JPS63226980A - Manufacture of thermoelectric element for electronic wrist watch - Google Patents

Manufacture of thermoelectric element for electronic wrist watch

Info

Publication number
JPS63226980A
JPS63226980A JP62060382A JP6038287A JPS63226980A JP S63226980 A JPS63226980 A JP S63226980A JP 62060382 A JP62060382 A JP 62060382A JP 6038287 A JP6038287 A JP 6038287A JP S63226980 A JPS63226980 A JP S63226980A
Authority
JP
Japan
Prior art keywords
thermoelectric material
thermoelectric
substrate
organic resin
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62060382A
Other languages
Japanese (ja)
Inventor
Keiji Sato
恵二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP62060382A priority Critical patent/JPS63226980A/en
Publication of JPS63226980A publication Critical patent/JPS63226980A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromechanical Clocks (AREA)

Abstract

PURPOSE:To obtain an easily produced and high-performance thermoelectric element in which fine thermoelectric element pieces are formed much in several thousands, by pressing/molding thermoelectric material powder on a substrate on which a material not reacting to a thermoelectric material during sintering is formed thinly, and by coating the thermoelectric material reinforcedly with organic resin after the sintering and next removing the substrate by an etching method or the like. CONSTITUTION:A thermoelectric material powder is pressed/molded on a substrate 3 on which a material 2 not reacting to a thermoelectric material during sintering is formed thinly, and after the sintering the thermoelectric material 1 is coated reinforcedly with organic resin 5. In succession, the substrate 3 is removed by an etching method or the like, and a composite member which is thus formed of the thermoelectric material 1 and the organic resin 5 is used to manufacture a thermoelectric element. For example, powder of a (Bi,Sb)2 (Se,Te)3 group is used as the thermoelectric material 1, and a glass layer or the like is formed as a reaction preventing layer 2 by a sputtering method. A copper plate is used as the substrate 3. The composite members, each of which is formed unitedly of the organic resin 5 and the thermoelectric material 1 as aforementioned, are laminated and arranged regularly in quantity with the thermoelectric materials 1 being buried in the organic resin 5, so that electrodes 6 of N and P types connected in series are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子腕時計において、熱を電力に変換し、2次
電池またはコンデンサの充電源として使用する熱電素子
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a thermoelectric element used in an electronic wristwatch to convert heat into electric power and to be used as a charging source for a secondary battery or a capacitor.

(発明の概要) 本発明は電子腕時計用熱電素子の製造方法において、表
面に熱電材料と反応しない物質を形成した基板に熱電材
料を加圧成形し、焼結した後、熱電材料を有機樹脂で被
覆補強し、次に基板をエツチングなどで除去して得た熱
電材料と有機樹脂の複合材料を用いることにより、利用
できる温度差が小さく微細な熱電材料片を数十個も直列
に結合する必要のある電子腕時計用熱電素子を高性能な
ものとしてしかも簡易に製造することを可能とするもの
である。
(Summary of the Invention) The present invention provides a method for manufacturing a thermoelectric element for an electronic wristwatch, in which a thermoelectric material is pressure-molded onto a substrate on which a substance that does not react with the thermoelectric material is formed, and after sintering, the thermoelectric material is molded with an organic resin. By using a composite material of thermoelectric material and organic resin obtained by reinforcing the coating and then removing the substrate by etching, it is necessary to connect dozens of fine thermoelectric material pieces in series with small temperature difference. This makes it possible to easily manufacture a high-performance thermoelectric element for an electronic wristwatch.

〔従来の技術〕[Conventional technology]

電子腕時計において、体温と外気との温度差を利用して
熱電素子によりコンデンサや2次電池を充電して半永久
寿命電源が得られる。
In an electronic wristwatch, a semi-permanent power source can be obtained by charging a capacitor or a secondary battery using a thermoelectric element using the temperature difference between body temperature and the outside air.

この場合、熱電材料としては(Bi、 5b)2(S1
3゜TO)s系が最も優れているが、この材料でもN形
およびP形ともゼーベック係数は200μV/に程度で
あり、腕時計のように生じる温度差は1〜2℃で、しか
も利用できる寸法も面積6−程度で、厚み11程度の場
合、必要な電圧、約2V程度を得るためには、数十個の
熱電材料を直列に結合する必要があり、このような電子
腕時計用熱電素子を製造するには第47回応用物理学会
学術講演予稿集(1986年)386頁27P−ZH−
4にみられるように厚膜的手法を利用することが考えら
れる。
In this case, the thermoelectric material is (Bi, 5b)2(S1
The 3゜TO)s system is the best, but even with this material, the Seebeck coefficient for both N type and P type is about 200 μV/, and the temperature difference that occurs like a wristwatch is 1 to 2 degrees Celsius, and the size is available. If the area is about 6 mm and the thickness is about 11 mm, in order to obtain the necessary voltage of about 2 V, it is necessary to connect several dozen thermoelectric materials in series. How to manufacture 47th Japan Society of Applied Physics Academic Lecture Proceedings (1986) p. 386 27P-ZH-
It is conceivable to use a thick film method as shown in 4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

厚膜法で熱電材料を形成する場合、 (イ) 密度が小さく、導電率が小さい。 When forming thermoelectric materials using the thick film method, (a) Low density and low conductivity.

