JP2542497B2 - Method for manufacturing thermoelectric element for electronic wrist watch - Google Patents

Method for manufacturing thermoelectric element for electronic wrist watch

Info

Publication number
JP2542497B2
JP2542497B2 JP61214340A JP21434086A JP2542497B2 JP 2542497 B2 JP2542497 B2 JP 2542497B2 JP 61214340 A JP61214340 A JP 61214340A JP 21434086 A JP21434086 A JP 21434086A JP 2542497 B2 JP2542497 B2 JP 2542497B2
Authority
JP
Japan
Prior art keywords
heat
thermoelectric material
type
thermoelectric
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61214340A
Other languages
Japanese (ja)
Other versions
JPS6370464A (en
Inventor
恵二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP61214340A priority Critical patent/JP2542497B2/en
Publication of JPS6370464A publication Critical patent/JPS6370464A/en
Application granted granted Critical
Publication of JP2542497B2 publication Critical patent/JP2542497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electromechanical Clocks (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子腕時計のエネルギー源として利用する熱
電素子の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing a thermoelectric element used as an energy source for an electronic wrist watch.

〔発明の概要〕[Outline of Invention]

本発明は得られる温度差が小さく、かつ限られた素子
容積のため微細な熱電材料を数千個も形成する必要があ
る電子腕時計の熱電素子の製造方法において、断熱耐熱
性基板に厚膜法にストライプ状に熱電材料を形成し、こ
れを積層後、焼結を行い、その後電極を形成することに
より、熱電素子を簡易に製造することを可能とするもの
である。
The present invention is a method for manufacturing a thermoelectric element for an electronic wristwatch in which a small temperature difference can be obtained and thousands of fine thermoelectric materials need to be formed due to a limited element volume. By forming a thermoelectric material in a stripe shape on the substrate, laminating the same, sintering the same, and then forming an electrode, a thermoelectric element can be easily manufactured.

〔従来の技術〕[Conventional technology]

電子腕時計において、体温を利用した熱電素子と大容
量コンデンサや2次電池との組合わせにより半永久電源
を得ることができる。
In an electronic wristwatch, a semi-permanent power supply can be obtained by combining a thermoelectric element utilizing body temperature with a large-capacity capacitor or a secondary battery.

ところが腕時計において熱電素子の得ることができる
温度差は1〜3℃と小さく、しかもその面積は6cm2
度が限度である。
However, the temperature difference that a thermoelectric element can obtain in a wristwatch is as small as 1 to 3 ° C., and its area is limited to about 6 cm 2 .

常温付近で最もすぐれた性能指数をもつものとして(B
i,Sb)2(Te,Se)3系熱電材料があるが、この材料でもN形
およびP形ともゼーベック係数は、200μV/K程度であ
り、従ってたとえば温度差2℃で電圧2Vを得るためには
5千個もの素子が必要となる。従って素子1個の断面積
は、0.12mm2以下となり、しかも素子の温度差方向の寸
法が大きいほど温度差は大きくなるので少なくとも5〜
6mmは必要となり、このような微細で細長い素子を数千
個も1個1個組立てることは不可能であるため、たとえ
ば電子通信技術研究報告CPM84-76にみられるごとく、薄
膜プロセスを利用することが考えられる。
As the one with the best figure of merit at around room temperature (B
There are i, Sb) 2 (Te, Se) 3 based thermoelectric materials, but the Seebeck coefficient of these materials is about 200 μV / K for both N-type and P-type. Therefore, for example, to obtain a voltage of 2 V at a temperature difference of 2 ° C. Requires as many as 5,000 elements. Therefore, the cross-sectional area of one element is 0.12 mm 2 or less, and the larger the dimension of the element in the temperature difference direction, the larger the temperature difference.
Since 6mm is required, and it is impossible to assemble such thousands of minute and long thin elements one by one, it is necessary to use a thin film process as shown in, for example, Electronic Communication Technology Research Report CPM84-76. Can be considered.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

熱電素子の製造方法として薄膜プロセスを利用した場
合、得られる膜厚に限度があり、抵抗が大きくなるとい
う欠点があり、また電極形成も容易でない。
When a thin film process is used as a method for manufacturing a thermoelectric element, there is a drawback that the obtained film thickness is limited, the resistance becomes large, and electrode formation is not easy.

