JP2527541B2 - Method for manufacturing thermoelectric element for electronic wrist watch - Google Patents

Method for manufacturing thermoelectric element for electronic wrist watch

Info

Publication number
JP2527541B2
JP2527541B2 JP61214338A JP21433886A JP2527541B2 JP 2527541 B2 JP2527541 B2 JP 2527541B2 JP 61214338 A JP61214338 A JP 61214338A JP 21433886 A JP21433886 A JP 21433886A JP 2527541 B2 JP2527541 B2 JP 2527541B2
Authority
JP
Japan
Prior art keywords
thermoelectric material
thermoelectric element
thermoelectric
wrist watch
electronic wrist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61214338A
Other languages
Japanese (ja)
Other versions
JPS6370462A (en
Inventor
恵二 佐藤
Original Assignee
セイコー電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコー電子工業株式会社 filed Critical セイコー電子工業株式会社
Priority to JP61214338A priority Critical patent/JP2527541B2/en
Publication of JPS6370462A publication Critical patent/JPS6370462A/en
Application granted granted Critical
Publication of JP2527541B2 publication Critical patent/JP2527541B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Landscapes

  • Electromechanical Clocks (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子腕時計のエネルギー源として利用する熱
電素子の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing a thermoelectric element used as an energy source for an electronic wrist watch.

〔発明の概要〕[Outline of Invention]

本発明は得られる温度差が小さくて、しかも限られた
容積のため、微細な熱電材料を数千個も形成する必要が
ある電子腕時計のエネルギー源としての熱電素子の製造
方法において、熱電材料を厚膜法により1度耐熱部材に
形成し、この熱電材料の部分をエポキシ樹脂などの熱伝
導率の低い有機樹脂で固定し、耐熱部材を除去し、この
有機樹脂で固定された熱電材料を積層し、電極を形成す
ることにより、微細で強度の弱い熱電材料を1個1個組
立てる必要がなく効果的に、しかも低熱伝導率の小さい
有機樹脂で固定することにより、大きな温度差が生じさ
せることを可能とするものである。
INDUSTRIAL APPLICABILITY The present invention provides a thermoelectric material in a method for producing a thermoelectric element as an energy source for an electronic wrist watch that requires the formation of thousands of fine thermoelectric materials because the obtained temperature difference is small and the volume is limited. Once formed into a heat resistant member by the thick film method, this thermoelectric material part is fixed with an organic resin having a low thermal conductivity such as epoxy resin, the heat resistant member is removed, and the thermoelectric material fixed with this organic resin is laminated. However, by forming the electrodes, it is not necessary to assemble the fine and weak thermoelectric materials one by one, and by fixing them with the organic resin having a low low thermal conductivity, a large temperature difference is generated. Is possible.

〔従来の技術〕[Conventional technology]

電子腕時計において、体温と環境との温度差を利用し
た熱電素子と大容量コンデンサや2次電池との組合わせ
により長寿命電源を得ることができる。しかし腕時計の
場合、生じる温度差は1〜3℃であり、しかも利用でき
る体積は限られており、6cm2程度が限度である。
In an electronic wrist watch, a long-life power supply can be obtained by combining a thermoelectric element utilizing a temperature difference between body temperature and environment with a large capacity capacitor or a secondary battery. However, in the case of a wristwatch, the temperature difference that occurs is 1 to 3 ° C, and the usable volume is limited, and the limit is about 6 cm 2 .

常温付近で最も性能指数のすぐれた熱電材料としては
(Bi,Sb)(Se,Te)系があるが、この材料ではN形
およびP形ともにゼーベック係数は200μV/K程度であ
り、従ってたとえば温度差2℃で電圧2Vを得るためには
5000個の素子が必要となり、これを6cm2程度の面積内に
形成しなければならず、しかも温度差方向の厚みは5cm
程度は必要であり、このような熱電素子を1個1個組立
てるのは不可能であるため、たとえば昭和61年電気学会
全国大会講演論文集No.1194にみられるように厚膜法を
利用することが考えられる。
The thermoelectric material with the highest figure of merit at around room temperature is (Bi, Sb) 2 (Se, Te) 3 series, but this material has Seebeck coefficient of about 200 μV / K for both N type and P type. For example, to obtain a voltage of 2V with a temperature difference of 2 ° C,
5000 elements are required and must be formed within an area of about 6 cm 2 , and the thickness in the temperature difference direction is 5 cm.
Since it is impossible to assemble such thermoelectric elements one by one, it is necessary to use the thick film method, for example, as shown in Proc. It is possible.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

厚膜法で熱電材料を形成する場合、ガラスなどの耐熱
性基板を使用する必要があり、これはエポキシ樹脂など
の有機樹脂に比較し、熱伝導率が大きいため、素子にか
かる温度差が小さくなるという欠点がある。
When forming a thermoelectric material by the thick film method, it is necessary to use a heat-resistant substrate such as glass, which has a higher thermal conductivity than organic resins such as epoxy resin, so the temperature difference applied to the element is small. There is a drawback that