(ロ) ガラスなどの耐熱基板を使用する必要があり素
子にかかる温度差が小さくなる。
(b) It is necessary to use a heat-resistant substrate such as glass, which reduces the temperature difference applied to the element.

というような欠点がある。There are drawbacks such as:

そこで本発明は上記のような欠点を解決し、電子腕時計
用熱電素子のように微細な熱電素子片を数千個も形成す
る必要のある熱電素子を簡易に、しかも高性能なものを
得ることを目的としている。
Therefore, the present invention solves the above-mentioned drawbacks and provides a simple yet high-performance thermoelectric element that requires the formation of thousands of minute thermoelectric element pieces, such as thermoelectric elements for electronic wristwatches. It is an object.

(問題点を解決するための手段) 本発明では表面に焼結時に熱電材料と反応しない物質を
薄く形成した基板に熱電材料粉末を加圧成形し焼結後、
熱電材料を有機樹脂で被覆補強し基板をエツチングなど
により除去し、このようにして得た熱電材料と有機樹脂
の複合部材を用いて熱電素子を製造する。
(Means for Solving the Problems) In the present invention, thermoelectric material powder is pressure-molded onto a substrate on which a thin substance that does not react with the thermoelectric material during sintering is formed on the surface, and after sintering,
The thermoelectric material is coated and reinforced with an organic resin, the substrate is removed by etching, etc., and a thermoelectric element is manufactured using the thus obtained composite member of the thermoelectric material and the organic resin.

〔作用〕[Effect]

上記のように加圧することで焼結後の熱電材料の密度が
向上し、導電率が向上する。
By pressurizing as described above, the density of the thermoelectric material after sintering is improved, and the electrical conductivity is improved.

また基板に熱電材料と反応しない物質を形成することで
、金属板が基板として利用でき、ガラス基板やセラミッ
ク基板を使用するのとくらべて、加圧成形時の破壊が生
じない、薄板基板が容易に安価に入手できる、エツチン
グが容易などの利点を生じる。
In addition, by forming a substance that does not react with thermoelectric materials on the substrate, a metal plate can be used as a substrate, and compared to using glass or ceramic substrates, it is easier to create thin substrates that do not break during pressure molding. It has advantages such as being inexpensively available and easily etched.

更に基板を除去し、有機樹脂で被覆することで素子の熱
伝導率を小さくでき、温度差が生じやすくなり、発生す
る電圧が大きくなる。
Furthermore, by removing the substrate and covering it with an organic resin, the thermal conductivity of the element can be lowered, making it easier for temperature differences to occur and increasing the voltage generated.

〔実施例〕〔Example〕

以下図面により説明する。 This will be explained below with reference to the drawings.

第1図に示すように、熱電材料1を焼結時の反応を防止
するための反応防止層2を形成した基板3の上にプレス
4により加圧成形する。
As shown in FIG. 1, a thermoelectric material 1 is pressure-molded by a press 4 onto a substrate 3 on which a reaction prevention layer 2 for preventing reactions during sintering is formed.

熱電材料は(Bi、 5b)z (se、 Te)s系
の粉末を用いる。反応防止層としてはスパッタなどによ
りガラス層などを形成する。
As the thermoelectric material, (Bi, 5b)z (se, Te)s-based powder is used. As the reaction prevention layer, a glass layer or the like is formed by sputtering or the like.

基板としては銅板などが利用できる。銅板などを基板と
して使用することは、加圧時の破壊を防げ、また薄板を
簡単に得られるという利点があり、更にエツチングなど
も容易である。
A copper plate or the like can be used as the substrate. The use of a copper plate or the like as a substrate has the advantage that it can be prevented from being destroyed when pressurized, and that a thin plate can be easily obtained, and furthermore, etching is easy.

このようにして基板上に形成された熱電材料は窒素雰囲
気中などで約470℃で焼結する。
The thermoelectric material thus formed on the substrate is sintered at about 470° C. in a nitrogen atmosphere or the like.

焼結を行なった優、熱電材料の不必要な部分を除去する
などの操作を施し、たとえば第2図に示すように有機樹
脂5で熱電材料1を被覆補強する。
After sintering, unnecessary portions of the thermoelectric material are removed, and the thermoelectric material 1 is covered and reinforced with an organic resin 5 as shown in FIG. 2, for example.

そのあとエツチングなどにより基板3を除去する。この
場合、反応防止層は熱電材料をエツチングの悪影響から
保護する81能ももつ。
Thereafter, the substrate 3 is removed by etching or the like. In this case, the anti-reaction layer also has the ability to protect the thermoelectric material from the adverse effects of etching.

このように有機樹脂と熱電材料が一体化された複合部材
は第3図に示すように積層され、熱電材料1が有機樹脂
5に周囲を埋められた形状で多数規則的に並べられ、N
形とP形が直列になるように電極を形成する。
The composite member in which the organic resin and the thermoelectric material are integrated in this way is stacked as shown in FIG.
The electrodes are formed so that the shape and the P shape are in series.

電極はスパッタなどにより金属層を形成し、フォトリソ
グラフィにより所定のパターンとすることで形成できる
The electrode can be formed by forming a metal layer by sputtering or the like and forming a predetermined pattern by photolithography.

このようにして最終的に完成した熱電素子は第4図に示
すように電極6に熱良導性物質で電気的に絶縁性をもつ
物質により絶縁層7を薄く形成し、熱の伝熱を良くする
ために伝熱板8を表面に設けた状態となる。
As shown in Figure 4, the thermoelectric element finally completed in this way has a thin insulating layer 7 formed on the electrode 6 of a thermally conductive and electrically insulating material to reduce the heat transfer. In order to improve the quality, a heat exchanger plate 8 is provided on the surface.

上記のようにして断面積0.01−で温度差方向の厚み
8厘の(Bi、 5b)2(Se、 TO>s系熱電材
料をN形、P彫金わせて5000個を0.2厘間隔で形
成しその問をエポキシ樹脂で埋めるような形で製造した
熱電素子を外気温24℃で腕につけたところ、2.41
Vの電圧が生じ、内部抵抗は57.7にΩであった。
As described above, (Bi, 5b)2(Se, TO>s thermoelectric material with a cross-sectional area of 0.01- and a thickness of 8 mm in the direction of temperature difference) was carved into N-shape and P-shape, and 5000 pieces were made into 0.2 mm. When a thermoelectric element manufactured by forming gaps and filling the gaps with epoxy resin was attached to the arm at an outside temperature of 24 degrees Celsius, the result was 2.41.
A voltage of V was developed and the internal resistance was 57.7Ω.

〔比較例〕[Comparative example]

石英基板上に厚膜法により上記実施例と同様の材料と寸
法で、N形、P彫金わせて5000個を形成し、石英基
板と熱電材料の間をエポキシ樹脂で埋めるような形で製
造した熱電素子を外気温24℃で腕につけたところ、1
.02Vの電圧が生じ、内部抵抗は225にΩであった
A total of 5,000 N-shaped and P-shaped engravings were formed using the same materials and dimensions as in the above example on a quartz substrate using the thick film method, and the gap between the quartz substrate and the thermoelectric material was filled with epoxy resin. When I attached a thermoelectric element to my arm at an outside temperature of 24 degrees Celsius, 1
.. A voltage of 0.2 V was generated and the internal resistance was 225 Ω.

以上のように本発明の実施例による熱電素子は従来の厚
膜法によるものに比較して、発生する電圧が大きく内部
抵抗も小さく、これは熱電素子全体の熱伝導率の差によ
る生ずる温度差のちがい、および加圧による密度の向上
にともなう、導電率の向上に帰因する。
As described above, the thermoelectric element according to the embodiment of the present invention generates a higher voltage and has a lower internal resistance than the thermoelectric element using the conventional thick film method, and this is due to the temperature difference caused by the difference in thermal conductivity of the entire thermoelectric element. This is due to the difference in electrical conductivity due to the difference in density and the increase in density due to pressurization.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明では、表面に熱電材料と反応しない
物質を形成した基板に熱電材料を加圧形成し、焼結し、
更にこれを有機樹脂で被覆補強してから基板を除去して
積層することにより高性能な電子腕時計用熱電素子を簡
易に製造することを可能とする。
As described above, in the present invention, a thermoelectric material is formed under pressure on a substrate on which a substance that does not react with the thermoelectric material is formed, and then sintered.
Furthermore, by covering and reinforcing this with an organic resin, removing the substrate, and laminating it, it is possible to easily manufacture a high-performance thermoelectric element for an electronic wristwatch.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図までは熱電素子の製造工程を示す断面
図であり、第4図は熱電素子の部分断面図である。 1・・・熱電材料 2・・・反応防止層 3・・・基板 4・・・プレス 5・・・有機樹脂 6・・・電極 7・・・絶縁層 8・・・伝熱板
1 to 3 are cross-sectional views showing the manufacturing process of the thermoelectric element, and FIG. 4 is a partial cross-sectional view of the thermoelectric element. 1... Thermoelectric material 2... Reaction prevention layer 3... Substrate 4... Press 5... Organic resin 6... Electrode 7... Insulating layer 8... Heat transfer plate