また薄膜プロセスでは利用できる熱電材料が限られて
おり、性能指数のすぐれたものは得られない。
In addition, thermoelectric materials that can be used in the thin film process are limited, and those with excellent figures of merit cannot be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では断熱耐熱性基板に厚膜法でストライプ状に
熱電材料を形成し、未焼結状態で積層後、焼結を行い、
その後、電極を形成する。
In the present invention, a thermoelectric material is formed in a stripe shape on the heat-insulating heat-resistant substrate by a thick film method, laminated in an unsintered state, and then sintered,
After that, electrodes are formed.

〔作用〕[Action]

断熱耐熱性基板上に温度差方向にストライプ状に形成
することで厚膜状の利用できる寸法となり、かつ、強度
の弱い微細な素子を1度に多量に形成でき取扱いも容易
となり、積層後焼結し、電極を形成することで電極形成
も容易となる。
By forming stripes in the direction of temperature difference on a heat-insulating heat-resistant substrate, a thick film can be used, and a large number of minute elements with weak strength can be formed at one time, and handling becomes easy. By forming the electrodes by connecting them, the electrodes can be easily formed.

〔実施例〕〔Example〕

以下図面により説明する。 This will be described below with reference to the drawings.

第1図に断熱耐熱性基板への熱電材料の形成状態を示
す部分断面図を示す。
FIG. 1 shows a partial cross-sectional view showing the formation state of the thermoelectric material on the heat insulating and heat resistant substrate.

断熱耐熱性基板1の上にN形熱電材料2が一定間隔で
ストライプ状に形成されている。
N-type thermoelectric materials 2 are formed in stripes on a heat-insulating and heat-resistant substrate 1 at regular intervals.

第2図から第4図に断熱耐熱性基板への熱電材料の別
の形成状態を示す部分断面図を示す。
2 to 4 are partial cross-sectional views showing another formation state of the thermoelectric material on the heat insulating and heat resistant substrate.

断熱耐熱性基板1にN形熱電材料2あるいはP形熱電
材料3がストライプ状に形成されている。
An N-type thermoelectric material 2 or a P-type thermoelectric material 3 is formed in a stripe shape on a heat insulating and heat resistant substrate 1.

断熱耐熱性基板としてはガラス、磁器などを使用し、
(Bi,Sb)2(Te,Se)3系の熱電材料の原料粉をプレピレング
リコールを溶剤としてスクリーン印刷によりストライプ
状に形成する。
Glass, porcelain, etc. are used as the heat and heat resistant substrate,
A raw material powder of a (Bi, Sb) 2 (Te, Se) 3 -based thermoelectric material is formed into stripes by screen printing using prepylene glycol as a solvent.

以上のようにして得た熱電材料を形成した断熱耐熱性
基板を積層する。
An adiabatic and heat resistant substrate formed with the thermoelectric material obtained as described above is laminated.

第5図に積層状態の分平面図を示す。 FIG. 5 shows a plan view of the laminated state.

断熱耐熱性基板1と、N形熱電材料2とP形熱電材料
3が交互に形成された層が交互に所定層積層される。
The heat-insulating and heat-resistant substrate 1 and the layers in which the N-type thermoelectric material 2 and the P-type thermoelectric material 3 are alternately formed are alternately laminated in a predetermined layer.

第6図に同一断熱耐熱性基板にはさまれる熱電材料層
がN形またはP形熱電材料の一方のみの熱電材料の場合
の積層状態の部分平面図を示す。
FIG. 6 shows a partial plan view of a laminated state in which the thermoelectric material layer sandwiched between the same heat-resistant and heat-resistant substrates is a thermoelectric material having only one of N-type and P-type thermoelectric materials.

同一面上でN形とP形間に電極を形成するためには最
上層及び最下層の熱電材料列を1列ごと除去する必要が
あり第6図では断熱耐熱性基板1の1部により最上層の
N形熱電材料2が置換えられている。
In order to form an electrode between the N-type and P-type on the same surface, it is necessary to remove the thermoelectric material rows of the uppermost layer and the lowermost layer one by one, and in FIG. The upper layer N-type thermoelectric material 2 is replaced.

このようにして得た積層体を非酸化性雰囲気で500℃
付近で焼結する。
The laminated body thus obtained is heated to 500 ° C. in a non-oxidizing atmosphere.
Sinter in the vicinity.

焼結後、第7図に部分平面図に示すように、N形およ
びP形熱電材料間に電極4を形成し、N形とP形の直列
結合を行なう。
After sintering, as shown in the partial plan view of FIG. 7, electrodes 4 are formed between the N-type and P-type thermoelectric materials, and N-type and P-type series coupling is performed.

最終的素子の完成状態の部分断面図を第8図に示す。 FIG. 8 shows a partial cross-sectional view of the final element in a completed state.

電極4のうえに絶縁層5を形成し、そのうえに伝熱板
6を形成する。周囲は有機樹脂7で保護する。
An insulating layer 5 is formed on the electrode 4, and a heat transfer plate 6 is formed thereon. The surroundings are protected by the organic resin 7.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば厚膜法により断熱耐
熱性基板に熱電材料を形成し、これを積層、焼結を行
い、その後電極を形成することで、温度差が小さくしか
も限られた容積のため、微細な熱電材料を高集積化する
必要のある電子腕時計の熱電素子を簡単に製造すること
ができる。
As described above, according to the present invention, the thermoelectric material is formed on the heat-insulating and heat-resistant substrate by the thick film method, the layers are laminated and sintered, and then the electrodes are formed, so that the temperature difference is small and limited. Due to the volume, it is possible to easily manufacture a thermoelectric element of an electronic wrist watch that requires high integration of a fine thermoelectric material.

【図面の簡単な説明】[Brief description of drawings]

第1図から第4図は断熱耐熱性基板への熱電材料の形成
状態を示す部分断面図であり、第5図および第6図はそ
の積層状態を示す部分平面図であり、第7図は電極形成
状態を示す部分平面図であり、第8図は、熱電素子の完
成状態の部分断面図である。 1……断熱耐熱性基板 2……N形熱電材料 3……P形熱電材料 4……電極 5……絶縁層 6……伝熱板 7……有機樹脂
1 to 4 are partial cross-sectional views showing a state of forming a thermoelectric material on an adiabatic and heat-resistant substrate, FIGS. 5 and 6 are partial plan views showing the laminated state, and FIG. FIG. 8 is a partial plan view showing an electrode formation state, and FIG. 8 is a partial cross-sectional view of the thermoelectric element in a completed state. 1 ... Adiabatic heat resistant substrate 2 ... N-type thermoelectric material 3 ... P-type thermoelectric material 4 ... Electrode 5 ... Insulating layer 6 ... Heat transfer plate 7 ... Organic resin