そこで本発明ではこのような厚膜法の欠点を克服する
ために熱電材料を耐熱性基板から有機樹脂に転写し、素
子にかかる温度差を大きくすることを目的としている。
Therefore, in order to overcome such a drawback of the thick film method, the present invention aims to increase the temperature difference applied to the element by transferring the thermoelectric material from the heat resistant substrate to the organic resin.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために本発明は、耐熱部材上に
厚膜法により形成した熱電材料を、有機樹脂で固定し、
耐熱部材を除去し、この有機樹脂で固定された熱電材料
を積層し、熱電素子を製造する。
In order to solve the above problems, the present invention, a thermoelectric material formed by a thick film method on a heat-resistant member, fixed with an organic resin,
The heat resistant member is removed, and the thermoelectric material fixed with this organic resin is laminated to manufacture a thermoelectric element.

〔作用〕[Action]

耐熱部材としてはたとえばガラスなどが使用できる
が、この場合、熱伝導率は0.01W/cm.K程度であり、一方
有機樹脂ではエポキシ樹脂で0.001W/cm.K程度までが可
能であり、熱伝導率の小さいものを使用することで、生
ずる温度差が大きくなり、従って発生する電圧が大きく
なり、変換効率も向上する。
As the heat-resistant member, for example, glass can be used, but in this case, the thermal conductivity is about 0.01 W / cm.K, while the organic resin can be up to about 0.001 W / cm.K with the epoxy resin. By using a material having a low conductivity, the temperature difference that occurs becomes large, so that the voltage that occurs becomes large and the conversion efficiency also improves.

〔実施例〕〔Example〕

以下本発明の実施例を図面にもとづいて説明する。第
1図に示すように石英ガラス1に厚膜法により、N形熱
電材料2とP形熱電材料3を交互に形成する。この場
合、耐熱部材として石英ガラスを使用したが、熱電材料
が(Bi,Sb)(Te,Se)系の場合、約500℃での非酸
化性雰囲気での焼結が可能で、反応等により特性の劣化
を生じさせないものなら他のガラス、磁器でもよい。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the N-type thermoelectric material 2 and the P-type thermoelectric material 3 are alternately formed on the quartz glass 1 by the thick film method. In this case, quartz glass was used as the heat-resistant member, but when the thermoelectric material is (Bi, Sb) 2 (Te, Se) 3 series, it is possible to sinter in a non-oxidizing atmosphere at about 500 ° C, Other glass or porcelain may be used as long as they do not cause the deterioration of characteristics due to the above.

これを第2図に示すようにN形熱電材料2とP形熱電
材料3をエポキシ樹脂4で被覆、固定し、次に第3図に
示すように石英ガラスを除去しN形熱電材料2およびP
形熱電材料3がエポキシ樹脂4に埋め込まれ固定させた
状態のものを製造する。石英ガラスの除去は研磨やエッ
チングなどを利用できる。
The N-type thermoelectric material 2 and the P-type thermoelectric material 3 are covered and fixed with an epoxy resin 4 as shown in FIG. 2, and then the quartz glass is removed as shown in FIG. P
The thermoelectric material 3 is embedded in the epoxy resin 4 and fixed. The quartz glass can be removed by polishing or etching.

このあと、第4図に示すように熱電材料が埋め込まれ
たエポキシ樹脂4を積層する。次に第5図に示すように
電極5を形成する。
Then, as shown in FIG. 4, the epoxy resin 4 in which the thermoelectric material is embedded is laminated. Next, the electrode 5 is formed as shown in FIG.

電極はスパッタや無電解めっきなどで全国に金属を形
成したあとフォトリソグラフィで所定の電極パターンと
することで容易に得られる。
The electrodes can be easily obtained by forming a metal nationwide by sputtering or electroless plating and then forming a predetermined electrode pattern by photolithography.

第6図に電極を形成した熱電素子の部分断面図を示
す。
FIG. 6 shows a partial cross-sectional view of a thermoelectric element having electrodes.

エポキシ樹脂4で周囲を保護されたN形熱電材料2と
P形熱電材料3が交互に電極5で直列に結合される。
The N-type thermoelectric material 2 and the P-type thermoelectric material 3 whose periphery is protected by the epoxy resin 4 are alternately coupled in series at the electrode 5.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明では耐熱部材に厚膜法で熱電
材料を形成し、これを有機樹脂に転写することにより、
大きな温度差を生じやすい、腕時計用熱電素子を簡単に
製造できる。
As described above, in the present invention, a thermoelectric material is formed on the heat-resistant member by the thick film method, and by transferring this to an organic resin,
It is possible to easily manufacture a thermoelectric element for a wristwatch that easily causes a large temperature difference.

