic ram cell and manufacture therefor
JPS62179147A (en) Manufacture of semiconductor device