Claims (1)

【特許請求の範囲】[Claims] 表面に焼結時に熱電材料と反応しない物質を薄く形成し
た基板に熱電材料粉末を加圧形成し、焼結した後、熱電
材料を有機樹脂で被覆補強し、次に基板をエッチングな
どにより除去し、このようにして得た熱電材料と有機樹
脂の複合部材を用いて製造することを特徴とする電子腕
時計用熱電素子の製造方法。
Thermoelectric material powder is formed under pressure on a substrate on which a thin substance that does not react with the thermoelectric material during sintering is formed, and after sintering, the thermoelectric material is coated and reinforced with an organic resin, and then the substrate is removed by etching. A method for manufacturing a thermoelectric element for an electronic wristwatch, characterized in that it is manufactured using a composite member of a thermoelectric material and an organic resin obtained in this way.
JP62060382A 1987-03-16 1987-03-16 Manufacture of thermoelectric element for electronic wrist watch Pending JPS63226980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62060382A JPS63226980A (en) 1987-03-16 1987-03-16 Manufacture of thermoelectric element for electronic wrist watch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62060382A JPS63226980A (en) 1987-03-16 1987-03-16 Manufacture of thermoelectric element for electronic wrist watch

Publications (1)

Publication Number Publication Date
JPS63226980A true JPS63226980A (en) 1988-09-21

Family

ID=13140541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62060382A Pending JPS63226980A (en) 1987-03-16 1987-03-16 Manufacture of thermoelectric element for electronic wrist watch

Country Status (1)

Country Link
JP (1) JPS63226980A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246504A (en) * 1988-11-15 1993-09-21 Director-General, Agency Of Industrial Science And Technology Thermoelectric material
EP0827215A2 (en) * 1996-08-27 1998-03-04 Kubota Corporation Thermoelectric modules and thermoelectric elements
US8894792B2 (en) * 2008-10-16 2014-11-25 Korea Electrotechnology Research Institute Manufacturing method of functional material using slice stack pressing process and functional material thereby
JP2019169702A (en) * 2018-03-21 2019-10-03 アールエムティー リミテッド Method for manufacturing thermoelectric microcooler (variant)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246504A (en) * 1988-11-15 1993-09-21 Director-General, Agency Of Industrial Science And Technology Thermoelectric material
EP0827215A2 (en) * 1996-08-27 1998-03-04 Kubota Corporation Thermoelectric modules and thermoelectric elements
EP0827215A3 (en) * 1996-08-27 2000-09-20 Kubota Corporation Thermoelectric modules and thermoelectric elements
US8894792B2 (en) * 2008-10-16 2014-11-25 Korea Electrotechnology Research Institute Manufacturing method of functional material using slice stack pressing process and functional material thereby
JP2019169702A (en) * 2018-03-21 2019-10-03 アールエムティー リミテッド Method for manufacturing thermoelectric microcooler (variant)

Similar Documents

Publication Publication Date Title
US6182340B1 (en) Method of manufacturing a co-fired flextensional piezoelectric transformer
US6127619A (en) Process for producing high performance thermoelectric modules
TW432401B (en) Method of producing thermistor chips
JP5598152B2 (en) Thermoelectric conversion module and manufacturing method thereof
EP0141526A1 (en) Ceramic with anisotropic heat conduction
JP3803365B2 (en) Method for manufacturing crystal film, method for manufacturing substrate with crystal film, and method for manufacturing thermoelectric conversion element
JP2003133600A (en) Thermoelectric conversion member and manufacturing method therefor
US3781176A (en) Thermoelectric units
JPS63226980A (en) Manufacture of thermoelectric element for electronic wrist watch
JP2003282970A (en) Thermoelectric converter and thermoelectric conversion element and their manufacturing method
JPS58212940A (en) Substrate for microwave circuit and its manufacture
JPH05152616A (en) Manufacture of chip of semiconductor element forming material and its thermoelectric conversion module
JP4011692B2 (en) Thermoelectric element
JPS63110778A (en) Manufacture of thermoelectric device
JP2544118B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
JP2602646B2 (en) Manufacturing method of thermoelectric element for electronic watch
JP2654504B2 (en) Manufacturing method of thermoelectric element for electronic watch
US3482149A (en) Sintered glass integrated circuit structure product and method of making the same
JP2527541B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
JPS6320880A (en) Manufacture of thermoelement for electronic wristwatch
JPH085572Y2 (en) Thermoelectric element
JPH01165183A (en) Manufacture of thermoelectric device
JPS6370465A (en) Manufacture of thermoelement for electronic watch
JP2542497B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
JPS5999798A (en) Method of producing ceramic board with conductive film and dielectric film