【図面の簡単な説明】[Brief description of drawings]

第1図は石英ガラス上に形成された熱電材料を示す部分
断面図であり、第2図はエポキシ樹脂で固定された石英
ガラス上の熱電材料を示す部分断面図であり、第3図は
石英ガラスを除去したエポキシ樹脂に固定された熱電材
料を示す部分断面図であり、第4図は熱電材料の積層状
態を示す部分断面図であり、第5図は電極を形成した状
態の熱電素子の部分斜視図であり、第6図はその部分断
面図である。 1……石英ガラス、2……N形熱電材料 3……P形熱電材料、4……エポキシ樹脂 5……電極
FIG. 1 is a partial sectional view showing a thermoelectric material formed on quartz glass, FIG. 2 is a partial sectional view showing a thermoelectric material on quartz glass fixed with an epoxy resin, and FIG. 3 is a quartz. FIG. 4 is a partial cross-sectional view showing a thermoelectric material fixed to an epoxy resin from which glass has been removed, FIG. 4 is a partial cross-sectional view showing a laminated state of the thermoelectric material, and FIG. 5 is a thermoelectric element with electrodes formed. FIG. 6 is a partial perspective view, and FIG. 6 is a partial sectional view thereof. 1 ... Quartz glass, 2 ... N-type thermoelectric material 3 ... P-type thermoelectric material, 4 ... Epoxy resin 5 ... Electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】耐熱部材上に厚膜法により熱電材料を形成
し、次に熱電材料を有機樹脂で固定し、耐熱部材を除去
することにより得た、有機樹脂で固定された熱電材料を
積層し、その後、電極を形成することを特徴とする電子
腕時計用熱電素子の製造方法。
1. A thermoelectric material fixed by an organic resin, which is obtained by forming a thermoelectric material on a heat resistant member by a thick film method, fixing the thermoelectric material with an organic resin, and removing the heat resistant member. Then, a method for manufacturing a thermoelectric element for an electronic wristwatch, characterized by forming electrodes thereafter.
JP61214338A 1986-09-11 1986-09-11 Method for manufacturing thermoelectric element for electronic wrist watch Expired - Lifetime JP2527541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61214338A JP2527541B2 (en) 1986-09-11 1986-09-11 Method for manufacturing thermoelectric element for electronic wrist watch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61214338A JP2527541B2 (en) 1986-09-11 1986-09-11 Method for manufacturing thermoelectric element for electronic wrist watch

Publications (2)

Publication Number Publication Date
JPS6370462A JPS6370462A (en) 1988-03-30
JP2527541B2 true JP2527541B2 (en) 1996-08-28

Family

ID=16654105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61214338A Expired - Lifetime JP2527541B2 (en) 1986-09-11 1986-09-11 Method for manufacturing thermoelectric element for electronic wrist watch

Country Status (1)

Country Link
JP (1) JP2527541B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0760530B1 (en) * 1994-05-16 1999-08-04 Citizen Watch Co. Ltd. Manufacture of thermoelectric power generation unit
JPH09186368A (en) * 1995-10-31 1997-07-15 Technova:Kk Thick film thermoelectric element
US6310383B1 (en) 1997-08-01 2001-10-30 Citizen Watch Co., Ltd. Thermoelectric element and method for manufacturing the same

Also Published As

Publication number Publication date
JPS6370462A (en) 1988-03-30

Similar Documents

Publication Publication Date Title
CA1081477A (en) Wrist watch incorporating a thermoelectric generator
JP4290197B2 (en) Low power thermoelectric generator
US7629531B2 (en) Low power thermoelectric generator
RU2173007C2 (en) Thermoelectric device
US4032363A (en) Low power high voltage thermopile
JP5598152B2 (en) Thermoelectric conversion module and manufacturing method thereof
US5517468A (en) Electronic timepiece with thermoelectric element
Rowe Miniature semiconductor thermoelectric devices
JP2527541B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
Rowe Thermoelectric generators as alternative sources of low power
JPH01208876A (en) Thermoelectric device and manufacture thereof
JP2542502B2 (en) Thermoelectric element manufacturing method
JPH0828531B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
JPH085572Y2 (en) Thermoelectric element
JP2602646B2 (en) Manufacturing method of thermoelectric element for electronic watch
JP2654504B2 (en) Manufacturing method of thermoelectric element for electronic watch
JP2542498B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
JP2756960B2 (en) Manufacturing method of thermoelectric element for electronic watch
JPS63226980A (en) Manufacture of thermoelectric element for electronic wrist watch
JPH0837324A (en) Thermoelectric element and electric apparatus with thermoelectric element
JPS63119587A (en) Integrated type amorphous silicon solar battery
JPH118416A (en) Manufacture of thermoelectric generation element
JP3007904U (en) Thermal battery
US20200136006A1 (en) Thermoelectric element based watch
JP2542497B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch