JPH085572Y2 - Thermoelectric element - Google Patents

Thermoelectric element

Info

Publication number
JPH085572Y2
JPH085572Y2 JP1987014067U JP1406787U JPH085572Y2 JP H085572 Y2 JPH085572 Y2 JP H085572Y2 JP 1987014067 U JP1987014067 U JP 1987014067U JP 1406787 U JP1406787 U JP 1406787U JP H085572 Y2 JPH085572 Y2 JP H085572Y2
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric element
organic resin
glass
thermoelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987014067U
Other languages
Japanese (ja)
Other versions
JPS63122290U (en
Inventor
恵二 佐藤
Original Assignee
セイコー電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコー電子工業株式会社 filed Critical セイコー電子工業株式会社
Priority to JP1987014067U priority Critical patent/JPH085572Y2/en
Publication of JPS63122290U publication Critical patent/JPS63122290U/ja
Application granted granted Critical
Publication of JPH085572Y2 publication Critical patent/JPH085572Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、熱電素子の構造に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a structure of a thermoelectric element.

〔考案の概要〕[Outline of device]

本考案は、熱電素子の構造において、複数の熱電材料
を厚膜法により形成し、複数のガラス板と有機樹脂によ
り積層して接着し、複数の熱電材料の2つずつを電極に
よりそれぞれ導通させ、絶縁層を電極に形成し、電熱板
を絶縁層にはりつけたものであって、簡易に高性能な熱
電素子を得るものである。
According to the present invention, in the structure of a thermoelectric element, a plurality of thermoelectric materials are formed by a thick film method, a plurality of glass plates and organic resins are laminated and adhered, and two of the plurality of thermoelectric materials are electrically connected by electrodes. An insulating layer is formed on an electrode, and an electric heating plate is attached to the insulating layer to easily obtain a high-performance thermoelectric element.

〔従来の技術〕[Conventional technology]

電子腕時計において、体温を利用した熱電素子と大容
量コンデンサや2次電池との組合せにより半永久電源を
得ることができる。
In an electronic wrist watch, a semi-permanent power supply can be obtained by combining a thermoelectric element using body temperature with a large-capacity capacitor or a secondary battery.

この場合、常温付近で最も優れた性能指数をもつもの
として(Bi,Sb)2(Te,Se)3系熱電材料があるが、この材料
でもN形およびP形ともゼーベック係数は200μV/k程度
であり、従って例えば温度差2℃で電圧2Vを得るには5
千個もの素子が必要となる。
In this case, there is a (Bi, Sb) 2 (Te, Se) 3 type thermoelectric material that has the best figure of merit at around room temperature. Seebeck coefficient of this material is about 200μV / k for both N type and P type. Therefore, for example, to obtain a voltage of 2V with a temperature difference of 2 ° C, 5
Thousands of elements are needed.

しかも腕時計の場合、利用できる面積は6cm2程度が
限度であり、従って1個1個の素子は例えば0.1mm×0.1
mm×7mm程度となり、このような微小な素子を数千個も
形成するには厚膜法などの利用が必要となり、例えば、
昭和61年電気学会全国大会講演論文集No.1194などの例
があるが、この場合、熱電材料を形成する基板としては
ガラスなどを使用する必要がある。
Moreover, in the case of a wrist watch, the usable area is limited to about 6 cm 2 , so each element is, for example, 0.1 mm × 0.1 mm.
mm × 7 mm, which requires the use of thick film methods to form thousands of such minute elements.
There are examples such as Proceedings of the 61st Annual Meeting of the Institute of Electrical Engineers of Japan, 1986, etc. In this case, it is necessary to use glass or the like as the substrate for forming the thermoelectric material.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

厚膜法で熱電材料を形成する場合、(Bi,Sb)2(Te,Se)3
系熱電材料の場合、500℃程度で非酸化性雰囲気での焼
結となり、基板としてはガラスなどがあり、この場合熱
伝導率は0.01w/cm・k程度と大きくなり、温度差が生じ
にくくなる。
When forming a thermoelectric material by the thick film method, (Bi, Sb) 2 (Te, Se) 3
In the case of thermoelectric materials, it will be sintered in a non-oxidizing atmosphere at about 500 ° C, and there is glass etc. as the substrate. In this case, the thermal conductivity will be as large as 0.01w / cm ・ k, and a temperature difference is unlikely to occur. Become.

〔課題を解決するための手段〕[Means for solving the problem]

本考案では、熱電素子は、熱電材料が断熱部材に埋め
込まれた構造をもち、その断熱部材はガラスや雲母のよ
うな熱電材料の焼結に耐える無機物質であり、第1図に
平面図、第2図に断面図で示すように熱電材料1が例え
ばガラス2および有機樹脂3で周囲を囲まれるような構
造とする。
In the present invention, the thermoelectric element has a structure in which a thermoelectric material is embedded in a heat insulating member, and the heat insulating member is an inorganic substance that can withstand the sintering of the thermoelectric material such as glass or mica. As shown in the cross-sectional view of FIG. 2, the thermoelectric material 1 has a structure in which the glass 2 and the organic resin 3 surround the periphery.

かつこの際、有機樹脂のような熱伝導率のできるだけ
小さな部材の容積をできるだけ大きくする。
At this time, the volume of a member such as an organic resin having the smallest thermal conductivity is made as large as possible.

また、特に断熱部材として多孔性ガラスや多孔性の有
機樹脂を用いる。
Further, in particular, porous glass or porous organic resin is used as the heat insulating member.

〔作用〕[Action]

熱電素子を固定する断熱部材として熱電材料の焼結に
耐える無機物質を用いることにより、微細で多数の熱電
材料を厚膜法により容易に形成でき、しかも有機樹脂の
ような熱伝導率の小さな断熱部材の体積をできるだけ多
くすることが熱電素子にかかる温度差を大きくすること
ができる。
By using an inorganic substance that can withstand the sintering of thermoelectric materials as a heat insulating member for fixing thermoelectric elements, a large number of fine and fine thermoelectric materials can be easily formed by the thick film method, and heat insulation with a small thermal conductivity like organic resin is possible. Making the volume of the member as large as possible can increase the temperature difference applied to the thermoelectric element.

〔実施例〕〔Example〕

以下図面により詳細に説明する。 The details will be described below with reference to the drawings.

第3図に断面図で示すように熱電材料1を厚膜法によ
り、ガラス2の上に一定間隔で形成する。
As shown in the sectional view of FIG. 3, the thermoelectric material 1 is formed on the glass 2 at regular intervals by the thick film method.

次に第4図に断面図で示すように熱電材料1を有機樹
脂3で覆う。次に第5図に断面図で示すようにガラス2
をエッチングにより熱電材料1の部分を除いて除去す
る。このようにして得た熱電材料を固定した有機樹脂を
接着積層し、第1図に示すように熱電材料1がガラス2
および有機樹脂3で囲まれた構造をもつ熱電素子とす
る。更にこれに第6図に平面図で示すように、直列にな
るように熱電材料間に電極4を形成する。
Next, as shown in the sectional view of FIG. 4, the thermoelectric material 1 is covered with the organic resin 3. Next, as shown in the sectional view of FIG.
Are removed by etching except the portion of the thermoelectric material 1. An organic resin having the thermoelectric material thus obtained fixed thereon is adhered and laminated, and as shown in FIG.
Also, the thermoelectric element has a structure surrounded by the organic resin 3. Further, as shown in a plan view in FIG. 6, electrodes 4 are formed between the thermoelectric materials so as to be in series.

上記のようにして製造された熱電素子は第7図に断面
図で示すように電極4に絶縁層5を形成し、更に伝熱板
6をはりつけて完成する。
The thermoelectric element manufactured as described above is completed by forming the insulating layer 5 on the electrode 4 and further attaching the heat transfer plate 6 as shown in the sectional view of FIG.

このようにして(Bi,Sb)2(Te,Se)3系熱電材料を用い、
熱電材料の1つの寸法が0.1mm×0.1mm×7mmでN形およ
びP形合わせて、5600個よりなる、外形が約24mm×21mm
×8mmの熱電素子を製作し、第8図に斜視図で示すよう
に熱電素子をもつ発電部7と表示部8をもつ電子腕時計
を製作した。この電子腕時計を周囲24℃で腕にはめた
時、1.9Vの電圧を発生した。これは十分電子腕時計に利
用できる性能である。
In this way, using (Bi, Sb) 2 (Te, Se) 3 based thermoelectric material,
One dimension of thermoelectric material is 0.1mm × 0.1mm × 7mm, consisting of 5600 N-type and P-type, outer shape is about 24mm × 21mm
A × 8 mm thermoelectric element was manufactured, and an electronic wrist watch having a power generation section 7 having a thermoelectric element and a display section 8 was manufactured as shown in the perspective view of FIG. When this electronic wristwatch was worn on the wrist at an ambient temperature of 24 ° C, a voltage of 1.9V was generated. This is a performance that can be sufficiently used for electronic wrist watches.

断熱部材としてガラスを用いた場合、その熱伝導率は
0.01w/cm・k程度であるが、エポキシなどの有機樹脂は
0.001w/cm・k程度のものもあり、従って本実施例のよ
うにガラスなどの厚膜法により熱電材料を形成する無機
物質の容積をできるだけ小さくし、熱伝導率の小さな有
機樹脂の容積を大きくすることで、熱電素子に生ずる温
度差は大きくなり、従って発生する電圧も大きくなる。
When glass is used as the heat insulating member, its thermal conductivity is
It is about 0.01w / cm ・ k, but for organic resins such as epoxy
Some of them have a volume of about 0.001 w / cm · k. Therefore, the volume of the inorganic substance forming the thermoelectric material is made as small as possible by the thick film method such as glass to reduce the volume of the organic resin having a small thermal conductivity as in this example. By increasing the temperature, the temperature difference generated in the thermoelectric element increases, and therefore the voltage generated also increases.

また、無機物質や有機樹脂を多孔性物質にすると見か
けの熱伝導率が小さくなり更に好ましい結果が得られ
る。
Further, when the inorganic substance or the organic resin is made into a porous substance, the apparent thermal conductivity becomes small, and more preferable results can be obtained.

多孔性物質としては分相ガラスの酸溶出や金属アルコ
キシドの加水分解により得られるガラスなどが特に有用
であり、数10Åの微細な多孔をもち機械的強度も十分で
あり、厚膜法に利用した場合熱電材料との接着強度も優
れている。
As a porous substance, glass obtained by acid elution of phase-separated glass or hydrolysis of metal alkoxide is particularly useful, and it has a few 10Å fine porosity and sufficient mechanical strength, and was used for the thick film method. In this case, the adhesive strength with the thermoelectric material is also excellent.

有機樹脂では溶媒中での相分離とゲル化を利用した多
孔性高分子膜などが利用できる。
As the organic resin, a porous polymer film that utilizes phase separation and gelation in a solvent can be used.

また無機物質、有機樹脂とも粒体を加圧成形した多孔
体も利用できる。
In addition, a porous body obtained by press-molding granules can be used for both the inorganic substance and the organic resin.

以上のようにして製作された熱電素子を利用した電子
腕時計の例を第8図に示す。
An example of an electronic wrist watch using the thermoelectric element manufactured as described above is shown in FIG.

熱電素子よりなる発電部7と電子回路及び大容量コン
デンサなどの充電装置を内部にもつ表示部8より構成さ
れる。
It is composed of a power generation section 7 composed of a thermoelectric element and a display section 8 having therein a charging device such as an electronic circuit and a large-capacity capacitor.

〔考案の効果〕[Effect of device]

以上述べたように本考案によれば、熱電材料がガラス
などの無機物質と有機樹脂よりなる断熱部材に埋め込ま
れた構造とすることにより、簡易に高性能な熱電素子が
得られる、という効果がある。
As described above, according to the present invention, it is possible to easily obtain a high-performance thermoelectric element by using a structure in which the thermoelectric material is embedded in a heat insulating member made of an inorganic substance such as glass and an organic resin. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は熱電素子のそれぞれ平面図及び断面
図を示し、第3図から第5図は熱電素子の形成工程を示
す断面図であり、第6図は熱電素子への電極形成状態を
示す平面図であり、第7図は完成状態の熱電素子の断面
図であり、第8図は熱電素子を利用した電子腕時計の斜
視図である。 1……熱電材料 2……ガラス 3……有機樹脂 4……電極 5……絶縁層 6……伝熱板 7……発電部 8……表示部
1 and 2 are a plan view and a cross-sectional view, respectively, of the thermoelectric element, FIGS. 3 to 5 are cross-sectional views showing the steps of forming the thermoelectric element, and FIG. 6 is an electrode formation on the thermoelectric element. FIG. 7 is a plan view showing a state, FIG. 7 is a sectional view of the thermoelectric element in a completed state, and FIG. 8 is a perspective view of an electronic wristwatch using the thermoelectric element. 1 ... Thermoelectric material 2 ... Glass 3 ... Organic resin 4 ... Electrode 5 ... Insulating layer 6 ... Heat transfer plate 7 ... Power generation section 8 ... Display section

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】熱電対の一方が、有機材料(3)内に複数
個の熱電材料(1)の一面を露出させて間隔を空けて埋
設され、前記熱電対(1)の露出面には無機物質(2)
がそれぞれ覆われてなる熱電要素であり、熱電対の他方
が、上と同様の構成からなり前記熱電材料の種類のみを
異にした熱電要素でありそれらを複数個備え、 前記熱電対の一方および他方を交互に間隔を空けて配置
し、これらの間隔を有機樹脂(3)により接着積層する
とともに、前記熱電対が直列接続できるように前記熱電
材料(1)の両端部に電極を有することを特徴とする熱
電素子。
1. One of the thermocouples is embedded in the organic material (3) with one surface of the plurality of thermoelectric materials (1) exposed and spaced apart, and the exposed surface of the thermocouple (1) is Inorganic substance (2)
Is a thermoelectric element each covered, the other of the thermocouple is a thermoelectric element different in only the type of the thermoelectric material consisting of the same configuration as above, and a plurality of them are provided, and one of the thermocouples and The other is alternately arranged at intervals, and these intervals are bonded and laminated with an organic resin (3), and electrodes are provided at both ends of the thermoelectric material (1) so that the thermocouples can be connected in series. Characteristic thermoelectric element.
【請求項2】前記有機樹脂(3)が、多孔性であること
を特徴とする実用新案登録請求の範囲第1項記載の熱電
素子。
2. The thermoelectric element according to claim 1, wherein the organic resin (3) is porous.
【請求項3】前記無機物質(2)がガラス又は雲母であ
ることを特徴とする実用新案登録請求の範囲第1項若し
くは第2項記載の熱電素子。
3. The thermoelectric element according to claim 1 or 2, wherein the inorganic substance (2) is glass or mica.
JP1987014067U 1987-02-02 1987-02-02 Thermoelectric element Expired - Lifetime JPH085572Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987014067U JPH085572Y2 (en) 1987-02-02 1987-02-02 Thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987014067U JPH085572Y2 (en) 1987-02-02 1987-02-02 Thermoelectric element

Publications (2)

Publication Number Publication Date
JPS63122290U JPS63122290U (en) 1988-08-09
JPH085572Y2 true JPH085572Y2 (en) 1996-02-14

Family

ID=30803714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987014067U Expired - Lifetime JPH085572Y2 (en) 1987-02-02 1987-02-02 Thermoelectric element

Country Status (1)

Country Link
JP (1) JPH085572Y2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108272U (en) * 1979-03-06 1981-08-22
JPS57154086A (en) * 1981-03-20 1982-09-22 Citizen Watch Co Ltd Wristwatch with thermopile

Also Published As

Publication number Publication date
JPS63122290U (en) 1988-08-09

Similar Documents

Publication Publication Date Title
JP3219279B2 (en) Thermoelectric device
CA1081477A (en) Wrist watch incorporating a thermoelectric generator
JP2009526401A (en) Improved low-power thermoelectric generator
JP5598152B2 (en) Thermoelectric conversion module and manufacturing method thereof
WO2013127114A1 (en) Miniature thermoelectric energy collector and manufacturing method therefor
US3969149A (en) Thermoelectric microgenerator
JPH085572Y2 (en) Thermoelectric element
JPH0336932U (en)
JP2527541B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
JP2602646B2 (en) Manufacturing method of thermoelectric element for electronic watch
JPH0828531B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
US3775218A (en) Method for the production of semiconductor thermoelements
JP2542502B2 (en) Thermoelectric element manufacturing method
JPS60127770A (en) Thermoelectric generating element
JPS60121784A (en) Laminated type piezoelectric body
EP3062358A1 (en) Thermoelectric conversion device having thermoelectric conversion element connected thereto via wiring pattern, and method for manufacturing thermoelectric conversion device having thermoelectric conversion element connected thereto via wiring pattern
JP2654504B2 (en) Manufacturing method of thermoelectric element for electronic watch
JP2544118B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
CN207885048U (en) Cover sheet
JPH1022532A (en) Thermoelectric conversion element
JP2756960B2 (en) Manufacturing method of thermoelectric element for electronic watch
JPH069260B2 (en) Method for manufacturing thermoelectric conversion element
JP2542498B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
JPS63226980A (en) Manufacture of thermoelectric element for electronic wrist watch
JPS6370464A (en) Manufacture of thermoelement for electronic watch