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】断熱耐熱性基板の片面又は両面に、粉末原
料と溶剤または結合剤などを混合した塗料の印刷によ
る、厚膜プロセスでストライプ状に熱電材料を形成し、
これを未焼結状態で積層後、焼結を行い、その後、電極
を形成することを特徴とする電子腕時計用熱電素子の製
造方法。
1. A thermoelectric material is formed in a stripe shape by a thick film process by printing a paint in which a powder raw material and a solvent, a binder or the like are mixed, on one or both surfaces of a heat insulating and heat resistant substrate,
A method for manufacturing a thermoelectric element for an electronic wristwatch, which comprises stacking the layers in a non-sintered state, sintering the layers, and then forming electrodes.
【請求項2】断熱耐熱性基板の同一面上の熱電材料は塗
料の印刷時においてN形又はP形の一方のみの熱電材料
であることを特徴とする特許請求の範囲第1項記載の電
子腕時計用熱電素子の製造方法。
2. The electron according to claim 1, wherein the thermoelectric material on the same surface of the heat-insulating and heat-resistant substrate is an N-type or P-type thermoelectric material when printing a paint. Manufacturing method of thermoelectric element for wristwatch.
【請求項3】積層状態で同一断熱耐熱性基板にはさまれ
る熱電材料層は、N形又はP形の一方のみの熱電材料で
あり、最上層及び最下層の熱電材料層が、1列ごとに断
熱耐熱材料と置換されている特許請求の範囲第1項記載
の電子腕時計用熱電素子の製造方法。
3. A thermoelectric material layer sandwiched between the same heat-resistant and heat-resistant substrates in a laminated state is a thermoelectric material of only one of N type and P type, and the thermoelectric material layers of the uppermost layer and the lowermost layer are row by row The method for producing a thermoelectric element for an electronic wrist watch according to claim 1, wherein the heat insulating and heat resistant material is substituted for.
JP61214340A 1986-09-11 1986-09-11 Method for manufacturing thermoelectric element for electronic wrist watch Expired - Fee Related JP2542497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61214340A JP2542497B2 (en) 1986-09-11 1986-09-11 Method for manufacturing thermoelectric element for electronic wrist watch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61214340A JP2542497B2 (en) 1986-09-11 1986-09-11 Method for manufacturing thermoelectric element for electronic wrist watch

Publications (2)

Publication Number Publication Date
JPS6370464A JPS6370464A (en) 1988-03-30
JP2542497B2 true JP2542497B2 (en) 1996-10-09

Family

ID=16654139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61214340A Expired - Fee Related JP2542497B2 (en) 1986-09-11 1986-09-11 Method for manufacturing thermoelectric element for electronic wrist watch

Country Status (1)

Country Link
JP (1) JP2542497B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217353A (en) * 2004-02-02 2005-08-11 Yokohama Teikoki Kk Thermoelectric semiconductor element, thermoelectric transformation module, and method of manufacturing the same

Also Published As

Publication number Publication date
JPS6370464A (en) 1988-03-30

Similar Documents

Publication Publication Date Title
US10510940B2 (en) Thermoelectric generator
US3780425A (en) Thermoelectric units
JP4668233B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion module
WO2010073398A1 (en) Method for manufacturing thermoelectric conversion element and thermoelectric conversion element
US20120145214A1 (en) Thermoelectric conversion material, and thermoelectric conversion module using same
US20100095995A1 (en) Thermoelectric conversion elements, thermoelectric conversion modules and a production method of the thermoelectric conversion modules
CN100428516C (en) Thermoelectric conversion material, and its manufacturing method
JP2542497B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
JP2654504B2 (en) Manufacturing method of thermoelectric element for electronic watch
JP2602646B2 (en) Manufacturing method of thermoelectric element for electronic watch
JP2531019B2 (en) Semiconductor porcelain with positive resistance temperature characteristic
US3775218A (en) Method for the production of semiconductor thermoelements
JPS6320880A (en) Manufacture of thermoelement for electronic wristwatch
JP2544118B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
JP2542498B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
JPH085572Y2 (en) Thermoelectric element
JPH10313134A (en) Manufacture of thermoelectric module
JP3254970B2 (en) Manufacturing method of multilayer composite element and multilayer composite element
JP2756960B2 (en) Manufacturing method of thermoelectric element for electronic watch
US20010035253A1 (en) Ceramic sintered body and production method thereof
JPH02214173A (en) Manufacture of laminated thermoelectric element
JPS63226980A (en) Manufacture of thermoelectric element for electronic wrist watch
JPS63110778A (en) Manufacture of thermoelectric device
JPH01165183A (en) Manufacture of thermoelectric device
JPH01183863A (en) Laminated thermoelectric element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees